進階代數(下) 第七次作業

上課老師: 翁志文 2009 年四月六日

- 1. Suppose $G = H \times K$
 - (a) Let N be a normal subgroup of H. Show that N is normal in G.
 - (b) Suppose that G satisfies the ACCN. Show that H satisfies ACCN.
 - (c) Suppose that G satisfies the DCCN. Show that H satisfies DCCN.

pf:

(a) We want to show
$$nk = kn \quad \forall n \in N \triangleleft H \quad \forall k \in K$$

 $\therefore nkn^{-1}k^{-1} \in N \triangleleft H$ and $nkn^{-1}k^{-1} \in K$ and $H \cap K = \{e\}$
 $\therefore nkn^{-1}h^{-1} = e \implies nk(kn)^{-1} = e \implies nk = kn \quad --(*)$
 $gng^{-1} = hkn(hk)^{-1} = hknk^{-1}h^{-1} \xrightarrow{by(*)} hnkk^{-1}h^{-1} = hnh^{-1} \in N$

- (b) Assume *H* is not *ACCN*. \exists a chain $H_1 < H_2 < \dots$ of normal subgroup of *H*. there is no integer *n* such that $H_i = H_n \quad \forall i > n$ By (a) $\because H_i \lhd H \quad \therefore H_i \lhd G \Rightarrow G$ is not *ACCN*.
- (c) By (a) then every decending chain of normal subgroup of H is a chain of normal subgroup of $G \rightarrow H$ has *DCCN*.

2. Let Q_8 be the multiplication group generated by the complex matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

*Q*⁸ is called the *quaternion group*.

- (a) Show $|Q_8| = 8$.
- (b) *Consider the set $G = \{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by $i^2 = j^2 = k^2 = -1; ij = k = -ji; jk = i = -kj; ki = j = -ik$, and the usual rules for multiplying by ± 1 . Show that *G* is a group isomorphic to the quaternion group *Q*₈:
- (c) What is the center $Z(Q_8)$ of the quaternion group Q_8 ?

(d) Show that $Q_8 = Z(Q_8)$ is abelian.

(e) Is Q_8 isomorphic to $(Z(Q_8) \times Q_8 / Z(Q_8))$.

pf:

(a)
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
$$A^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I = B^{2}$$
$$AB = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
$$BA = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$
$$ABA = B \qquad BAB = A$$
$$Q_{8} = \{I, A, B, AB, -I, -A, -B, BA\}$$
$$\Rightarrow |Q_{8}| = 8$$

(b) Let
$$i = A, j = B, k = AB, 1 = I$$

then $i^2 = j^2 = k^2 = -1; ij = k = -ji; jk = i = -kj; ki = j = -ik$.

(c)
$$G \cong Q_8 \quad \begin{cases} ij = -ji \\ jk = -kj \end{cases} \Longrightarrow Z(G) = \{\pm 1\} \Longrightarrow Z(Q_8) = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \}$$

(d) $\frac{Q_8}{Z(Q_8)} = \{I, A, B, AB\}$ We want to show AB = BA $AZ(Q_8)BZ(Q_8) = ABZ(Q_8) = -BAZ(Q_8) = -IBAZ(Q_8) = BAZ(Q_8)$

(e)
$$Q_8$$
 is not abelian by $AB = -BA$
 $(Z(Q_8) \times Q_8 / Z(Q_8))$ is abelian by (d)
So Q_8 is not isomorphic to $(Z(Q_8) \times Q_8 / Z(Q_8))$