1. Show that a group of order pq has at most one subgroup of order p; where $p>q$ are primes.

We will use the fact that if H is a group with $|H|=p$ (where p is prime), then H is cyclic.
Assume there are two subgroups H_{1}, H_{2} with $\left|H_{1}\right|=\left|H_{2}\right|=p$,
$H_{1} \cap H_{2}=\{e\}$. Then by fact above we have $H_{1}=<a>$ and $H_{2}=$ for some $a, b \in G$. Now consider $\langle a, b\rangle$. Since $<a, b\rangle<G$ we have $p<|<a, b>| \leq p q<p^{2}$. Note that
$G \supseteq<a, b>\supseteq\left\{a^{i} b^{j} \mid 0 \leq i, j \leq p-1\right\}$ and if $a^{i} b^{j}$ are all distinct for all
$0 \leq i, j \leq p-1$, then $\left|<a, b>\left|\geq p^{2}>p q=|G|\right.\right.$, a contradiction. Thus we may assume $a^{i} b^{j}=a^{i^{\prime}} b^{j^{\prime}}$ for some $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. We have 3 cases.
(i) $i=i^{\prime}$ and $j \neq j^{\prime}$

Then we have $b^{j}=b^{j^{\prime}}$, a contradiction.
(ii) $i \neq i^{\prime}$ and $j=j^{\prime}$

Similar to case (i).
(iii) $i \neq i^{\prime}$ and $j \neq j^{\prime}$

Then $a^{i-i^{\prime}}=b^{j-j^{\prime}}$. Since $H_{1} \cap H_{2}=\{e\}$ we have $a^{i-i^{\prime}}=b^{j-j^{\prime}}=e$, therefore $i=i^{\prime}$ and $j=j^{\prime}$, a contradiction. Thus we are done.

Comment from teacher: It's easier to prove it by using $p g=|G| \geq\left|H_{1} H_{2}\right|=\frac{\left|H_{1}\right|\left|H_{2}\right|}{\left|H_{1}\right| \cap\left|H_{2}\right|}=p^{2}$, a contradiction.
2. Let G be the group of all nonzero complex numbers under multiplication and let N be the set of complex numbers of absolute value 1. Show that $G=N$ is isomorphic to the group of all positive real numbers under multiplication.

Let $f: G \mapsto \mathbb{R}^{+}$by $f(x)=|x|$. It's routine to check f is well-defined, onto, homomorphism and $\operatorname{ker}(f)=N$. Then by first homomorphism theorem we have $G / N \cong \mathbb{R}^{+}$.
3. Let G be the group of real numbers under addition and let N be the subgroup of G consisting of all the integers. Prove that G / N is isomorphic to the group of all complex numbers of absolute value 1 under multiplication.

Let $\alpha: G / N \mapsto U=\{z|z \in \mathbb{C},|z|=1\}$ by
$\alpha(r+\mathbb{Z})=\cos (2 \pi r)+i \sin (2 \pi r)=e^{i 2 \pi r}$.
To show α is well-defined and 1-1, we have
$r+z=s+z$
$\Longleftrightarrow r-s=n, n \in \mathbb{Z}$
$\Longleftrightarrow e^{i 2 \pi(r-s)}=e^{i 2 \pi n}=1$
$\Longleftrightarrow e^{i 2 \pi r} e^{i 2 \pi(-s)}=1$
$\Longleftrightarrow e^{i 2 \pi r}=e^{i 2 \pi s}$
To show α is onto, for all $e^{i \theta} \in U$, there exists $r=\frac{\theta}{2 \pi} \in \mathbb{R}$ such that $\alpha(r+\mathbb{Z})=\alpha\left(\frac{\theta}{2 \pi}+\mathbb{Z}\right)=e^{i 2 \pi \frac{\theta}{2 \pi}}=e^{i \theta}$
For homomorphism,
$\alpha(r+\mathbb{Z}+s+\mathbb{Z})=\alpha(r+s+\mathbb{Z})=e^{i 2 \pi(r+s)}=e^{i 2 \pi r} e^{i 2 \pi s}=\alpha(r+\mathbb{Z}) \alpha(s+\mathbb{Z})$ Thus α is isomorphic.
Comment from teacher:
Let $\phi: \mathbb{R} \mapsto U$ by $\phi(r)=e^{2 \pi r i}$. Then by first homomorphism theorem we have $U \cong \mathbb{R} / \operatorname{ker}(\phi)$.
4. Prove that every finite group having more than two elements has a nontrivial automorphism.

We consider 2 cases separately.
(i) G is non-abelian

Then fix $a \in G, a \neq e, a \notin C(G)$. Let $f: G \mapsto G$ by $f(x)=a x a^{-1}$. It's easy to show f is homomorphism since
$f(x y)=a x y a^{-1}=a x a^{-1} a y a^{-1}=f(x) f(y)$.
For 1-1, if $f(x)=f(y) \Rightarrow a x a^{-1}=a y a^{-1} \Rightarrow x=y$.
Since f is 1-1 and G is finite, f is onto.
It reminds to show that f is non-trivial, i.e. f is not identity. Suppose f is identity, then $a x a^{-1}=x$ for all $x \in G$. Thus $a x=x a$ for all $x \in G$, contradicts that a is not in the center of G.
(ii) G is abelian

We have 2 cases here.
(1) $\exists x \in G$ with $x \neq x^{-1}$

Then let $f(x)=x^{-1}$. It's non-trivial from the assumption and easy to check homomorphism, 1-1 and onto.
(2) $x=x^{-1} \forall x \in G$

Claim: $G \cong \mathbb{Z}_{2} \bigoplus \mathbb{Z}_{2} \bigoplus \ldots \bigoplus \mathbb{Z}_{2}(n$ times $)$ for some $2 \leq n$
Claim shall be proved later. Let e_{i} be all zero except at the i th position, it's 1 . Then let $f(x)$ be

$$
f(x)= \begin{cases}e_{2}, & \text { if } x=e_{1} \\ e_{1}, & \text { if } x=e_{1} \\ x, & \text { otherwise }\end{cases}
$$

It's clearly non-trivial. Rest are routine to do.(check homomorphism, 1-1 and onto)
To prove the claim, let $U=\left\{a_{1}, \ldots, a_{n}\right\}$ be a set with $\left.<U\right\rangle=G$ with no proper subset of U generates G. It can be showed that
$G \cong<a_{1}>\bigoplus \cdots \oplus<a_{n}>$ by let $\phi: G \mapsto<a_{1}>\bigoplus \cdots \bigoplus<a_{n}>$ by for $x=a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{n}^{m_{n}}, \phi(x)=\left(a_{1}^{m_{1}}, a_{2}^{m 2}, \ldots, a_{n}^{m_{n}}\right)$
Again ϕ can be checked as well-defined, 1-1, onto thus ϕ is an isomorphism.

Since $x=x^{-1} \forall x \in G,<a_{i}>\cong \mathbb{Z}_{2} \forall i$. Since $|G|>2, n \geq 2$. Therefore claim is proved.
Comment from teacher:
One may try the following function for the last case:

$$
f(x)= \begin{cases}b, & \text { if } x=a \\ a, & \text { if } x=b \\ x, & \text { otherwise }\end{cases}
$$

where $a \neq b$ and $a \neq e, b \neq e$.
5. Prove that any element $\sigma \in S_{n}$ which commutes with $(1,2, \ldots, r)$ is of the form $\sigma=(1,2, \ldots, r)^{i} \tau$ for some $\tau \in S_{n}$ with $\tau(i)=i$ for all $1 \leq i \leq r$.
(\Leftarrow)
Easy to check by some routine works.
(\Rightarrow)
$\sigma(1, \ldots, r)=(1, \ldots, r) \sigma \Rightarrow \sigma(1, \ldots, r) \sigma^{-1}=(1, \ldots, r)$
$\Rightarrow(\sigma(1), \ldots, \sigma(r))=(1, \ldots, r)$ (This is a result from lecture note)
\therefore if $\sigma(1)=j$, then $\sigma(2)=j+1, \ldots, \sigma(j)=j+r-1(\bmod r)$
Thus it must be in the form as showed in the problem.

