進階代數(下) 第三次作業

上課老師: 翁志文

2009年三月五日

- 1. (蕭雯華) Show that a group of order pq has at most one subgroup of order p, where p > q are primes.
- 2. (陳巧玲) Let G be the group of all nonzero complex numbers under multiplication and let N be the set of complex numbers of absolute value 1. Show that G/N is isomorphic to the group of all positive real numbers under multiplication.
- 3. (林詒琪) Let G be the group of real numbers under addition and let N be the subgroup of G consisting of all the integers. Prove that G/N is isomorphic to the group of all complex numbers of absolute value 1 under multiplication.
- 4. (葉彬) Prove that every finite group having more than two elements has a nontrivial automorphism.
- 5. (林育生) Prove that any element $\sigma \in S_n$ which commutes with (1, 2, ..., r) is of the form $\sigma = (1, 2, ..., r)^i \tau$ for some $\tau \in S_n$ with $\tau(i) = i$ for all $1 \le i \le r$.
- 6. Two elements $a, b \in G$ are *conjugate* if there exists $c \in G$ such that $a = c^{-1}bc$. The conjugate is an equivalent relation on G and hence G is partitioned into *conjugate classes*.
 - (a) (黃彥璋) Find the number of conjugates of (1,2)(3,4) in $S_n, n \ge 4$.
 - (b) (林志嘉) Find the form of all elements commuting with (1,2)(3,4) in $S_n, n \ge 4$.
 - (c) (陳建文) Determine number the conjugate classes of S_6 .

(建模問題)

- 7. Let the column vector $u = (u_1, u_2, u_3)^t$ represent a coloring configuration of the path $P_3 = \{1 2 3\}$ described in Homework 1, where $u_i \in \mathbb{Z}_2$; $u_i = 0$ iff the vertex *i* is colored in black (off).
 - (a) (羅健鋒) Interpret each lit-only move associated with a vertex *i* "faithfully" to a 3×3 matrix S_i with entries over \mathbb{Z}_2 such that S_i sends a configuration *u* to $S_i u$.
 - (b) (陳泓勳) Interpret each dual lit-only move associated with a vertex *i* "faithfully" to a 3×3 matrix S_i^* with entries over \mathbb{Z}_2 such that S_i^* sends a configuration *u* to $S_i^* u$. What is the relation between S_i and S_i^* .
 - (c) (何欣暘) Interpret each dual lit-only plus move associated with a vertex *i* "faithfully" to a 3×3 matrix M_i with entries over \mathbb{Z}_2 such that M_i sends a configuration *u* to $M_i u$.
 - (d) (賴德展) *Let $\mathbf{L} = \langle S_1, S_2, S_3 \rangle$. Show that the center $Z(\mathbf{L})$ of \mathbf{L} is trivial. (Hint. Compute S_iS and SS_i if there exists $S \in Z(\mathbf{L})$ with $S_{ij} = 1$.)