進階代數（下）第一次作業解答

2009．3．2

1．Define a relation $a \backsim b$ in a group G if $a=b$ or $a=b^{-1}$ ．To show that \backsim forms a partition，we examine reflexivity，symmetry and transitivity．Let $\Pi=\left\{P_{1}, P_{2}, \cdots, P_{t}\right\}$ ． Claim：$\left|P_{i}\right| \leq 2$ ．
pf：it＇s clear by definition of the relation \sim ．
Since G is a group of even order and $P_{i}=\{e\}$ for some i ，there exists $P_{j}=\{a\}$ such that $a=a^{-1}$ ．

2．Let $\mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{P-1}\}$ ．Clearly， \mathbb{Z}_{p} is a monoid．
Claim：$\forall a \in \mathbb{Z}_{p}-\{\overline{0}\}, \exists b \in \mathbb{Z}_{p}$ ，s．t．$a b \equiv \overline{1}(\bmod \mathrm{P})$ ．
We know $\forall a, b \in \mathbb{Z}$ ，if $(a, b)=1$ ，then $\exists x, y \in \mathbb{Z}$ ，s．t．$a x+b y=1$ ．
Let $a \in \mathbb{Z}_{p}-\{\overline{0}\}$ and $(a, p)=1$ ．Then $a x+p y=1$ for some $x, y \in \mathbb{Z}$ ．Thus， $a x=1-p y \equiv 1(\bmod \mathrm{P})$ ．There are three cases in the following．
（a）if $x \in \mathbb{Z}_{p}-\{\overline{0}\}$ ，we are done！．
（b）if $x \notin \mathbb{Z}_{p}-\{\overline{0}\}$ ，then $x=p k+x^{\prime}$ where $x^{\prime} \in \mathbb{Z}_{p}-\{\overline{0}\}$ ．

$$
a x+p y=1 \Rightarrow a\left(p k+x^{\prime}\right)+p y=1 \Rightarrow a p k+a x^{\prime}+p y \equiv 1(\bmod \mathrm{P})
$$

（c）if $x=0$ ，then $p y=1 . \rightarrow \leftarrow$
3．Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be any three eight－letter words，denoted by $\mathrm{A}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}, \mathrm{~B}=$ $b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7} b_{8}, \mathrm{C}=c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8}$.

$$
\begin{aligned}
(A \oplus B) \oplus C & =a_{1} a_{2} a_{3} a_{4} a_{5} b_{6} b_{7} b_{8} \oplus c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8} \\
& =a_{1} a_{2} a_{3} a_{4} a_{5} c_{6} c_{7} c_{8} \\
A \oplus(B \oplus C) & =a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} \oplus b_{1} b_{2} b_{3} b_{4} b_{5} c_{6} c_{7} c_{8} \\
& =a_{1} a_{2} a_{3} a_{4} a_{5} c_{6} c_{7} c_{8}
\end{aligned}
$$

This implies $(A \oplus B) \oplus C=A \oplus(B \oplus C)$ ．Thus it is a semigroup．Clearly，it isn＇t monoid．

4．Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be any three eight－letter words，denoted by $\mathrm{A}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}, \mathrm{~B}=$ $b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7} b_{8}, \mathrm{C}=c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8}$ ．

$$
\begin{aligned}
(A \oplus B) \oplus C & =a_{5} a_{6} a_{7} a_{8} b_{1} b_{2} b_{3} b_{4} \oplus c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8} \\
& =b_{1} b_{2} b_{3} b_{4} c_{1} c_{2} c_{3} c_{4} \\
A \oplus(B \oplus C) & =a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} \oplus b_{5} b_{6} b_{7} b_{8} c_{1} c_{2} c_{3} c_{4} \\
& =a_{5} a_{6} a_{7} a_{8} b_{5} b_{6} b_{7} b_{8}
\end{aligned}
$$

This implies $(A \oplus B) \oplus C \neq A \oplus(B \oplus C)$ ．Thus it isn＇t a semigroup．

