Solution for Homework 3 part 1, problem 1 to 5 Recording and typing by 9622534, Bin Yeh March 23, 2009

1. Show that a group of order pq has at most one subgroup of order p; where p > q are primes.

We will use the fact that if H is a group with |H| = p(where p is prime), then H is cyclic.

Assume there are two subgroups H_1 , H_2 with $|H_1| = |H_2| = p$, $H_1 \cap H_2 = \{e\}$. Then by fact above we have $H_1 = \langle a \rangle$ and $H_2 = \langle b \rangle$ for some $a, b \in G$. Now consider $\langle a, b \rangle$. Since $\langle a, b \rangle \langle G$ we have $p \langle |\langle a, b \rangle| \leq pq \langle p^2$. Note that $G \supseteq \langle a, b \rangle \supseteq \{a^i b^j | 0 \leq i, j \leq p-1\}$ and if $a^i b^j$ are all distinct for all $0 \leq i, j \leq p-1$, then $|\langle a, b \rangle| \geq p^2 > pq = |G|$, a contradiction. Thus we may assume $a^i b^j = a^{i'} b^{j'}$ for some $(i, j) \neq (i', j')$. We have 3 cases. (i) i = i' and $j \neq j'$ Then we have $b^j = b^{j'}$, a contradiction. (ii) $i \neq i'$ and j = j'Similar to case (i). (iii) $i \neq i'$ and $j \neq j'$ Then $a^{i-i'} = b^{j-j'}$. Since $H_1 \cap H_2 = \{e\}$ we have $a^{i-i'} = b^{j-j'} = e$, therefore i = i' and j = j', a contradiction. Thus we are done.

Comment from teacher: It's easier to prove it by using $pg = |G| \ge |H_1H_2| = \frac{|H_1||H_2|}{|H_1|\cap|H_2|} = p^2$, a contradiction.

2. Let G be the group of all nonzero complex numbers under multiplication and let N be the set of complex numbers of absolute value 1. Show that G = N is isomorphic to the group of all positive real numbers under multiplication.

Let $f: G \mapsto \mathbb{R}^+$ by f(x) = |x|. It's routine to check f is well-defined, onto, homomorphism and ker(f) = N. Then by first homomorphism theorem we have $G/N \cong \mathbb{R}^+$.

3. Let G be the group of real numbers under addition and let N be the subgroup of G consisting of all the integers. Prove that G/N is isomorphic to the group of all complex numbers of absolute value 1 under multiplication.

Let $\alpha: G/N \mapsto U = \{z | z \in \mathbb{C}, |z| = 1\}$ by $\alpha(r + \mathbb{Z}) = \cos(2\pi r) + i\sin(2\pi r) = e^{i2\pi r}$. To show α is well-defined and 1-1, we have r + z = s + z $\iff r - s = n, n \in \mathbb{Z}$

1

$$\begin{split} & \Longleftrightarrow e^{i2\pi(r-s)} = e^{i2\pi n} = 1 \\ & \Leftrightarrow e^{i2\pi r} e^{i2\pi(-s)} = 1 \\ & \Leftrightarrow e^{i2\pi r} = e^{i2\pi s} \\ & \text{To show } \alpha \text{ is onto, for all } e^{i\theta} \in U \text{, there exists } r = \frac{\theta}{2\pi} \in \mathbb{R} \text{ such that } \\ & \alpha(r + \mathbb{Z}) = \alpha(\frac{\theta}{2\pi} + \mathbb{Z}) = e^{i2\pi\frac{\theta}{2\pi}} = e^{i\theta} \\ & \text{For homomorphism,} \\ & \alpha(r + \mathbb{Z} + s + \mathbb{Z}) = \alpha(r + s + \mathbb{Z}) = e^{i2\pi(r+s)} = e^{i2\pi r} e^{i2\pi s} = \alpha(r + \mathbb{Z})\alpha(s + \mathbb{Z}) \\ & \text{Thus } \alpha \text{ is isomorphic.} \end{split}$$

Comment from teacher: Let $\phi : \mathbb{R} \mapsto U$ by $\phi(r) = e^{2\pi r i}$. Then by first homomorphism theorem we have $U \cong \mathbb{R}/ker(\phi)$.

4. Prove that every finite group having more than two elements has a nontrivial automorphism.

We consider 2 cases separately. (i) G is non-abelian Then fix $a \in G$, $a \neq e$, $a \notin C(G)$. Let $f : G \mapsto G$ by $f(x) = axa^{-1}$. It's easy to show f is homomorphism since $\begin{array}{l} f(xy) = axya^{-1} = axa^{-1}aya^{-1} = f(x)f(y).\\ \text{For 1-1, if } f(x) = f(y) \Rightarrow axa^{-1} = aya^{-1} \Rightarrow x = y. \end{array}$ Since f is 1-1 and G is finite, f is onto. It reminds to show that f is non-trivial, i.e. f is not identity. Suppose fis identity, then $axa^{-1} = x$ for all $x \in G$. Thus ax = xa for all $x \in G$, contradicts that a is not in the center of G. (ii) G is abelian We have 2 cases here. (1) $\exists x \in G \text{ with } x \neq x^{-1}$ Then let $f(x) = x^{-1}$. It's non-trivial from the assumption and easy to check homomorphism, 1-1 and onto. (2) $x = x^{-1} \forall x \in G$ Claim: $G \cong \mathbb{Z}_2 \bigoplus \mathbb{Z}_2 \bigoplus ... \bigoplus \mathbb{Z}_2(n \text{ times})$ for some $2 \le n$ Claim shall be proved later. Let e_i be all zero except at the *i*th position,

it's 1. Then let f(x) be

$$f(x) = \begin{cases} e_2, & \text{if } x = e_1 \\ e_1, & \text{if } x = e_1 \\ x, & \text{otherwise.} \end{cases}$$

It's clearly non-trivial. Rest are routine to do.(check homomorphism, 1-1 and onto)

To prove the claim, let $U = \{a_1, ..., a_n\}$ be a set with $\langle U \rangle = G$ with no proper subset of U generates G. It can be showed that

 $G \cong \langle a_1 \rangle \bigoplus \cdots \bigoplus \langle a_n \rangle \text{ by let } \phi : G \mapsto \langle a_1 \rangle \bigoplus \cdots \bigoplus \langle a_n \rangle \text{ by }$ for $x = a_1^{m_1} a_2^{m_2} \dots a_n^{m_n}, \phi(x) = (a_1^{m_1}, a_2^{m_2}, \dots, a_n^{m_n})$

Again ϕ can be checked as well-defined, 1-1, onto thus ϕ is an isomorphism.

Since $x = x^{-1} \ \forall x \in G, \ < a_i > \cong \mathbb{Z}_2 \ \forall i$. Since $|G| > 2, \ n \ge 2$. Therefore claim is proved.

Comment from teacher:

One may try the following function for the last case:

$$f(x) = \begin{cases} b, & \text{if } x = a \\ a, & \text{if } x = b \\ x, & \text{otherwise.} \end{cases}$$

where $a \neq b$ and $a \neq e, b \neq e$.

5. Prove that any element $\sigma \in S_n$ which commutes with (1, 2, ..., r) is of the form $\sigma = (1, 2, ..., r)^i \tau$ for some $\tau \in S_n$ with $\tau(i) = i$ for all $1 \le i \le r$.