Homework 3.
1.(a)

Let $[F: K]=p, p$ is a prime.
If L is a field between F and K, then $p=[F: K]=[F: L][L: K]$.
Since p is a prime, one of $[F: L],[L: K]$ is 1 , then $L=F$ or $L=K$.
If $[F: L]=1$ then F is a one-dimensional vector space over L, and the span of $1 \in F$
$\Rightarrow L \cdot 1=F$ and $1 \in L$ too, then $F=L$
(b)
(i)Claim: $[K(u): K]$ is odd $\Rightarrow\left[K\left(u^{2}\right): K\right]$ is odd.
pf: $K \subseteq K\left(u^{2}\right) \subseteq K(u)$
$\Rightarrow[K(u): K]=\left[K(u): K\left(u^{2}\right)\right]\left[K\left(u^{2}\right): K\right]$
(ii)Claim: $K(u)=K\left(u^{2}\right)$
(〕) Trivial.
$(\subseteq) u$ satisfies $f(x)=x^{2}-u^{2}=0$ over $K\left(u^{2}\right)[x]$
If this polynomial is irreducible, we have $\left[K(u): K\left(u^{2}\right)\right]=2(\rightarrow \leftarrow)$
It is reducible over $K\left(u^{2}\right) \Rightarrow u \in K\left(u^{2}\right)$.
(c)
(i)Define a polynomial $f(y)=y^{3}-u y-u \in K(u)[y]$
$f(x)=x^{3}-u x-u=x^{3}-\frac{x^{3}}{x+1} x-\frac{x^{3}}{x+1}=\frac{x^{3}}{x+1}((x+1)-x-1)=0$
Hence $x \in K(x)$ is a root of polynomial $f \in K(u)[y]$
$\therefore x$ is algebraic over $K(u)$
Thus $K(x)$ is a extension of $K(u)$.
(ii)Claim: f is irreducible over $K(u)$

Suppose not, let $g(u)$ and $h(u)$ be relatively prime in $K[u]$ s.t $f\left(\frac{g(u)}{h(u)}\right)=0$
Then $g(u)^{3}-u g(u) h(u)^{2}-u h(u)^{3}=0$
$\therefore g(u)$ and $h(u)$ have a nontrivial common factor. Thus $h(u) \in K$
$0=f(g(u))=f \cdot g \frac{x^{3}}{x+1}(\rightarrow \leftarrow, x$ is algebraic over $K)$
2.(a)
$\alpha, \beta \in(\alpha, \beta), \alpha+\beta \in Q(\alpha, \beta), \alpha \beta \in Q(\alpha, \beta),[Q(\alpha, \beta): Q]=n$
$\left\{1, \alpha+\beta,(\alpha+\beta)^{2}, \cdots,(\alpha+\beta)^{n}\right\}$ and $\left\{1, \alpha \beta,(\alpha+\beta)^{2}, \cdots,(\alpha+\beta)^{n}\right\}$
Hence there are $a_{i}, b_{j} \in Q$, not all zero,
such that $\sum_{i=0}^{n} a_{i}(\alpha+\beta)^{i}=0$ and $\sum_{j=0}^{n} b_{j}(\alpha \beta)^{j}=0$
$\mathbb{Z}[x]$ is UFD.
For any $r \in Q(\alpha, \beta), r$ is algebraic number.
(b)

Let $x=\frac{3 \sqrt{3}}{2}$
Then x is a root of $f(x)=8 x^{3}-3$ irreducible over Q.
If x is an algebraic integer, then x is a root of a monic polynomial in $\mathbb{Z}[x]$ $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}=f(x) g(x)$
But the leading coefficient of $f(x)$ is 8 . $(\rightarrow \leftarrow)$
(c)

Let $n=0$, then $n u=0$ is an algebraic integer.
Suppose $n>0, u$ is algebraic number.
$\Rightarrow f(u)=0$, for some $f(x) \in \mathbb{Z}[x]$
Assume c is the leading coefficient of f.
$f(x)=c x^{n}+\cdots, f(u)=0$
$c^{n-1} f(x)=(c x)^{n}+b_{1}(c x)^{n-1}+c b_{2}(c x)^{n-2}+\cdots$
$0=c^{n-1} f(u), g(x)=x^{n}+b_{1} x^{n-1}+b_{2} x^{n-2}+\cdots$
$\Rightarrow g(c u)=0 \Rightarrow c u$ is algebraic integer.

