進階代數(下) 第十三次作業

上課老師: 翁志文

2009年五月十八日

- 1. Let F be an extension field of K.
 - (a) (黃彥璋) If [F:K] is prime, then there are no intermediate fields between F and K.
 - (b) (林志嘉) If $u \in F$ is algebraic of odd degree over K, then so is u^2 and $K(u) = K(u^2)$.
 - (c) (陳建文) In the field K(x), let $u = x^3/(x+1)$. Show that K(x) is a finite extension of the field K(u). What is [K(x) : K(u)].
- 2. A complex number is said to be an *algebraic number* if it is algebraic over \mathbb{Q} and an *algebraic integer* if it is the root of a monic polynomial in $\mathbb{Z}[x]$. (Note. A monic polynomial has leading coefficient 1)
 - (a) (羅建峰) The sum and product of two algebraic numbers are algebraic numbers.
 - (b) (黃思綸) Find an algebraic number which is not an algebraic integer.
 - (c) (陳泓勳) If u is an algebraic number, then there exists an integer n such that nu is an algebraic integer.
 - (d) (何昕暘) If $r \in \mathbb{Q}$ is an algebraic integer, then $r \in \mathbb{Z}$. (Gauss Lemma)
 - (e) (賴德展) If u is an algebraic integer and $n \in \mathbb{Z}$, then u + n and nu are algebraic integers.
 - (f) (劉侖欣) The sum and product of two algebraic integers are algebraic integers.
- 3. Let G be an abelian group of order n. A partial difference set of G is a subset S of G such that the set $\{x y \mid x, y \in S, x \neq y\}$ contains $|S| \times (|S| 1)$ elements.
 - (a) (周彦伶) Let S be a partial difference set of G with |S| = s. Then $s^2 s + 1 \le n$.
 - (b) (洪湧昇) Let $a \in U_p$, the set of units of \mathbb{Z}_p , be a multiplication generator. Then $S = \{(i, a^i)\} \mid 0 \le i \le p - 1\}$ is a partial difference set of $\mathbb{Z}_p \times \mathbb{Z}_p$. (Hint. Find the desired set of p(p-1) elements)
 - (c) (林志峰) Let S be as in (b). Then $|(u+S) \cap (v+S)| \le 1$ for any distinct elements $u, v \in \mathbb{Z}_p \times \mathbb{Z}_p$.
 - (d) (黄正一) Let $F = \{u + S \mid u \in \mathbb{Z}_p \times \mathbb{Z}_p\} \cup \{\{(i, j) \mid j \in \mathbb{Z}_p\} \mid i \in \mathbb{Z}_p\}$. Then the union of any p 1 elements in F does not contain (cover) another element in F.