（黃槁文的解答）
1（d）Let G be a finite abelian group．Show that if G is not cyclic，then G is decomposable．（Hint．$G=<a>\times K$ for some $a \in G$ ．）

Proof．We proceed by induction on the order of G ．Let a be an element of maximal order m in G ．Let $A=\langle a\rangle$ ．Now we prove the following statements．
（i）For $g \in G$ ，the order of g divides m ．
（ii）Show that there exists a nontrivial subgroup C of G such that $A \cap C=$ $\{1\}$ ．
（iii）Show that $a C \in G / C$ has order m in G / C ．Hence $a C$ is an element of maximal order in G / C ．

If G / C is cyclic then $G=A \times C$ ．Otherwise，by induction hypothesis，

$$
G / C=\langle a C\rangle \times Q / C
$$

for some subgroup $Q<G$ containing C ．Then it is routine to check that $G=A \times Q$ ．

Proof of（i）．Suppose there exists an element $g \in G$ of order n such that $n \nmid m$ ．If $(n, m)=1$ ，then the element $g a$ has order $n m$ and it contradicts the maximality of m ．Otherwise，there exists a prime p such that $p^{s}\left|n, p^{s-1}\right| m$ and $p^{s} \nmid m$ for some s ．Let $h:=g^{\frac{n}{p^{s}}}$ and $b:=a^{p^{s-1}}$ ．Note that h and b have orders p^{s} and $\frac{m}{p^{s-1}}$ respectively．Since $\left(p^{s}, \frac{m}{p^{s-1}}\right)=1$ ，the element $h b$ has order $p m$ and we also obtain a contradiction to the maximality of m ．The proof completes．

Proof of（ii）．Choose an element c which has the smallest order among those element in $G-A$ ．Let the order of c be n ．Claim that n is a prime． Suppose not．Let p be a prime factor of n ．Since the order of c^{p} is less than n ， we have $c^{p}=a^{i} \in A$ for some i ．Note that p is also a prime factor of m by（i）． Hence

$$
1=c^{m}=\left(c^{p}\right)^{m / p}=\left(a^{i}\right)^{m / p}=a^{i m / p} .
$$

Since the order of a is m ，we have $p \mid i$ ．Let $b:=a^{-i / p} c$ ．Then $b^{p}=a^{-i} c^{p}=$ $a^{-i} a^{i}=1$ ．Moreover $b \notin A$ since $c \notin A$ ．This is a contradiction to the choice for c ．Thus，n is a prime and this implies that $\langle c\rangle \cap A=\{1\}$ ．

Proof of（iii）．Let the order of $a C$ be r ．It suffices to show that m divides r ．Since $a^{r} \in C \cap A$ and by（ii），$a^{r}=1$ and hence $m \mid r$ ．

