Lecture Notes

2009.5.21

Field Extensions

Definition. A field is a set K with two operations,$+ \cdot \operatorname{such}$ that $(K,+),\left(K^{*}, \cdot\right)$ are abelian groups and $a(b+c)=a b+a c,(b+c) a=b a+c a$ for $a, b, c \in K$, where $K^{*}=K-0$.

Example 1. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields, but \mathbb{Z} is not a field. \mathbb{Z}, is a field, where p is a prime number.

Example 2. $F_{4}=0,1, a, 1+a$ is a field under,$+ \cdot$ defined as following tables.

+	0	1	a	$1+a$
0	0	1	a	$1+a$
1	1	0	$1+a$	a
a	a	$1+a$	0	1
$1+a$	$1+a$	a	1	0

\cdot	0	1	a	$1+a$
0	0	1	a	$1+a$
1	1	0	$1+a$	a
a	a	$1+a$	0	1
$1+a$	$1+a$	a	1	0

Example 3. Suppose F is a field, then

$$
F[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \mid a_{i} \in F, a_{n} \neq 0\right\}
$$

is the set of polynomials over $F(F[x]$ is not a field $)$, and

$$
F(x)=\{f(x) / g(x) \mid f(x), g(x) \in F[x], g(x) \neq 0\}
$$

is the smallest field containg F and x.
Example 4. Let $F=\mathbb{Z}_{p}$ and $p(x) \in F[x]$ irreducible of degree n (degree of a polynomial is denoted by $\operatorname{deg} p(x)$), then

$$
F_{p^{n}}=\mathbb{Z}_{p}[x] /\langle p(x)\rangle=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \mid a_{i} \in \mathbb{Z}_{p}\right\}
$$

is a field of order p^{n}, with usually addition and mutiplication is modulo $p(x)$.
Definition. If $K \subseteq F$ are fields with the same operations, then F is said to be an extension field of K.

Note

(a) If F is an extension field of a field K, then F is also a vector space over K. In this case, we denote the dimension of the vector space by $[F: K]$.
(b) If $K \subseteq F \subseteq E$, then E is a vector space over K and

$$
[E: K]=[E: F][F: K] .
$$

(c) If $K \subseteq F, \alpha \in F$, and $p(x) \in K[x]$ with $\operatorname{deg} p(x)=n$ is an irreducible polynomial and $p(\alpha)=0$, then

$$
K(\alpha)=K[\alpha]=\left\{\sum_{0 \leq i \leq n-1} a_{i} \alpha_{i} \mid a_{i} \in K\right\}
$$

$K(\alpha)$ is the smallest field contain K and $\alpha .[K(\alpha): K]=n,\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{n-1}\right\}$ is a basis of $K(\alpha)$ over K. Then α is said to be algebraic over K.

Definition. Let F be an extension field of K. An element of α of F is said to be transcendental over K if α is not algebraic over K.

If α is transcendental over K, then i) $K(\alpha) \neq K[\alpha]$, ii) $K(\alpha) \cong K[x]$ by sending α to x, iii) $[K(\alpha): K]=\infty$. If F is an extension field of K and $\alpha, \beta \in F$
(a) $K[\alpha, \beta]=\{f(\alpha, \beta) \mid f(x, y) \in K[x, y]\}$
(b) $K(\alpha, \beta)=\{f(\alpha, \beta) / g(\alpha, \beta) \mid f(x, y), g(x, y) \in K[x, y]$ with $g(\alpha, \beta) \neq 0\}$
(c) If α, β are algebraic numbers over K, the $K[\alpha, \beta]=K(\alpha, \beta)$.

