進階代數(下) 第六次作業

上課老師: 翁志文

2009年三月二十六日

- 1. (黃思綸) Show that no group is the union of its two proper subgroups.
- 2. (陳泓勳) Find an abelian group G and a subgroup H of G such that $G \neq H \times K$ for all subgroups K of G.
- 3. Let p be prime and let \mathbb{Q}/\mathbb{Z} be the additive quotient group of \mathbb{Q} by \mathbb{Z} . Set

$$\mathbb{Z}(p^{\infty}) = \{ \overline{a/p^i} \in \mathbb{Q}/\mathbb{Z} \mid a \in \mathbb{Z}, \ i \in \mathbb{N} \cup \{0\} \}.$$

- (a) ((何欣暘)) Show that $\mathbb{Z}(p^{\infty})$ is a subgroup of \mathbb{Q}/\mathbb{Z} .
- (b) (賴德展) Show that every element of $\mathbb{Z}(p^{\infty})$ has finite order p^n for some $n \geq 0$.
- (c) (劉倫欣) Determine all the subgroups of $\mathbb{Z}(p^{\infty})$.
- (d) (周彦伶) Show that $\mathbb{Z}(p^{\infty})$ satisfies descending chain condition, but does not satisfy ascending chain condition on normal subgroups.
- (e) (洪湧昇) Write $\mathbb{Z}(p^{\infty})$ as a finite direct sum of indecomposable subgroups.
- 4. (林志峰) Show that the additive group \mathbb{Q} is indecomposable.
- 5. (黃正一) Write the additive group \mathbb{Z}_{150} as a finite direct sum of indecomposable subgroups.