Homework 6

2009.3.26

5.

- (a) $\overline{0} = \overline{0/p^i}$ so $\overline{0} \in \mathbb{Z}(p^{\infty})$ and $\mathbb{Z}(p^{\infty})$ must not be empty. Let $\overline{a/p^i}$ and $\overline{b/p^j}$ be elements in $\mathbb{Z}(p^{\infty})$, the addition $\overline{a/p^i} + \overline{b/p^j} = \frac{\overline{ap^j + bp^i}}{p^{ij}} \in \mathbb{Z}(p^{\infty})$ is closed. Associativity holds because \mathbb{Q}/\mathbb{Z} is an additive group. Lastly, $-\overline{a/p^i} = \overline{-a/p^i}$ is also included in $\mathbb{Z}(p^{\infty})$. Therefore, $\mathbb{Z}(p^{\infty})$ is a subgroup of \mathbb{Q}/\mathbb{Z} .
- (b) For any $\overline{a/p^i} \in \mathbb{Z}(p^{\infty})$, we have

$$\underbrace{\overline{a/p^i} + \overline{a/p^i} + \ldots + \overline{a/p^i}}_{p^i} = p^i \overline{a/p^i} = \overline{p^i a/p^i} = \overline{a} = \overline{0}.$$

Hence $\overline{a/p^i}$ is of order $n \leq p^i$.

(c) Let H be a subgroup of $\mathbb{Z}(p^{\infty})$. By (b) we know every element of H is of finite order p^n for some n. Suppose at least one element of H has order p^i and no element of H has order greater than p^i . It can be easily seen that $\overline{1/p^i}$ is one of such elements and $<\overline{1/p^i} > \subseteq H$. Then for any element $\overline{a/p^j} \in H$ where $j \leq i$,

$$ap^{i-j}\overline{1/p^i} = \overline{ap^{i-j}/p^i} = \overline{a/p^j} \in \langle \overline{1/p^i} \rangle$$
.

The end result is that H is the cyclic subgroup generated by $\overline{1/p^i}$. Suppose H has no such element, i.e. there is no upper bound on the orders of elements of H, we will show that $H = \mathbb{Z}(p^{\infty})$. Obviously, $H \subseteq \mathbb{Z}(p^{\infty})$. Select an element $\overline{a/p^i} \in \mathbb{Z}(p^{\infty})$, as above shows, $\overline{a/p^i} \in \langle \overline{1/p^i} \rangle$. Since there is no upper bound on the orders of elements of $H, \langle \overline{i/p^i} \rangle \subset H$. Therefore, $H = \mathbb{Z}(p^{\infty})$.

- (d) By (c), every proper subgroup of $\mathbb{Z}(p^{\infty})$ is a cyclic group generated by $\overline{a/p^k}$ for some k. Consider a chain $G_1 > G_2 > \ldots$ of subgroups of $\mathbb{Z}(p^{\infty})$. If $G_r \neq \mathbb{Z}(p^{\infty})$ for some r, choose n such that G_n has smallest order, then $G_i = G_n$ for all $i \ge n$. So $\mathbb{Z}(p^{\infty})$ satisfies ACCN. For the chain $\overline{1/p^0} < \overline{1/p^1} < \overline{a/p^2} \ldots$, there is no integer n such that $G_i = G_n$ for all $i \ge n$. This shows that $\mathbb{Z}(p^{\infty})$ doesn't satisfy DCCN.
- (e) Suppose $\mathbb{Z}(p^{\infty}) = \langle \overline{1/p^{i_1}} \rangle \times \langle \overline{1/p^{i_2}} \rangle \times \ldots \times \langle \overline{1/p^{i_2}} \rangle$. But $\langle \overline{1/p^{i_j}} \rangle \cap \langle \overline{1/p^{i_k}} \rangle \neq \emptyset$ when $i_j \langle i_k$, this is a contradiction. Therefore, $\mathbb{Z}(p^{\infty})$ is not the (internal) direct product of two of its proper subgroups, i.e. $\mathbb{Z}(p^{\infty})$ itself is indecomposable.