Homework 6

2009.3.26
5.
(a) $\overline{0}=\overline{0 / p^{i}}$ so $\overline{0} \in \mathbb{Z}\left(p^{\infty}\right)$ and $\mathbb{Z}\left(p^{\infty}\right)$ must not be empty. Let $\overline{a / p^{i}}$ and $\overline{b / p^{j}}$ be elements in $\mathbb{Z}\left(p^{\infty}\right)$, the addition $\overline{a / p^{i}}+\overline{b / p^{j}}=\frac{\overline{a p^{j}+b p^{i}}}{p^{i j}} \in \mathbb{Z}\left(p^{\infty}\right)$ is closed. Associativity holds because \mathbb{Q} / \mathbb{Z} is an additive group. Lastly, $-\overline{a / p^{i}}=\overline{-a / p^{i}}$ is also included in $\mathbb{Z}\left(p^{\infty}\right)$. Therefore, $\mathbb{Z}\left(p^{\infty}\right)$ is a subgroup of \mathbb{Q} / \mathbb{Z}.
(b) For any $\overline{a / p^{i}} \in \mathbb{Z}\left(p^{\infty}\right)$, we have

$$
\underbrace{\overline{a / p^{i}}+\overline{a / p^{i}}+\ldots+\overline{a / p^{i}}}_{p^{i}}=p^{i} \overline{a / p^{i}}=\overline{p^{i} a / p^{i}}=\bar{a}=\overline{0} .
$$

Hence $\overline{a / p^{i}}$ is of order $n \leqslant p^{i}$.
(c) Let H be a subgroup of $\mathbb{Z}\left(p^{\infty}\right)$. By (b) we know every element of H is of finite order p^{n} for some n. Suppose at least one element of H has order p^{i} and no element of H has order greater than p^{i}. It can be easily seen that $\overline{1 / p^{i}}$ is one of such elements and $<\overline{1 / p^{i}}>\subseteq H$. Then for any element $\overline{a / p^{j}} \in H$ where $j \leqslant i$,

$$
a p^{i-j} \overline{1 / p^{i}}=\overline{a p^{i-j} / p^{i}}=\overline{a / p^{j}} \in\left\langle\overline{1 / p^{i}}\right\rangle .
$$

The end result is that H is the cyclic subgroup generated by $\overline{1 / p^{i}}$. Suppose H has no such element, i.e. there is no upper bound on the
orders of elements of H, we will show that $H=\mathbb{Z}\left(p^{\infty}\right)$. Obviously, $H \subseteq \mathbb{Z}\left(p^{\infty}\right)$. Select an element $\overline{a / p^{i}} \in \mathbb{Z}\left(p^{\infty}\right)$, as above shows, $\overline{a / p^{i}} \in$ $<\overline{1 / p^{i}}>$. Since there is no upper bound on the orders of elements of $H,<\overline{i / p^{i}}>\subset H$. Therefore, $H=\mathbb{Z}\left(p^{\infty}\right)$.
(d) By (c), every proper subgroup of $\mathbb{Z}\left(p^{\infty}\right)$ is a cyclic group generated by $\overline{a / p^{k}}$ for some k. Consider a chain $G_{1}>G_{2}>\ldots$ of subgroups of $\mathbb{Z}\left(p^{\infty}\right)$. If $G_{r} \neq \mathbb{Z}\left(p^{\infty}\right)$ for some r, choose n such that G_{n} has smallest order, then $G_{i}=G_{n}$ for all $i \geqslant n$. So $\mathbb{Z}\left(p^{\infty}\right)$ satisfies ACCN. For the chain $\overline{1 / p^{0}}<\overline{1 / p^{1}}<\overline{a / p^{2}} \ldots$, there is no integer n such that $G_{i}=G_{n}$ for all $i \geqslant n$. This shows that $\mathbb{Z}\left(p^{\infty}\right)$ doesn't satisfy DCCN.
(e) Suppose $\mathbb{Z}\left(p^{\infty}\right)=<\overline{1 / p^{i_{1}}}>\times<\overline{1 / p^{i_{2}}}>\times \ldots \times<\overline{1 / p^{i_{2}}}>$. But $<\overline{1 / p^{i_{j}}}>\cap<\overline{1 / p^{i_{k}}}>\neq \emptyset$ when $i_{j}<i_{k}$, this is a contradiction. Therefore, $\mathbb{Z}\left(p^{\infty}\right)$ is not the (internal) direct product of two of its proper subgroups, i.e. $\mathbb{Z}\left(p^{\infty}\right)$ itself is indecomposable.

