
HOMEWORK 13

Q2. A complex number is said to be an algebraic number if it is algebraic over Q and an
algebraic integer if it is the root of a monic polynomial in Z[x]. (Note. A monic polynomial
has leading coefficient 1)

(d) If r ∈ Q is an algebraic integer, then r ∈ Z. (Gauss Lemma)

Proof. Let r = b
a
∀a ∈ N, b ∈ Z, where gcd(a, b) = 1. Suppose f(r) = 0 for f ∈ Z[x]

with leading coefficient 1, then f(x) = g1(x)g2(x) · · · gk(x), where gi(x) are irreducible with
leading coefficient 1. Since f( b

a
) = 0, ax − b is a factor of f(x), then ∃gi(x) = ±(ax − b).

Hence a = 1 and thus r = b ∈ Z.

(e) If u is an algebraic integer and n ∈ Z, then u + n and nu are algebraic integers.

Proof. Since u is an algebraic integer, there exists f(x) ∈ Z[x] such that f(u) = 0 with
leading coefficient 1. Consider g(x) = f(x−n). g(x) ∈ Z[x] and g(u+n) = f((u+n)−n) =
f(u) = 0 with leading coefficient 1. Thus u + n is an algebraic integer. Next consider
h(x) = nk ·f( x

n
) where k = deg f and n 6= 0. h(x) ∈ Z[x] and h(nu) = nkf(nu

n
) = nkf(u) = 0

with leading coefficient 1. Thus nu is an algebraic integer. If n = 0, nu = 0 is an algebraic
integer clearly.

(f) The sum and product of two algebraic integers are algebraic integers.

Proof. Let Z[α, β] := {f(α, β) | f(x, y) ∈ Z[x, y]}. It suffices to show γ ∈ Z[α, β] is an
algebraic integer. Suppose αn + a1α

n−1 + · · · + an−1α + an = 0 and βm + b1β
m−1 + · · · +

bm−1β + bm = 0 for some ai, bj ∈ Z. Then αn = −a1α
n−1 − a2α

n−2 − · · · − an and βm =
−b1β

m−1 − b2β
m−2 − · · · − bm. Hence Z[α, β] = {

∑

i<n,j<m cijα
iβj | cij ∈ Z}. Note that

γαkβℓ ∈ Z[α, β]. Hence γαkβℓ =
∑

i<n,j<m ckℓ
ij α

iβj, i.e.,

γαkβℓ −
∑

i<n,j<m

ckℓ
ij αiβj = 0 (⋆)

Ordering αiβj by α0β0, α1β0, · · · , αn−1β0, α0β1, · · · , αn−1βm−1, then (⋆) becomes






γ − c00
00 −c00

10 · · ·
−c10

00 γ − c10
10 · · ·

...
...

. . .













α0β0

α1β0

...






= 0. Since the matrix is singular, it has determinant

0, i.e., γ is the eigenvalue of







−c00
00 −c00

10 · · ·
−c10

00 −c10
10 · · ·

...
...

. . .






. Note the characteristic polynomial of a

matrix over Z is monic. Hence γ is an algebraic integer.

Example 0.1. n = 2 = m,

(γ − c00

00)α
0β0 − c00

10α
1β0 − c00

01α
0β1 − c00

11α
1β1 = 0 ((k, ℓ) = (0, 0))

−c10

00α
0β0 + (γ − c10

10)α
1β0 − c10

01α
0β1 − c10

11α
1β1 = 0 ((k, ℓ) = (1, 0))

−c01

00α
0β0 − c01

10α
1β0 + (γ − c01

01)α
0β1 − c01

11α
1β1 = 0 ((k, ℓ) = (0, 1))

−c11

00α
0β0 − c11

10α
1β0 − c11

01α
0β1 + (γ − c11

11)α
1β1 = 0 ((k, ℓ) = (1, 1))
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Q3. Let G be an abelian group of order n. A partial difference set of G is a subset S of G

such that the set {x − y | x, y ∈ S, x 6= y} contains |S| × (|S| − 1) elements.

(a) Let S be a partial difference set of G with |S| = s. Then s2 − s + 1 ≤ n.

Proof. s(s − 1) ≤ n − 1 ⇒ s2 − s ≤ n − 1 ⇒ s2 − s + 1 ≤ n.

(b) Let a ∈ Up, the set of units of Zp, be a multiplication generator. Then S = {(i, ai) |
0 ≤ i ≤ p − 1} is a partial difference set of Zp × Zp. (Hint. Find the desired set of p(p − 1)
elements)

Sol. There is something wrong with the statement of the problem. For example when
p = 2 ⇒ a = 1, S = {(0, 1), (1, 1)}. Then (0, 1) − (1, 1) = (1, 0) = (1, 1) − (0, 1), S is not a
partial difference set. S might be a partial difference set of Zp+1 × Zp.

(c) Let S be as in (b). Then |(u +S)∩ (v+S)| ≤ 1 for any distinct elements u, v ∈ Zp ×Zp.

Proof. Suppose not, there exist (a, b) 6= (c, d) ∈ (u + S)∩ (v +S). Let (a, b) = u + s = v + s′

and (c, d) = u + t = v + t′ for some s, s′, t, t′ ∈ S. Then s − s′ = v − u = t − t′. Hence
s − s′ = t − t′ ⇒ s = t, s′ = t′ ⇒ (a, b) = (c, d), a contradiction.

(d) The statement of this problem is false.
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