進階代數（下）第七次作業

上課老師：翁志文
 2009 年四月六日

1．Suppose $G=H \times K$
（a）Let N be a normal subgroup of H ．Show that N is normal in G ．
（b）Suppose that G satisfies the $A C C N$ ．Show that H satisfies $A C C N$ ．
（c）Suppose that G satisfies the $D C C N$ ．Show that H satisfies $D C C N$ ．
pf ：
（a）We want to show $n k=k n \quad \forall n \in N \triangleleft H \quad \forall k \in K$

$$
\begin{aligned}
& \because n k n^{-1} k^{-1} \in N \triangleleft H \quad \text { and } \quad n k n^{-1} k^{-1} \in K \quad \text { and } \quad H \cap K=\{e\} \\
& \therefore n k n^{-1} h^{-1}=e \quad \rightarrow \quad n k(k n)^{-1}=e \quad \rightarrow \quad n k=k n \quad--(*)
\end{aligned}
$$

$$
g n g^{-1}=h k n(h k)^{-1}=h k n k^{-1} h^{-1} \xrightarrow{b y(*)} h n k k^{-1} h^{-1}=h n h^{-1} \in N
$$

（b）Assume H is not ACCN．
\exists a chain $H_{1}<H_{2}<\ldots$ ．．．of normal subgroup of H ． there is no integer n such that $H_{i}=H_{n} \quad \forall i>n$ By（a）$\because H_{i} \triangleleft H \quad \therefore H_{i} \triangleleft G \quad \rightarrow \quad G$ is not ACCN．
（c）By（a）then every decending chain of normal subgroup of H is a chain of normal subgroup of $G . \rightarrow H$ has DCCN．

2．Let Q_{8} be the multiplication group generated by the complex matrices

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

Q_{8} is called the quaternion group．
（a）Show $\left|Q_{8}\right|=8$ ．
（b）＊Consider the set $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by $i^{2}=j^{2}=k^{2}=-1 ; i j=k=-j i ; j k=i=-k j ; k i=j=-i k$ ，and the usual rules for multiplying by ± 1 ．Show that G is a group isomorphic to the quaternion group Q8：
（c）What is the center $Z\left(Q_{8}\right)$ of the quaternion group Q_{8} ？
(d) Show that $Q_{8}=Z\left(Q_{8}\right)$ is abelian.
(e) Is Q_{8} isomorphic to $\left(Z\left(Q_{8}\right) \times Q_{8} / Z\left(Q_{8}\right)\right)$.
pf :
(a) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad B=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I=B^{2} \\
& A B=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
& B A=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) \\
& A B A=B \quad B A B=A \\
& Q_{8}=\{I, A, B, A B,-I,-A,-B, B A\} \\
& \rightarrow\left|Q_{8}\right|=8
\end{aligned}
$$

(b) Let $i=A, j=B, k=A B, 1=I$ then $i^{2}=j^{2}=k^{2}=-1 ; i j=k=-j i ; j k=i=-k j ; k i=j=-i k$.
(c) $G \cong Q_{8}\left\{\begin{array}{l}i j=-j i \\ j k=-k j\end{array} \Rightarrow Z(G)=\{ \pm 1\} \Rightarrow Z\left(Q_{8}\right)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\}\right.$
(d) $Q_{8} / Z\left(Q_{8}\right)=\{I, A, B, A B\}$

We want to show $A B=B A$

$$
A Z\left(Q_{8}\right) B Z\left(Q_{8}\right)=A B Z\left(Q_{8}\right)=-B A Z\left(Q_{8}\right)=-\operatorname{IBAZ}\left(Q_{8}\right)=B A Z\left(Q_{8}\right)
$$

(e) Q_{8} is not abelian by $A B=-B A$
$\left(Z\left(Q_{8}\right) \times Q_{8} / Z\left(Q_{8}\right)\right) \quad$ is abelian by (d)
So Q_{8} is not isomorphic to $\left(Z\left(Q_{8}\right) \times Q_{8} / Z\left(Q_{8}\right)\right)$

