進階代數（下）第八次作業

上課老師：翁志文
 2009 年四月九日

1．Let G be a finite abelian group．
（a）（洪湧昇）Suppose $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$ ．Find subgroups $H, K<G$ of orders 36， 2 respectively such that $G=H \times K$ ．
（b）（林志峰）Suppose $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$ ．Find subgroups $H, K<G$ of orders 36， 2 respectively such that $G \neq H \times K$ ．
（c）（黃正一）Suppose $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$ ．Find a subgroup $H<G$ of order 36 such that $G \neq H \times K$ for any subgroup K of G ．
（d）（邱鈺傑）＊Show that if G is not cyclic，then G is decomposable．（Hint．$G=<a\rangle$ $\times K$ for some $a \in G$ ．）
（e）（蕭雯華）Show that G is an inner direct product of a finite number of indecomposable subgroups．What groups are these subgroups isomorphic to？
（f）（陳巧玲）Is it possible that $G=G_{1} \times G_{2}=H_{1} \times H_{2}$ ，where $G_{1} \cong G_{2} \cong Z_{4}, H_{1} \cong Z_{2}$ and $H_{2} \cong Z_{8}$ ？
（g）（林詒琪）Use Krull－Schmidt Theorem to determine how many non－isomorphic abelian groups of order 1400.

