(a)
$(1,3)=(1,2)(2,3)(1,2)$
$(1,4)=(1,3)(3,4)(1,3)$
$(h, k)=(h, k-1)(k-1, k)(h, k)$,
where $1 \leqslant \mathrm{~h} \leqslant \mathrm{k}-1,2 \leqslant \mathrm{k} \leqslant \mathrm{h}+1$
so $(k-2, k-1) \ldots(h+1, h+2)(h, h+1)(h, k)(h, h+1)(h+1, h+2) \ldots(k-2, k-1)=(k-1, k)$ thus, $(h, k)=(h, h+1) \ldots(k-2, k-1) \ldots(h, h+1)$
(b)
$W=<S_{1}, S_{2}, \ldots, S_{n}>$ with $\left\{\begin{array}{l}\left(S_{i} S_{i+1}\right)^{3}=e=\left(S_{j+1} S_{i}\right)^{3} \\ S_{i}^{2}=e \\ \left(S_{i} S_{j}\right)^{2}=e=\left(S_{j} S_{i}\right)^{2} \text { if } j \neq i+1\end{array}\right.$
$L=<S_{1}, S_{2}, \ldots, S_{n}>$
Let $f: W \longrightarrow L$ by $f\left(S_{i}\right)=S_{i}$
Check
(1) $\left(S_{i} S_{i+1}\right)^{3}=I=\left(S_{i+1} S_{i}\right)^{3}$
(2) $S_{i}^{2}=I$
(3) $\left(S_{i} S_{j}\right)^{2}=I=\left(S_{j} S_{i}\right)$ if $j \neq i+1$

$$
S_{i}=\left[\begin{array}{ccccc}
I & & \cdots & & \\
& 1 & 1 & 0 & \\
\vdots & 0 & 1 & 0 & \vdots \\
& 0 & 1 & 1 & \\
& & \cdots & & I
\end{array}\right]
$$

the i th row
(1)
$\left(S_{i} S_{i+1}\right)=\left[\begin{array}{cccccc}I & & & \ldots & & \\ & 1 & 1 & 0 & 0 & \\ \vdots & 0 & 1 & 0 & 0 & \vdots \\ & 0 & 1 & 1 & 0 & \\ & 0 & 0 & 0 & 1 & \\ & & \cdots & & & I\end{array}\right] \cdot\left[\begin{array}{cccccc}I & & & \ldots & & \\ & 1 & 0 & 0 & 0 & \\ \vdots & 0 & 1 & 1 & 0 & \vdots \\ & 0 & 0 & 1 & 0 & \\ & 0 & 0 & 0 & 1 & \\ & & \cdots & & & I\end{array}\right]=\left[\begin{array}{cccccc}I & & & \cdots & & \\ & 1 & 1 & 1 & 0 & \\ \vdots & 0 & 1 & 1 & 0 & \vdots \\ & 0 & 1 & 0 & 0 & \\ & 0 & 0 & 0 & 1 & \\ & & \cdots & & & I\end{array}\right]$
then,$\left(S_{i} S_{i+1}\right)^{3}=I_{\square}$
(2)

$$
S_{i}^{2}=\left[\begin{array}{ccccc}
I & & \ldots & & \\
& 1 & 1 & 0 & \\
\vdots & 0 & 1 & 0 & \vdots \\
& 0 & 1 & 1 & \\
& & \ldots & & I
\end{array}\right] \cdot\left[\begin{array}{ccccc}
I & & \cdots & & \\
& 1 & 1 & 0 & \\
\vdots & 0 & 1 & 0 & \vdots \\
& 0 & 1 & 1 & \\
& & \cdots & & I
\end{array}\right]=I_{\square}
$$

(3)

$$
\left(S_{i} S_{j}\right)=\left[\begin{array}{ccccccc}
I & & & \cdots & & & \\
& 1 & 1 & 0 & 0 & 0 & \\
\vdots & 0 & 1 & 0 & 0 & 0 & \vdots \\
& 0 & 1 & 1 & 0 & 0 & \\
& 0 & 0 & 0 & 1 & 0 & \\
& 0 & 0 & 0 & 0 & 1 & \\
& & \cdots & & & & I
\end{array}\right] \cdot\left[\begin{array}{ccccccc}
I & & & \cdots & & & \\
& 1 & 0 & 0 & 0 & 0 & \\
\vdots & 0 & 1 & 0 & 0 & 0 & \vdots \\
& 0 & 0 & 1 & 1 & 0 & \\
& 0 & 0 & 0 & 1 & 0 & \\
& 0 & 0 & 0 & 1 & 1 & \\
& & \cdots & & & I &
\end{array}\right]
$$

then $\left(S_{i} S_{j}\right)^{2}=I_{n}$ and for $j>i+2 S_{i} S_{j}=S j S_{i}$ $\left(S_{i} S_{j}\right)^{2}=\left(S_{i} S_{j}\right)\left(S_{j} S_{i}\right)=\left[\left(S_{i} S_{j}\right) S_{j}\right] S_{i}=\left[S_{i}\left(S_{j} S_{i}\right)\right] S_{i}=S_{i} S_{i}=I_{\square}$
(c)

Define L act on S by $g \circ s=g s$
This satisfies Axiom1,2
But we need to check that $g s \in S$, it suffices to assume $g=S_{i}$
Note that

$$
S_{i} * a_{j}=\left\{\begin{array}{l}
a_{j+1}, \text { if } j=i \\
a_{j-1}, \text { if } j=i+1 \\
a_{j}, \text { otherwise }
\end{array}\right.
$$

(d)

By (c) we define $f_{g}: S \longrightarrow S$
such that $f_{g}(s)=g s$ for each $g \in L$ and $s \in S$
Then $\phi: L \longrightarrow S_{n+1}, g \longrightarrow f g$ is a homomorphism.
(e)
$X=\left\{S_{1}, S_{2}, S_{3}\right\}$
$Y=\left\{S_{1}^{2}, S_{2}^{2}, S_{3}^{2},\left(S_{1} S_{2}\right)^{3},\left(S_{2} S_{1}\right)^{3},\left(S_{2} S_{3}\right)^{3},\left(S_{3} S_{2}\right)^{3},\left(S_{1} S_{3}\right)^{3},\left(S_{3} S_{1}\right)^{3}\right\}$
$\phi: F(X) \longrightarrow S_{4}$ define by $S_{1} \longrightarrow(1,2), S_{2} \longrightarrow(2,3), S_{3} \longrightarrow(3,4)$
ϕ is onto by (a),
claim that $\operatorname{ker} \phi=N_{y}$
$N_{y} \subseteq$ ker $\phi i s t r i v i a l$.
On the other hand,assume not ,there is a element $u \in \operatorname{ker} \phi-N_{y}$
By claim $W=F(X) / N_{y} \cong S_{4}$
Then it's down.

