HOMEWORK 13

Q2. A complex number is said to be an algebraic number if it is algebraic over \mathbb{Q} and an algebraic integer if it is the root of a monic polynomial in $\mathbb{Z}[x]$. (Note. A monic polynomial has leading coefficient 1)
(d) If $r \in \mathbb{Q}$ is an algebraic integer, then $r \in \mathbb{Z}$. (Gauss Lemma)

Proof. Let $r=\frac{b}{a} \forall a \in \mathbb{N}, b \in \mathbb{Z}$, where $\operatorname{gcd}(a, b)=1$. Suppose $f(r)=0$ for $f \in \mathbb{Z}[x]$ with leading coefficient 1 , then $f(x)=g_{1}(x) g_{2}(x) \cdots g_{k}(x)$, where $g_{i}(x)$ are irreducible with leading coefficient 1. Since $f\left(\frac{b}{a}\right)=0, a x-b$ is a factor of $f(x)$, then $\exists g_{i}(x)= \pm(a x-b)$. Hence $a=1$ and thus $r=b \in \mathbb{Z}$.
(e) If u is an algebraic integer and $n \in \mathbb{Z}$, then $u+n$ and $n u$ are algebraic integers.

Proof. Since u is an algebraic integer, there exists $f(x) \in \mathbb{Z}[x]$ such that $f(u)=0$ with leading coefficient 1. Consider $g(x)=f(x-n) . g(x) \in \mathbb{Z}[x]$ and $g(u+n)=f((u+n)-n)=$ $f(u)=0$ with leading coefficient 1. Thus $u+n$ is an algebraic integer. Next consider $h(x)=n^{k} \cdot f\left(\frac{x}{n}\right)$ where $k=\operatorname{deg} f$ and $n \neq 0 . h(x) \in \mathbb{Z}[x]$ and $h(n u)=n^{k} f\left(\frac{n u}{n}\right)=n^{k} f(u)=0$ with leading coefficient 1 . Thus $n u$ is an algebraic integer. If $n=0, n u=0$ is an algebraic integer clearly.
(f) The sum and product of two algebraic integers are algebraic integers.

Proof. Let $\mathbb{Z}[\alpha, \beta]:=\{f(\alpha, \beta) \mid f(x, y) \in \mathbb{Z}[x, y]\}$. It suffices to show $\gamma \in \mathbb{Z}[\alpha, \beta]$ is an algebraic integer. Suppose $\alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n-1} \alpha+a_{n}=0$ and $\beta^{m}+b_{1} \beta^{m-1}+\cdots+$ $b_{m-1} \beta+b_{m}=0$ for some $a_{i}, b_{j} \in \mathbb{Z}$. Then $\alpha^{n}=-a_{1} \alpha^{n-1}-a_{2} \alpha^{n-2}-\cdots-a_{n}$ and $\beta^{m}=$ $-b_{1} \beta^{m-1}-b_{2} \beta^{m-2}-\cdots-b_{m}$. Hence $\mathbb{Z}[\alpha, \beta]=\left\{\sum_{i<n, j<m} c_{i j} \alpha^{i} \beta^{j} \mid c_{i j} \in \mathbb{Z}\right\}$. Note that $\gamma \alpha^{k} \beta^{\ell} \in \mathbb{Z}[\alpha, \beta]$. Hence $\gamma \alpha^{k} \beta^{\ell}=\sum_{i<n, j<m} c_{i j}^{k \ell} \alpha^{i} \beta^{j}$, i.e.,

$$
\gamma \alpha^{k} \beta^{\ell}-\sum_{i<n, j<m} c_{i j}^{k \ell} \alpha^{i} \beta^{j}=0
$$

Ordering $\alpha^{i} \beta^{j}$ by $\alpha^{0} \beta^{0}, \alpha^{1} \beta^{0}, \cdots, \alpha^{n-1} \beta^{0}, \alpha^{0} \beta^{1}, \cdots, \alpha^{n-1} \beta^{m-1}$, then (\star) becomes
$\left[\begin{array}{ccc}\gamma-c_{00}^{00} & -c_{10}^{00} & \cdots \\ -c_{00}^{10} & \gamma-c_{10}^{10} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}\alpha^{0} \beta^{0} \\ \alpha^{1} \beta^{0} \\ \vdots\end{array}\right]=0$. Since the matrix is singular, it has determinant 0, i.e., γ is the eigenvalue of $\left[\begin{array}{ccc}-c_{00}^{00} & -c_{10}^{00} & \cdots \\ -c_{00}^{10} & -c_{10}^{10} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right]$. Note the characteristic polynomial of a matrix over \mathbb{Z} is monic. Hence γ is an algebraic integer.

Example 0.1. $n=2=m$,

$$
\begin{array}{rlr}
\left(\gamma-c_{00}^{00}\right) \alpha^{0} \beta^{0}-c_{10}^{00} \alpha^{1} \beta^{0}-c_{01}^{00} \alpha^{0} \beta^{1}-c_{11}^{00} \alpha^{1} \beta^{1}=0 & ((k, \ell)=(0,0)) \\
-c_{00}^{10} \alpha^{0} \beta^{0}+\left(\gamma-c_{10}^{10}\right) \alpha^{1} \beta^{0}-c_{01}^{10} \alpha^{0} \beta^{1}-c_{11}^{10} \alpha^{1} \beta^{1}=0 & ((k, \ell)=(1,0)) \\
-c_{00}^{01} \alpha^{0} \beta^{0}-c_{10}^{01} \alpha^{1} \beta^{0}+\left(\gamma-c_{01}^{01}\right) \alpha^{0} \beta^{1}-c_{11}^{01} \alpha^{1} \beta^{1}=0 & ((k, \ell)=(0,1)) \\
-c_{00}^{11} \alpha^{0} \beta^{0}-c_{10}^{11} \alpha^{1} \beta^{0}-c_{01}^{11} \alpha^{0} \beta^{1}+\left(\gamma-c_{11}^{11}\right) \alpha^{1} \beta^{1}=0 & ((k, \ell)=(1,1))
\end{array}
$$

Q3. Let G be an abelian group of order n. A partial difference set of G is a subset S of G such that the set $\{x-y \mid x, y \in S, x \neq y\}$ contains $|S| \times(|S|-1)$ elements.
(a) Let S be a partial difference set of G with $|S|=s$. Then $s^{2}-s+1 \leq n$.

Proof. $s(s-1) \leq n-1 \Rightarrow s^{2}-s \leq n-1 \Rightarrow s^{2}-s+1 \leq n$.
(b) Let $a \in U_{p}$, the set of units of \mathbb{Z}_{p}, be a multiplication generator. Then $S=\left\{\left(i, a^{i}\right) \mid\right.$ $0 \leq i \leq p-1\}$ is a partial difference set of $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. (Hint. Find the desired set of $p(p-1)$ elements)

Sol. There is something wrong with the statement of the problem. For example when $p=2 \Rightarrow a=1, S=\{(0,1),(1,1)\}$. Then $(0,1)-(1,1)=(1,0)=(1,1)-(0,1), S$ is not a partial difference set. S might be a partial difference set of $\mathbb{Z}_{p+1} \times \mathbb{Z}_{p}$.
(c) Let S be as in (b). Then $|(u+S) \cap(v+S)| \leq 1$ for any distinct elements $u, v \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Proof. Suppose not, there exist $(a, b) \neq(c, d) \in(u+S) \cap(v+S)$. Let $(a, b)=u+s=v+s^{\prime}$ and $(c, d)=u+t=v+t^{\prime}$ for some $s, s^{\prime}, t, t^{\prime} \in S$. Then $s-s^{\prime}=v-u=t-t^{\prime}$. Hence $s-s^{\prime}=t-t^{\prime} \Rightarrow s=t, s^{\prime}=t^{\prime} \Rightarrow(a, b)=(c, d)$, a contradiction.
(d) The statement of this problem is false.

