HOMEWORK 4

Q6. Is it possible for a cyclic group to be a direct product of its two proper subgroups?
Sol. Yes. For example, let $G=\left\{e, a, \ldots, a^{5}\right\}$ and $G=\left\langle a^{2}\right\rangle \times\left\langle a^{3}\right\rangle$.
Q7. If G is a group and $N \triangleleft G$, show that if $a \in G$ has finite order $|a|$, then $N a$ in G / N has finite order m, where m divides $|a|$.

Proof. Suppose $|a|=n$, i.e., $a^{n}=e$ in $G .(N a)^{n}=\underbrace{(N a) \cdots(N a)}_{n}=N a^{n}=N e=N$ in G / N. Thus $N a$ has finite order $m, m \mid n$.

Q8. Let G be a finite group, α an automorphism of G, and set

$$
I=\left\{g \in G \mid \alpha(g)=g^{-1}\right\} .
$$

(a) Suppose $|I|>\frac{3}{4}|G|$. Show that G is abelian. (Hint. $I \cap h^{-1} I \subseteq C_{G}(h)$ for $h \in I$.)

Proof. 1. $C_{G}(h)=\{a \in G \mid h a=a h\}=\left\{a \in G \mid h=a^{-1} h a\right\}$.
Thus $C_{G}(h)$ is a subgroup of G.
2. Now we show that $I \cap h^{-1} I \subseteq C_{G}(h)$ for $h \in I$. Suppose $x \in I \cap h^{-1} I$.

Let $x=h^{-1} c$ for some $c \in I . x^{-1}=\alpha(x)=\alpha\left(h^{-1} h x\right)=\alpha\left(h^{-1}\right) \alpha(h x)=h x^{-1} h^{-1}$.
$\therefore x=h x h^{-1}, x h=h x \Rightarrow x \in C_{G}(h) \Rightarrow I \cap h^{-1} I \subseteq C_{G}(h)$
3. $|I|=\left|h^{-1} I\right|>\frac{3}{4}|G|$
$\because I \cap h^{-1} I \subseteq G$
$\therefore\left|I \cap h^{-1} I\right| \leq|G|$
If $I, h^{-1} I$ disjoint, $\rightarrow \leftarrow$.
Therefore, $\left|I \cap h^{-1} I\right|=|I|+\left|h^{-1} I\right|-\left|I \cup h^{-1} I\right|>\left(\frac{3}{4}+\frac{3}{4}-1\right)|G|=\frac{1}{2}|G|$.
By $2, I \cap h^{-1} I \subseteq C_{G}(h)$
$\therefore\left|C_{G}(h)\right|>\frac{1}{2}|G|$.
4. By Largrange's Theorem, $C_{G}(h)=G$.

This means $Z(G):=\{x \in G \mid x y=y x, \forall y \in G\}, Z(G)<G$.
$\because \forall h \in I, I \subseteq Z(G)$
$\therefore|Z(G)|>|I|>\frac{3}{4}|G| \Rightarrow Z(G)=G$
$\Rightarrow G$ is abelian.
(b) Suppose $|I|=\frac{3}{4}|G|$. Show that G has an abelian subgroup of index 2. (Hint. Consider $C_{G}(h)$ for $h \in I-Z(G)$.)

Proof. Use (a). $I \cap h^{-1} I \subseteq C_{G}(h)$ for all $h \in I$.
We know $\left|I \cap h^{-1} I\right|=|I|+\left|h^{-1} I\right|-\left|I \cup h^{-1} I\right| \geq\left(\frac{3}{4}+\frac{3}{4}-1\right)|G|=\frac{1}{2}|G|$.
$\because C_{G}(h)$ is a group, by Largrange's Theorem, $\left|C_{G}(h)\right|=\frac{1}{2}|G|$ or $|G|$.

1. If $\left|C_{G}(h)\right|=|G|$ for all $h \in I$, then $I<Z(G)$. Hence $Z(G)=G$, and note that I is a group, $\left(a, b \in I, \alpha\left(a b^{-1}\right)=\alpha(a) \alpha\left(b^{-1}\right)=a^{-1} b=\left(b^{-1} a\right)^{-1}=\left(a b^{-1}\right)^{-1}\right)$ a contradiction.
2. Assume $\left|C_{G}(h)\right|$ is abelian. Pick $a, b \in C_{G}(h)=I \cap h^{-1} I$.

Note $\alpha\left(a b a^{-1} b^{-1}\right)=\alpha(a b) \alpha\left(a^{-1}\right) \alpha\left(b^{-1}\right)=(a b)^{-1}\left(a^{-1}\right)^{-1}\left(b^{-1}\right)^{-1}=b^{-1} a^{-1} a b=e$.
Hence $a b=b a$. Then $C_{G}(h)$ is what we want.

