GAUSS'S LEMMA

Lemma 1 (Gauss's lemma). Let f be a monic polynomial with coefficients in \mathbb{Z} , and suppose that f = gh where g and h are monic polynomials with coefficients in \mathbb{Q} . Then g and h actually have coefficients in \mathbb{Z} .

Proof. Let m be the smallest positive integer such that mg has integer coefficients. Then the coefficients of mg have no common divisor greater than 1. Likewise, let n be the smallest positive integer such that nh has integer coefficients. We now show that m = n = 1.

Assume that mn > 1. We choose any prime p dividing mn, and consider the equation mnf = (mg)(nh). Reducing the coefficients modulo p, we have $0 = (\overline{mg})(nh)$. Since \mathbb{Z}_p is an integral domain, so is $\mathbb{Z}_p[x]$. We thus have $\overline{mg} = 0$ or $\overline{nh} = 0$. That is, p divides all coefficients of g or all coefficients of h. This contradicts the minimality of m and n.