1. (a) We need to find A_{i} with $\left|A_{i}\right|=P^{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{P}\left||\mathrm{G}|=P^{n}, \exists \mathrm{a} \in \mathrm{G}\right.$ s.t. $<\mathrm{a}>\triangleleft \mathrm{G}$ with $|<a_{i}>\mid=\mathrm{P}$ by Cauchy Thm
Hence $A_{1}=\mathrm{P}$
Consider $\left.\mathrm{G} /<a_{i}\right\rangle=\mathrm{G} / A_{1}$,
then $\mathrm{P}\left|\left|\mathrm{G} / A_{1}\right|=P^{n-1}\right.$
Then $\exists a_{2} \in \mathrm{G}$ s.t. $<a_{2}>\triangleleft \mathrm{G} / A_{1}$ with $\left|<a_{2}>\right|=\mathrm{P}$
Use induction or reference to previous homework.
(b) Pf. 1

By corollary 5.4, $\left|Z_{i}(\mathrm{G})\right| \quad 1$ for all i
Since $Z(G) \triangleleft G$
$|\mathrm{Z}(\mathrm{G})|||\mathrm{G}| \Rightarrow| \mathrm{Z}(\mathrm{G}) \mid=P^{i}, \mathrm{i}<\mathrm{n}($ if $\mathrm{i}=\mathrm{n}$, done $)$
Inductively, $\mathrm{G}=Z_{m}(\mathrm{G})$ for some m
Pf. 2
$|\mathrm{H}|=P^{k} \Rightarrow|\mathrm{Z}(\mathrm{H})| \geq \mathrm{P}$
$\left|Z_{1}(\mathrm{G})\right|=|\mathrm{Z}(\mathrm{G})| \geq \mathrm{P}$
$\left|Z_{2}(\mathrm{G})\right|=\left|Z_{2}(\mathrm{G}) / Z_{1}(\mathrm{G})\right| \times Z_{1}(\mathrm{G}) \geq \mathrm{p} \times \mathrm{p}=p^{2}$
By induction, $\left|Z_{i}(\mathrm{G})\right| \geq p^{i}$
Hence $Z_{n}(\mathrm{G})=\mathrm{G}$
(c) $\mathrm{G}=\mathrm{H} \times \mathrm{K}$

Claim: $Z_{i}(\mathrm{G})=Z_{i}(\mathrm{H}) \times Z_{k}(\mathrm{~K})$
And Π_{H} be the canonocal epimorphism $\mathrm{H} \longrightarrow \mathrm{H} / Z_{i}(\mathrm{H})$
Π_{K} be the canonocal epimorphism $\mathrm{K} \longrightarrow \mathrm{K} / Z_{i}(\mathrm{~K})$
$\Rightarrow \Pi=\Pi_{H} \times \Pi_{K}$
$\phi: \mathrm{G} \rightarrow \mathrm{G} / Z_{i}(\mathrm{G})$
$\mathrm{G}=\mathrm{H} \times \mathrm{K} \vec{\Pi} \mathrm{H} / Z_{i}(H) \times \mathrm{K} / Z_{i}(K) \vec{\Phi} \frac{H \times K}{Z_{i}(H) \times Z_{i}(K)}=\frac{G}{Z_{i}(G)}$
$Z_{i+1}(G)=\Phi^{-1}\left(Z\left(G / Z_{i}(G)\right)\right)$
$=\Pi^{-1} \Phi^{-1}\left[\mathrm{Z}\left(\mathrm{G} /\left(Z_{i}(G)\right)\right]\right.$
$=\Pi^{-1}\left[\mathrm{Z}\left(\mathrm{H} / Z_{i}(H) \times \mathrm{K} / Z_{i}(K)\right]\right.$
$=\Pi^{-1}\left[\mathrm{Z}\left(\mathrm{H} / Z_{i}(H) \times \mathrm{Z}\left(\mathrm{K} / Z_{i}(K)\right)\right]\right.$
$=\Pi_{H}^{-1}\left(\mathrm{Z}\left(\mathrm{H} / Z_{i}(H)\right)\right) \times \Pi_{H}^{-1}\left[\mathrm{Z}\left(\mathrm{K} / Z_{i}(K)\right)\right]$
$=Z_{i+1}(H) \times Z_{i+1}(K)$
$\because \mathrm{H}, \mathrm{K}$ are nilpotent
$\exists \mathrm{n} \in \mathbb{N}$ s.t. $Z_{n}(H)=\mathrm{H}, Z_{n}(K)=\mathrm{K}$
$Z_{n}(G)=Z_{n}(H) \times Z_{n}(K)=\mathrm{H} \times \mathrm{K}=\mathrm{G}$
(d) Ascending central series
$<\mathrm{e}>=Z_{0}(G)<Z_{1}(G)<Z_{2}(G)<\ldots<Z_{n}(G)=\mathrm{G}$
\exists k s.t. $Z_{k}(G)<\mathrm{H}$ and $Z_{k+1}(G) \nless \mathrm{G}$
Choose a $\in Z_{k+1}(G)$ with a not in H
$\forall \mathrm{h} \in \mathrm{H}, Z_{k}(a h)=\left(Z_{k} a\right)\left(Z_{k} h\right)=\left(Z_{k} h\right)\left(Z_{k} a\right)=Z_{k}(h a)$ in $\mathrm{G} / Z_{k}(G)$
\Rightarrow ah $=$ h'ha, for some h' $\in Z_{k}(G)<\mathrm{H}$
$\Rightarrow \mathrm{a} \in N_{G}(H)$
$\Rightarrow \mathrm{H} \leqslant N_{G}(H)$
(e) $\mathrm{G}=P_{1} \times P_{2} \times \ldots P_{k}$

Want to show:
1.Normal
2. $P_{i} \cap P_{1} P_{2} \ldots P_{i-1} P_{i+1} \ldots P_{k}=\{\mathrm{e}\}$
$3 . \mathrm{G}=P_{1} P_{2} \ldots P_{k}$
1.Suppose P is a Sylow P -subgroup of G for some prime P
(i)If $\mathrm{p}=\mathrm{G}$ clear.
(ii)IF $\mathrm{P} \leftrightarrows \mathrm{G}$ proper subgroup

By (d) P is a proper sungroup of $N_{G}(P)$
P normal: $\mathrm{gPg}^{-1}=\mathrm{P} \forall \mathrm{P} \in \mathrm{G}$
$\Leftrightarrow N_{G}(P)=\left\{\mathrm{g} \in \mathrm{G} \mid \mathrm{gPg}^{-1}=\mathrm{P}\right\}=\mathrm{G}$
Claim: $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$
\supseteq Clear
$\subseteq \because \mathrm{P} \triangleleft N_{G}(P)$ By 2 nd Sylow Thm
P is the only Sylow P-subgroup of $N_{G}(P)$
$\mathrm{x} \in N_{G}\left(N_{G}(P)\right)\left(N_{G}(H)=\mathrm{H}, \mathrm{h}=\mathrm{G}\right)$
$\Rightarrow \mathrm{x} N_{G}(P) x^{-1}=N_{G}(P)$
$\Rightarrow \mathrm{xP}^{-1}<N_{G}(P)$
$\Rightarrow \mathrm{xP}^{-1}=\mathrm{P}$
$\Rightarrow \mathrm{x} \in N_{G}(P)$
Hence $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$
$\Rightarrow N_{G}(P)=\mathrm{G}$
$\Rightarrow \mathrm{P} \triangleleft \mathrm{G}$
2.Let $|\mathrm{G}|=p_{1}^{n_{1}} p_{2}^{n} \ldots p_{k}^{n_{k}}$ where p_{i} are dictinct prime and $n_{i}>0$

Let P_{i} be the Sylow P_{i}-subgroup of G
$\Rightarrow P_{i} \triangleleft \mathrm{G}$
P_{i}, P_{j} normal, xy $=\mathrm{yx} \forall \mathrm{x} \in P_{i} \mathrm{y} \in P_{j}$
$P_{i} \cap P_{j}=\{\mathrm{e}\} \forall \mathrm{i} \neq \mathrm{j}$
$\forall \mathrm{i}, P_{1} P_{2} \ldots P_{i-1} P_{i+1} \ldots P_{k}$ is subgroup of order $p_{1}^{n_{1}} p_{2}^{n} \ldots p_{k}^{n_{k}}$
Since P_{i} is prime $\forall \mathrm{i} \Rightarrow\left(P_{i}, P_{j}\right)=1 \forall \mathrm{i} \neq \mathrm{j}$
$\Rightarrow P_{i} \cap P_{1} P_{2} \ldots P_{i-1} P_{i+1} \ldots P_{k}=\{\mathrm{e}\}$
3. $\mathrm{P} \triangleleft \mathrm{G}=\left|P_{1} P_{2} \ldots P_{k}\right|=\left|P_{1} \times P_{2} \times \ldots P_{k}\right|$
$\Rightarrow \mathrm{G}=P_{1} \times P_{2} \times \ldots P_{k}$

