$(a) \ G = Z_2 \times Z_4 \times Z_9$ Take $H = \{e\} \times Z_4 \times Z_9, K = Z_2 \times \{e\} \times \{e\}$ Then we have to check G is the inner direct product of H, K. First, it is clearly that $H \triangle G$, $K \triangle G$. Second, $\forall (a, b, c) \in G$ $\exists (a, b, c) \in H \text{ and } (a, 0, 0) \in K \text{ such that } (a, b, c) = (0, b, c) \cdot (a, 0, 0)$ $\Rightarrow G \subset H \times K.$ Third, $H \cap K = \{e\}.$ Therefore, $G = H \times K$. (b) Take $H = \{0\} \times Z_4 \times Z_9$, and $K = \{0\} \times Z_2 \times \{0\}$. Then there exists $(0, 2, 0) \in H \cap K$. Hence, $G \neq H \times K$. (c) Take $H = Z_2 \times \langle 2 \rangle \times Z_9$. Suppose $\exists K < G \text{ s.t } G = H \times K$ where |G| = 72 and |H| = 36. Then |K| = 2. Let $h = \langle (0, 1, 0) \rangle < G$. Then |h| = 4. But $H \times K$ no subgroup of order 4. So for any subgroup K of G, $G \neq H \times K$. (d)(e)First, since $|G| < \infty$, G satisfies ACCN, DCCN. So, G is the direct product of finite indecomposable normal subgroups. Second, By Krull-schmit Theorem, $G = G_1 \times G_2 \times \cdots \otimes G_k$, where G_i is indecomposable. Moreover, by (d), G_i is cyclic. So, $G_i \cong Z_m$ for some m. By the way, if m = lk for (l, k) = 1, then $Z_m \cong Z_l \times Z_k$ is decomposable. Hence, $m = p_i^{s_i}$. Thus $G = G_1 \times G_2 \times \cdots \times G_k$ (inner product) $\cong G_1 \times G_2 \times \cdots \times G_k$ (direct product) $\cong Z_{p^{s_1}} \times Z_{p^{s_2}} \times \cdots \times Z_{p^{s_k}}$ (f) False. Take $G = G_1 \times G_2 = H_1 \times H_2$, where $G_1 \cong G_2 \cong Z_4$, $H_1 \cong Z_2$, $H_2 \cong Z_8$. The reason is that $Z_4 \times Z_4 \neq Z_2 \times Z_8$.

Since $\forall x \in Z_4 \times Z_4$, the order of x is at most 4.

But when we take $(0, 1) \in Z_2 \times Z_8$, the order of (0,1) is 8. Thus, $Z_2 \times Z_4 \neq Z_2 \times Z_8$. (g) For $1400 = 2^3 \times 5^2 \times 7$, we have $3 \times 2 \times 1 = 6$ non-isomorphic abelian groups of order 1400.