(a) $G=Z_{2} \times Z_{4} \times Z_{9}$

Take $H=\{e\} \times Z_{4} \times Z_{9}, K=Z_{2} \times\{e\} \times\{e\}$
Then we have to check G is the inner direct product of H, K.
First,it is clearly that $H \triangle G, K \triangle G$.
Second, $\forall(a, b, c) \in G$
$\exists(a, b, c) \in H$ and $(a, 0,0) \in K$ such that $(a, b, c)=(0, b, c) \cdot(a, 0,0)$
$\Rightarrow G \subset H \times K$.
Third, $H \cap K=\{e\}$.
Therefore, $G=H \times K$.
(b)

Take $H=\{0\} \times Z_{4} \times Z_{9}$, and $K=\{0\} \times Z_{2} \times\{0\}$.
Then there exists $(0,2,0) \in H \cap K$.
Hence, $G \neq H \times K$.
(c)

Take $H=Z_{2} \times\langle 2\rangle \times Z_{9}$.
Suppose $\exists K<G$ s.t $G=H \times K$ where $|G|=72$ and $|H|=36$.
Then $|K|=2$.
Let $h=\langle(0,1,0)\rangle<G$.
Then $|h|=4$.
But $H \times K$ no subgroup of order 4 .
So for any subgroup K of $G, G \neq H \times K$.
(d)
(e)

First, since $|G|<\infty, G$ satisfies ACCN, DCCN.
So, G is the direct product of finite indecomposable normal subgroups.
Second, By Krull-schmit Theorem, $G=G_{1} \times G_{2} \times \cdots G_{k}$, where G_{i} is indecomposable.
Moreover, by (d), G_{i} is cyclic.
So, $G_{i} \cong Z_{m}$ for some m.
By the way, if $m=l k$ for $(l, k)=1$, then $Z_{m} \cong Z_{l} \times Z_{k}$ is decomposable.
Hence, $m=p_{i}^{s_{i}}$.
Thus $G=G_{1} \times G_{2} \times \cdots \times G_{k}($ inner product $) \cong G_{1} \times G_{2} \times \cdots \times G_{k}($ direct product) $\cong Z_{p^{s_{1}}} \times Z_{p^{s_{2}}} \times \cdots Z_{p^{s_{k}}}$
(f)

False.
Take $G=G_{1} \times G_{2}=H_{1} \times H_{2}$, where $G_{1} \cong G_{2} \cong Z_{4}, H_{1} \cong Z_{2}, H_{2} \cong Z_{8}$.
The reason is that $Z_{4} \times Z_{4} \neq Z_{2} \times Z_{8}$.
Since $\forall x \in Z_{4} \times Z_{4}$, the order of x is at most 4 .

But when we take $(0,1) \in Z_{2} \times Z_{8}$, the order of $(0,1)$ is 8 .
Thus, $Z_{2} \times Z_{4} \neq Z_{2} \times Z_{8}$.
(g)

For $1400=2^{3} \times 5^{2} \times 7$, we have $3 \times 2 \times 1=6$ non-isomorphic abelian groups of order 1400 .

