Solution for Homework 6 part 1, problem 1, 2, 4 and 5 Recording and typing by 9622534, Bin Yeh April 15, 2009

1. Show that no group is the union of its two proper subgroups.

Suppose $G = N \cup H$ where N, H are proper subgroups of G. If one of N, H contains the other, then clearly we have a contradiction that $G \neq N \cup H$. Thus we may assume there exist n, h with $n \in N \setminus H$ and $h \in H \setminus N$, then consider nh. $nh \notin N \cup H$, since if $nh \in N$ we have $n^{-1}nh = h \in N$, a contradiction. Similar for $nh \in H$. Thus we are done.

2. Find an abelian group G and a subgroup H of G such that $G \neq H \times K$ for all subgroups K of G.

Let $G = \mathbb{Z}$, $H = 2\mathbb{Z}$. Recall by definition $G = H \times K$ implies that H, $K \triangleleft G$, G = HK and $H \cap K = e$. The last property shows there is no subgroup K of G such that $G = H \times K$, since for any $k \in K$, $2k \in 2\mathbb{Z} = H$.

4. Show that the additive group \mathbb{Q} is indecomposable.

Suppose not. Then we have $Q = A \times B$ for some $A, B \triangleleft G$. Pick $e \neq \frac{a_1}{a_2} \in A$ and $e \neq \frac{b_1}{b_2} \in B$, then $\frac{a_1}{a_2} + \frac{b_1}{b_2} = \frac{a_1b_2 + a_2b_1}{a_2b_2} \in A \cap B = \{e\} = \{0\}$. This implies $a_1b_2 + a_2b_1 = 0$, therefore $a_1b_2 = -a_2b_1$ and $\frac{a_1}{a_2} = -\frac{b_1}{b_2} \in A \cap B = \{e\}$, a contradiction.

5. Write the additive group \mathbb{Z}_{150} as a finite direct sum of indecomposable subgroups.

We claim that $\mathbb{Z}_{150} = \langle 75 \rangle \times \langle 50 \rangle \times \langle 6 \rangle$. To prove it we need to check

- (i) $\langle 75 \rangle, \langle 50 \rangle, \langle 6 \rangle \triangleleft \mathbb{Z}_{150}$ It's clear that those 3 are subgroups of \mathbb{Z}_{150} . Since \mathbb{Z}_{150} is abelian, thus they are normal.
- (ii) $\mathbb{Z}_{150} = <75 > <50 > <6 >$ Since gcd(75, 50, 6) = 1 there exist integers *a*, *b*, *c* such that 75a + 50b + 6c = 1. Therefore $\mathbb{Z}_{150} = <75 > <50 > <6 >$.
- (iii) $<75> \cap <50><6>=<50> \cap <75><6>=<6> \cap <75><$ $50>=\{e\}$

Note that $\langle 75 \rangle \cong \mathbb{Z}_2$, $\langle 50 \rangle \cong \mathbb{Z}_3$ and $\langle 6 \rangle \cong \mathbb{Z}_{25}$. And $\mathbb{Z}_3\mathbb{Z}_{25}$ has no subgroup of order 2, $\mathbb{Z}_3\mathbb{Z}_2$ has no subgroup of order 25, $\mathbb{Z}_{25}\mathbb{Z}_2$ has no subgroup of order 3. Thus we are done. (Or one can use the following technique: $75 \neq 50a + 6b$ for any integer a, b, since 2 divides RHS but not LHS. Rest are similar.)

Comment from teacher:

In $\mathbb{Z}_{150} = <75 > \times <50 > \times <6 >$ we can replace <6 > with any subgroup of order 6, like <12 >. Similarly we can replace <50 > by <100 >.