進階代數（下）第十三次作業

上課老師：翁志文

2009 年五月十八日

1．Let F be an extension field of K ．
（a）（黃彥璋）If $[F: K]$ is prime，then there are no intermediate fields between F and K ．
（b）（林志嘉）If $u \in F$ is algebraic of odd degree over K ，then so is u^{2} and $K(u)=K\left(u^{2}\right)$ ．
（c）（陳建文）In the field $K(x)$ ，let $u=x^{3} /(x+1)$ ．Show that $K(x)$ is a finite extension of the field $K(u)$ ．What is $[K(x): K(u)]$ ．

2．A complex number is said to be an algebraic number if it is algebraic over \mathbb{Q} and an alge－ braic integer if it is the root of a monic polynomial in $\mathbb{Z}[x]$ ．（Note．A monic polynomial has leading coefficient 1）
（a）（羅建峰）The sum and product of two algebraic numbers are algebraic numbers．
（b）（黃思綸）Find an algebraic number which is not an algebraic integer．
（c）（陳泓勳）If u is an algebraic number，then there exists an integer n such that $n u$ is an algebraic integer．
（d）（何昕暘）If $r \in \mathbb{Q}$ is an algebraic integer，then $r \in \mathbb{Z}$ ．（Gauss Lemma）
（e）（賴德展）If u is an algebraic integer and $n \in \mathbb{Z}$ ，then $u+n$ and $n u$ are algebraic integers．
（f）（劉侖欣）The sum and product of two algebraic integers are algebraic integers．
3．Let G be an abelian group of order n ．A partial difference set of G is a subset S of G such that the set $\{x-y \mid x, y \in S, x \neq y\}$ contains $|S| \times(|S|-1)$ elements．
（a）（周彥伶）Let S be a partial difference set of G with $|S|=s$ ．Then $s^{2}-s+1 \leq n$ ．
（b）（洪湧昇）Let $a \in U_{p}$ ，the set of units of \mathbb{Z}_{p} ，be a multiplication generator．Then $\left.S=\left\{\left(i, a^{i}\right)\right\} \mid 0 \leq i \leq p-1\right\}$ is a partial difference set of $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ ．（Hint．Find the desired set of $p(p-1)$ elements）
（c）（林志峰）Let S be as in（b）．Then $|(u+S) \cap(v+S)| \leq 1$ for any distinct elements $u, v \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ ．
（d）（黃正一）Let $F=\left\{u+S \mid u \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}\right\} \cup\left\{\left\{(i, j) \mid j \in \mathbb{Z}_{p}\right\} \mid i \in \mathbb{Z}_{p}\right\}$ ．Then the union of any $p-1$ elements in F does not contain（cover）another element in F ．

