進階代數(下)第一次作業解答

2009.3.2

1. Define a relation $a \backsim b$ in a group G if a = b or $a = b^{-1}$. To show that \backsim forms a partition, we examine reflexivity, symmetry and transitivity. Let $\Pi = \{P_1, P_2, \cdots, P_t\}$. Claim: $|P_i| < 2$.

pf: it's clear by definition of the relation \sim .

Since G is a group of even order and $P_i = \{e\}$ for some i, there exists $P_j = \{a\}$ such that $a = a^{-1}$.

2. Let $\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{P-1}\}$. Clearly, \mathbb{Z}_p is a monoid. Claim: $\forall a \in \mathbb{Z}_p - \{\overline{0}\}, \exists b \in \mathbb{Z}_p$, s.t. $ab \equiv \overline{1} \pmod{P}$. We know $\forall a, b \in \mathbb{Z}$, if (a, b) = 1, then $\exists x, y \in \mathbb{Z}$, s.t. ax + by = 1.

Let $a \in \mathbb{Z}_p - {\overline{0}}$ and (a, p) = 1. Then ax + py = 1 for some $x, y \in \mathbb{Z}$. Thus, $ax = 1 - py \equiv 1 \pmod{P}$. There are three cases in the following.

- (a) if $x \in \mathbb{Z}_p {\overline{0}}$, we are done!.
- (b) if $x \notin \mathbb{Z}_p \{\overline{0}\}$, then x = pk + x' where $x' \in \mathbb{Z}_p \{\overline{0}\}$. $ax + py = 1 \Rightarrow a(pk + x') + py = 1 \Rightarrow apk + ax' + py \equiv 1 \pmod{P}$
- (c) if x = 0, then py = 1. $\rightarrow \leftarrow$
- 3. Let A, B, C be any three eight-letter words, denoted by A = $a_1a_2a_3a_4a_5a_6a_7a_8$, B = $b_1b_2b_3b_4b_5b_6b_7b_8$, C = $c_1c_2c_3c_4c_5c_6c_7c_8$.

$$(A \oplus B) \oplus C = a_1 a_2 a_3 a_4 a_5 b_6 b_7 b_8 \oplus c_1 c_2 c_3 c_4 c_5 c_6 c_7 c_8$$

= $a_1 a_2 a_3 a_4 a_5 c_6 c_7 c_8$

$$A \oplus (B \oplus C) = a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 \oplus b_1 b_2 b_3 b_4 b_5 c_6 c_7 c_8$$
$$= a_1 a_2 a_3 a_4 a_5 c_6 c_7 c_8$$

This implies $(A \oplus B) \oplus C = A \oplus (B \oplus C)$. Thus it is a semigroup. Clearly, it isn't monoid.

4. Let A, B, C be any three eight-letter words, denoted by A = $a_1a_2a_3a_4a_5a_6a_7a_8$, B = $b_1b_2b_3b_4b_5b_6b_7b_8$, C = $c_1c_2c_3c_4c_5c_6c_7c_8$.

$$(A \oplus B) \oplus C = a_5 a_6 a_7 a_8 b_1 b_2 b_3 b_4 \oplus c_1 c_2 c_3 c_4 c_5 c_6 c_7 c_8$$

= $b_1 b_2 b_3 b_4 c_1 c_2 c_3 c_4$

$$A \oplus (B \oplus C) = a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 \oplus b_5 b_6 b_7 b_8 c_1 c_2 c_3 c_4$$
$$= a_5 a_6 a_7 a_8 b_5 b_6 b_7 b_8$$

1

This implies $(A \oplus B) \oplus C \neq A \oplus (B \oplus C)$. Thus it isn't a semigroup.