LECTURE NOTES

2009.5.21

FIELD EXTENSIONS

Definition. A field is a set K with two operations +, \cdot such that $(K, +), (K^*, \cdot)$ are abelian groups and a(b + c) = ab + ac, (b + c)a = ba + ca for $a, b, c \in K$, where $K^* = K - 0$.

Example 1. \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields, but \mathbb{Z} is not a field. \mathbb{Z}_1 is a field, where p is a prime number.

Example 2. $F_4 = 0, 1, a, 1 + a$ is a field under $+, \cdot$ defined as following tables.

+	0	1	a	1+a
0	0	1	а	1+a
1	1	0	1+a	a
a	a	1 + a	0	1
1+a	1+a	a	1	0
	0	1	a	1 + a
0	0	1	a a	$\frac{1+a}{1+a}$
0 1	0 0 1	1 1 0	$\frac{a}{1+a}$	$\frac{1+a}{1+a}$ a
0 1 a	$\begin{array}{c} 0 \\ 0 \\ 1 \\ a \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 1+a \end{array}$	$\begin{array}{c} a \\ a \\ 1+a \\ 0 \end{array}$	$ \begin{array}{c} 1+a\\ 1+a\\ a\\ 1 \end{array} $

Example 3. Suppose F is a field, then

$$F[x] = \{a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \mid a_i \in F, a_n \neq 0\}$$

is the set of polynomials over F(F[x]is not a field), and

$$F(x) = \{f(x)/g(x) \mid f(x), g(x) \in F[x], g(x) \neq 0\}$$

is the smallest field containg F and x.

Example 4. Let $F = \mathbb{Z}_p$ and $p(x) \in F[x]$ irreducible of degree n (degree of a polynomial is denoted by deg p(x)), then

$$F_{p^n} = \mathbb{Z}_p[x]/\langle p(x) \rangle = \{a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \mid a_i \in \mathbb{Z}_p\}$$

is a field of order p^n , with usually addition and mutiplication is modulo p(x).

Definition. If $K \subseteq F$ are fields with the same operations, then F is said to be an extension field of K.

Note

- (a) If F is an extension field of a field K, then F is also a vector space over K. In this case, we denote the dimension of the vector space by [F:K].
- (b) If $K \subseteq F \subseteq E$, then E is a vector space over K and

$$[E:K] = [E:F][F:K].$$

(c) If $K \subseteq F$, $\alpha \in F$, and $p(x) \in K[x]$ with deg p(x) = n is an irreducible polynomial and $p(\alpha) = 0$, then

$$K(\alpha) = K[\alpha] = \left\{ \sum_{0 \le i \le n-1} a_i \alpha_i \middle| a_i \in K \right\}$$

 $K(\alpha)$ is the smallest field contain K and α . $[K(\alpha) : K] = n, \{1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^{n-1}\}$ is a basis of $K(\alpha)$ over K. Then α is said to be algebraic over K.

Definition. Let F be an extension field of K. An element of α of F is said to be transcendental over K if α is not algebraic over K.

If α is transcendental over K, then $i K(\alpha) \neq K[\alpha]$, $ii K(\alpha) \cong K[x]$ by sending α to x, $iii [K(\alpha) : K] = \infty$. If F is an extension field of K and $\alpha, \beta \in F$

- (a) $K[\alpha, \beta] = \{f(\alpha, \beta) \mid f(x, y) \in K[x, y]\}$
- (b) $K(\alpha,\beta) = \{f(\alpha,\beta)/g(\alpha,\beta) \mid f(x,y), g(x,y) \in K[x,y] \text{ with } g(\alpha,\beta) \neq 0\}$
- (c) If α, β are algebraic numbers over K, the $K[\alpha, \beta] = K(\alpha, \beta)$.