Homework 3.

1.(a)Let [F:K] = p, p is a prime. If L is a field between F and K, then p = [F : K] = [F : L][L : K].Since p is a prime, one of [F:L], [L:K] is 1, then L = F or L = K. If [F:L] = 1 then F is a one-dimensional vector space over L, and the span of $1 \in F$ $\Rightarrow L \cdot 1 = F$ and $1 \in L$ too, then F = L(b)(i)Claim: [K(u) : K] is odd $\Rightarrow [K(u^2) : K]$ is odd. pf: $K \subseteq K(u^2) \subseteq K(u)$ $\Rightarrow [K(u):K] = [K(u):K(u^2)][K(u^2):K]$ (ii)Claim: $K(u) = K(u^2)$ (\supseteq) Trivial. (\subseteq) u satisfies $f(x) = x^2 - u^2 = 0$ over $K(u^2)[x]$ If this polynomial is irreducible, we have $[K(u): K(u^2)] = 2(\rightarrow \leftarrow)$ It is reducible over $K(u^2) \Rightarrow u \in K(u^2)$. (c)(i) Define a polynomial $f(y) = y^3 - uy - u \in K(u)[y]$ $f(x) = x^3 - ux - u = x^3 - \frac{x^3}{x+1}x - \frac{x^3}{x+1} = \frac{x^3}{x+1}((x+1) - x - 1) = 0$ Hence $x \in K(x)$ is a root of polynomial $f \in K(u)[y]$ $\therefore x$ is algebraic over K(u)Thus K(x) is a extension of K(u). (ii)Claim: f is irreducible over K(u)Suppose not, let g(u) and h(u) be relatively prime in K[u] s.t $f(\frac{g(u)}{h(u)}) = 0$ Then $g(u)^3 - ug(u)h(u)^2 - uh(u)^3 = 0$ $\therefore g(u)$ and h(u) have a nontrivial common factor. Thus $h(u) \in K$ $0 = f(g(u)) = f \cdot g \frac{x^3}{x+1} (\to \leftarrow, x \text{ is algebraic over } K)$ 2.(a) $\alpha, \beta \in (\alpha, \beta), \alpha + \beta \in Q(\alpha, \beta), \alpha\beta \in Q(\alpha, \beta), [Q(\alpha, \beta) : Q] = n$ $\{1, \alpha + \beta, (\alpha + \beta)^2, \cdots, (\alpha + \beta)^n\}$ and $\{1, \alpha\beta, (\alpha + \beta)^2, \cdots, (\alpha + \beta)^n\}$ Hence there are $a_i, b_j \in Q$, not all zero, such that $\sum_{i=0}^{n} a_i (\alpha + \beta)^i = 0$ and $\sum_{j=0}^{n} b_j (\alpha \beta)^j = 0$ $\mathbb{Z}[x]$ is UFD. For any $r \in Q(\alpha, \beta)$, r is algebraic number. (b) Let $x = \frac{3\sqrt{3}}{2}$ Then x is a root of $f(x) = 8x^3 - 3$ irreducible over Q. If x is an algebraic integer, then x is a root of a monic polynomial in $\mathbb{Z}[x]$ $x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} = f(x)g(x)$ But the leading coefficient of f(x) is $8.(\rightarrow \leftarrow)$ (c)Let n = 0, then nu = 0 is an algebraic integer. Suppose n > 0, u is algebraic number. $\Rightarrow f(u) = 0$, for some $f(x) \in \mathbb{Z}[x]$ Assume c is the leading coefficient of f. $f(x) = cx^n + \cdots, f(u) = 0$ $c^{n-1}f(x) = (cx)^n + b_1(cx)^{n-1} + cb_2(cx)^{n-2} + \cdots$

 $0 = c^{n-1}f(u), g(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \cdots$ $\Rightarrow g(cu) = 0 \Rightarrow cu \text{ is algebraic integer.}$