Section 19 - Integral domains

Instructor: Yifan Yang

Spring 2007

Observation and motivation

- There are rings in which $a b=0$ implies $a=0$ or $b=0$. For examples, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, and $\mathbb{Z}[x]$ are all such rings.
- There are also ring in which there exist some a, b such that $a, b \neq 0$, but $a b=0$. For example, in \mathbb{Z}_{6} we have $2 \cdot 3=0$. Also, in $M_{2}(\mathbb{R})$ we have $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
- In the first cases, an equation of the form $(x-a)(x-b)=0$ has exactly two solutions a and b since $(x-a)(x-b)=0$ implies $x-a=0$ or $x-b=0$.
- In the second cases, an equation $(x-a)(x-b)=0$ may have more than two solutions. For example, 2, 3, 6, 11 are all solutions of $(x-2)(x-3)=0$ in \mathbb{Z}_{12}.
- This shows that the these two classes of rings are fundamentally different.

Divisors of zero

Definition
If a and b are two nonzero elements of a ring R such that $a b=0$, then a and b are divisors of zero (or zero divisors).

Example

1. $2,3,4$, are all zero divisors in \mathbb{Z}_{6}.
2. The matrices $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are zero divisors in $M_{2}(\mathbb{R})$.

Zero divisors of \mathbb{Z}_{n}

Theorem (19.3)
The zero divisors of \mathbb{Z}_{n} are precisely the nonzero elements that are not relatively prime to n.

Corollary (19.4)
If p is a prime, then \mathbb{Z}_{p} has no zero divisors.

Proof of Theorem 19.3

- Case $\operatorname{gcd}(m, n)=d>1$. We have

$$
m\left(\frac{n}{d}\right)=n\left(\frac{m}{d}\right)=0
$$

and m is a zero divisor.

- Case $\operatorname{gcd}(m, n)=1$. Assume that $m k=0$ in \mathbb{Z}_{n}, i.e., $n \mid m k$. Since m is relatively prime to n, we have $n \mid k$, i.e., $k=0$ in \mathbb{Z}_{n}. We see that m is not a zero divisor.

Cancellation law

Theorem (19.5)
The cancellation law (i.e., $a b=a c, a \neq 0 \Rightarrow b=c$) holds for a ring R if and only if R has no zero divisors.

Proof.

- \Rightarrow. Assume that the cancellation law holds, but $a b=0$ for some $a, b \neq 0$. Then we have $a b=0=a 0$, but $b \neq 0$, which is a contradiction.
- \Leftarrow. Assume that R has no zero divisors. If $a b=a c$ and $a \neq 0$, then $a b-a c=0$, which, by the distributive law, gives $a(b-c)=0$. Since R has no zero divisors and a is assumed to be nonzero, we have $b-c=0$ and thus $b=c$.

Remarks

- Let R be a ring with zero divisors. Even if $a b=a c$ and $a \neq 0$ do not imply $b=c$ for general $a, b, c \in R$, the cancellation law still holds for the cases when a has a multiplicative inverse.

For example, in $\mathbb{Z}_{15}, 2 a=2 b$ still implies $a=b$ since 2 is relatively prime to 15.

Also, if A is an invertible matrix in $M_{2}(\mathbb{R})$, then $A B=A C$ still implies $B=C$.

- If R is a ring with no zero divisors, then the equation $a x=b$ has at most one solution in R.

Notation b / a

Suppose that R is a commutative ring with no zero divisors, and that a is a unit in R. Then the equation $a x=b$ has exactly one solution $a^{-1} b$. For convenience, we let b / a denote this element $a^{-1} b$. The notation $1 / a$ will denote a^{-1} in this case.

However, when R is not commutative, we do not use this notation because we do not know whether b / a means $a^{-1} b$ or $b a^{-1}$.

Integral domains

Definition

A commutative ring R with unity $1 \neq 0$ that has no zero divisors is an integral domain.

Example

1. The ring of integers \mathbb{Z} is an integral domain. In fact, this is why we call such rings "integral" domains.
2. If p is a prime, then \mathbb{Z}_{p} is an integral domain. On the other hand, if n is composite, then \mathbb{Z}_{n} is not an integral domain.
3. The direct product $R \times S$ of two nonzero rings R and S is never an integral domain since $(r, 0)(0, s)=(0,0)$ for all $r \in R$ and $s \in S$.

Fields are integral domains

Theorem (19.9)
Every field F is an integral domain.

Proof.

Suppose that $a, b \in F$ is such that $a b=0$. We need to show that if $a \neq 0$, then $b=0$. By the associativity of multiplication, we have

$$
0=a^{-1}(a b)=\left(a^{-1} a\right) b=1 b=b .
$$

This proves the theorem.

Finite integral domains are fields

Theorem (19.11)
Every finite integral domain D is a field.
Corollary (19.12)
If p is a prime, then \mathbb{Z}_{p} is a field.

Proof of Theorem 19.11

- We need to show that every nonzero element a of D has a multiplicative inverse.
- Let $0,1, a_{1}, \ldots, a_{n}$ be all the elements of the finite integral domain D.
- Consider the products $0=a 0, a=a 1, a a_{1}, \ldots, a a_{n}$.
- These products are all distinct since $a b=a c$ implies $b=c$ by Theorem 19.5.
- Thus, $0, a, a a_{1}, \ldots, a a_{n}$ must be all the elements of D.
- One of these must be 1 , i.e., $a a_{i}=1$ for some a_{i}. This proves the theorem.

Relations between various rings

In-class exercises

1. Find all solutions of $x^{3}-2 x^{2}-3 x=0$ in \mathbb{Z}_{12}.
2. Characterize all the zero divisors of $M_{2}(\mathbb{R})$.
3. Let F be the set of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with addition and multiplication given by

$$
f+g: x \mapsto f(x)+g(x), \quad f \cdot g: x \mapsto f(x) g(x) .
$$

Find the proper place for F in the diagram on the last page.

The characteristic of a ring

Definition
Let R be a ring. Suppose that there is a positive integer n such that $n \cdot a=0$ for all $a \in R$. The least such positive integer is the characteristic of the ring R. If no such positive integer exists, then R is of characteristic 0 .

Example

1. The rings \mathbb{Z}_{n} are of characteristic n.
2. The rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are all of characteristic 0 .

The characteristic of a ring

Theorem (19.15)
Let R be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{Z}^{+}$, then R has characteristic 0 . If $n \cdot 1=0$ for some $n \in \mathbb{Z}^{+}$, then the smallest such integer n is the characteristic of R.

Proof.
If $n \cdot 1 \neq 0$ for all $n \in \mathbb{Z}^{+}$, then R is clearly of characteristic 0 , by definition.
If $n \cdot 1=0$ for some $n \in \mathbb{Z}^{+}$, then for all $a \in R$, we have

$$
n \cdot a=(a+\cdots+a)=a(1+\cdots+1)=a(n \cdot 1)=a 0=0 .
$$

Then the theorem follows.

Homework

Problems 2, 10, 12, 23, 27, 28, 29, 30 of Section 19.

