1. Show that no group is the union of its two proper subgroups.

Suppose $G=N \cup H$ where N, H are proper subgroups of G.
If one of N, H contains the other, then clearly we have a contradiction that $G \neq N \cup H$.
Thus we may assume there exist n, h with $n \in N \backslash H$ and $h \in H \backslash N$, then consider $n h$. $n h \notin N \cup H$, since if $n h \in N$ we have $n^{-1} n h=h \in N$, a contradiction. Similar for $n h \in H$. Thus we are done.
2. Find an abelian group G and a subgroup H of G such that $G \neq H \times K$ for all subgroups K of G.

Let $G=\mathbb{Z}, H=2 \mathbb{Z}$. Recall by definition $G=H \times K$ implies that H, $K \triangleleft G, G=H K$ and $H \cap K=e$. The last property shows there is no subgroup K of G such that $G=H \times K$, since for any $k \in K$, $2 k \in 2 \mathbb{Z}=H$.
4. Show that the additive group \mathbb{Q} is indecomposable.

Suppose not. Then we have $Q=A \times B$ for some $A, B \triangleleft G$. Pick $e \neq \frac{a_{1}}{a_{2}} \in A$ and $e \neq \frac{b_{1}}{b_{2}} \in B$, then
$\frac{a_{1}}{a_{2}}+\frac{b_{1}}{b_{2}}=\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{2} b_{2}} \in A \cap B=\{e\}=\{0\}$. This implies $a_{1} b_{2}+a_{2} b_{1}=0$, therefore $a_{1} b_{2}=-a_{2} b_{1}$ and $\frac{a_{1}}{a_{2}}=-\frac{b_{1}}{b_{2}} \in A \cap B=\{e\}$, a contradiction.
5. Write the additive group \mathbb{Z}_{150} as a finite direct sum of indecomposable subgroups.

We claim that $\mathbb{Z}_{150}=<75>\times<50>\times<6>$. To prove it we need to check
(i) $<75>,<50>,<6>\triangleleft \mathbb{Z}_{150}$

It's clear that those 3 are subgroups of \mathbb{Z}_{150}. Since \mathbb{Z}_{150} is abelian, thus they are normal.
(ii) $\mathbb{Z}_{150}=<75><50><6>$

Since $\operatorname{gcd}(75,50,6)=1$ there exist integers a, b, c such that
$75 a+50 b+6 c=1$. Therefore $\mathbb{Z}_{150}=<75><50><6>$.
(iii) $<75>\cap<50><6>=<50>\cap<75><6>=<6>\cap<75><$ $50>=\{e\}$
Note that $<75>\cong \mathbb{Z}_{2},<50>\cong \mathbb{Z}_{3}$ and $<6>\cong \mathbb{Z}_{25}$.
And $\mathbb{Z}_{3} \mathbb{Z}_{25}$ has no subgroup of order $2, \mathbb{Z}_{3} \mathbb{Z}_{2}$ has no subgroup of order $25, \mathbb{Z}_{25} \mathbb{Z}_{2}$ has no subgroup of order 3 . Thus we are done. (Or one can use the following technique: $75 \neq 50 a+6 b$ for any integer a, b, since 2 divides RHS but not LHS. Rest are similar.)

Comment from teacher:
In $\mathbb{Z}_{150}=<75>\times<50>\times<6>$ we can replace $<6>$ with any subgroup of order 6 , like $<12>$. Similarly we can replace $<50>$ by $<100>$.

