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Overview

• In Exercise 12 of Section 26, we show that a factor ring of
an integral domain may be a field. For example, if p is a
prime, then Z/pZ is a field.

• Also, in Exercise 13 of the same section, we show that a
factor ring of an integral domain may have a zero divisor.
For example, if n is composite, then Z/nZ has zero
divisors.

• In this section, we will determine when a factor ring of an
integral domain is again an integral, and when it becomes
a field.

• We will then apply the results to the polynomial rings F [x ],
where F is a field.



Proper/improper and trivial/nontrivial ideals

Definition
Let R be a nonzero ring. The ideal {0} is the trivial ideal, and
the ring R itself is the improper ideal. Any other ideal is a
proper nontrivial ideal.



A field contains no proper nontrivial ideals

Theorem (27.5)
Let R be a ring with unity. If an ideal I contains a unit, then
I = R.

Proof.
Let u be a unit contained in I. Then 1 = u−1u ∈ I. It follows that
r = r1 ∈ I for all r ∈ R.

Corollary (27.6)
A field contains no proper nontrivial ideals.

Proof.
Any nontrivial ideal of a field contains a unit. Then Theorem
27.5 says that the ideal must be the whole field.



Maximal ideals

Definition (27.7)
A proper ideal M of a ring R is a maximal ideal such that there
is no proper ideal N of R properly containing M. (That is, if N is
an ideal such that M ⊂ N ⊂ R, then N = M or N = R.)

Example
Let p be a prime. Then pZ is a maximal ideal of Z.



When is R/I a field?

Theorem (27.9)
Let R be a commutative ring with unity. Then M is a maximal
ideal if and only if R/M is a field.

Corollary (27.11)
A commutative ring with unity is a field if and only if it has no
proper nontrivial ideals.

Key observation
Let φ : R 7→ R′ be a ring homomorphism with kernel Ker(φ). If I′

is a proper nontrivial ideal of φ(R), then I = φ−1(I′) is a proper
ideal of R with Ker(φ) ( I.



Proof of M maximal =⇒ R/M a field

• Let M be a maximal ideal. We need to show that if
a + M 6= M, then there exists b + M such that
(a + M)(b + M) = 1 + M.

• Equivalently, we need to show that the principal ideal
〈a + M〉 of R/M is the whole ring R/M.

• Consider the canonical homomorphism γ : R → R/M
defined by γ(r) = r + M.

• Now 〈a + M〉 is a nontrivial ideal since a + M 6= M.

• If 〈a + M〉 is also a proper ideal, then by the remark on the
previous page, γ−1(〈a + M〉) is a proper ideal containing
properly Ker(γ) = M. This contradicts to the assumption
that M is a maximal ideal.

• Therefore, 〈a + M〉 = R/M. This concludes the proof. �



Proof of R/M field =⇒ M maximal

• Assume that R/M is a field, and N be an ideal of R such
that M ⊂ N ⊂ R. We need to prove that either N = M or
N = R.

• Consider the canonical homomorphism γ : R → R/M
given by γ : a 7→ a + M.

• Since N is an ideal of R, N/M = γ(N) is an ideal of
φ(R) = R/M.

• Since R/M is a field, by Corollary 27.6, N/M is either the
trivial ideal {0 + M} or the whole field R/M.

• The first case yields N = M, while the second case gives
N = R. �



Prime ideals

Definition (27.13)
An ideal P 6= R in a commutative ring is a prime ideal if ab ∈ P
implies a ∈ P or b ∈ P.

Example

1. If R is an integral domain, then {0} is a prime ideal.

2. Z× {0} is a prime ideal of Z× Z.

3. Let R = Z, and n be a positive integer. If n is composite,
say n = ab with a, b > 1, then ab = n ∈ nZ, but a, b 6∈ nZ,
and nZ is not a prime ideal.

4. If n = p is a prime and ab ∈ pZ, then p|ab, which implies
p|a or p|b. Thus, ab ∈ pZ does imply a ∈ pZ or b ∈ pZ.
Therefore, pZ is a prime ideal of Z.



When is R/I an integral domain?

Theorem (27.15)
Let R be a commutative ring with unity. Then P is a prime ideal
of R if and only if R/P is an integral domain.

Proof.

R/P is an integral domain

⇔ (a + P)(b + P) = 0 + P ⇒ a + P = 0 + P or b + P = 0 + P

⇔ ab ∈ P ⇒ a ∈ P or b ∈ P

⇔ P is a prime ideal.



Maximal implies prime

Corollary (27.16)
Every maximal ideal in a commutative ring with unity is a prime
ideal.

Example
The trivial ideal {0} of Z is a prime ideal, but not a maximal
ideal.



Examples of prime ideals

1. Let R be an integral domain. Then {0} is a prime ideal. We
find R/{0} ' R is indeed an integral domain.

2. Let Z× {0} be a prime ideal of Z× Z. Then we have
Z× Z/(Z× {0}) ' Z, which is an integral domain.

3. Let n be a composite number, then nZ is not a prime ideal,
and Z/nZ = Zn is not an integral domain.

4. Let p be a prime, then pZ is a prime ideal, and Z/pZ = Zp

is an integral domain (actually a field).



Principal ideals

Definition (27.21)
Let R be a commutative ring with unity, and a ∈ R. The ideal
{ra : r ∈ R} is the principal ideal generated by a, and is
denoted by 〈a〉. An ideal I of R is a principal ideal if I = 〈a〉 for
some a ∈ R.

Observations

• If 〈a〉 = R, then a is a unit since 1 ∈ R ⇒ ra = 1 for some
r ∈ R.

• Assume that R is an integral domain. Then 〈a〉 = 〈b〉 if and
only if b = ua for some unit u ∈ R.



Ideals in F [x ]

Theorem (27.24)
Let F be a field. Then every ideal I in F [x ] is principal.

Proof.
• If I = {0}, then I = 〈0〉 is principal.

• If I 6= {0}, let g(x) be a nonzero element of I of minimal
degree. We claim that I = 〈g(x)〉.

• Let f (x) ∈ I. Using the division algorithm (Theorem 23.1),
we find f (x) = q(x)g(x) + r(x), where r(x) = 0 or
deg r(x) < deg g(x).

• Now r(x) = f (x)− q(x)g(x) ∈ I. By the minimality of
deg g(x), we must have r(x) = 0, instead of
deg r(x) < deg g(x).

• Thus, f (x) = q(x)g(x) ∈ 〈g(x)〉, and I = 〈g(x)〉. �



Maximal ideals in F [x ]

Theorem (27.25)
An ideal 〈p(x)〉 6= {0} in F [x ] is maximal if and only if p(x) is
irreducible over F .

Corollary
The factor ring F [x ]/〈p(x)〉 is a field if and only if p(x) is
irreducible over F .

Remark
Theorem 27.25 is extremely important in our study of the field
theory.



Proof of ⇒ in Theorem 27.25

• Let 〈p(x)〉 be a maximal ideal. We need to prove that
• p(x) is not a constant polynomial,
• if p(x) = f (x)g(x) then either f (x) or g(x) is a unit in F [x ].

• If p(x) is a nonzero constant polynomial, then p(x) is a unit
in F [x ] and by Theorem 27.5 〈p(x)〉 = F [x ], contradicting
to the assumption. Thus, p(x) is not a constant polynomial.

• Now suppose that p(x) = f (x)g(x). Then 〈p(x)〉 ⊂ 〈f (x)〉.
• Since 〈p(x)〉 is a maximal ideal, either 〈f (x)〉 = F [x ] or
〈f (x)〉 = 〈p(x)〉.

• If 〈f (x)〉 = F [x ], then f (x) is a unit.

• If 〈f (x)〉 = 〈p(x)〉, then f (x) ∈ 〈p(x)〉 and f (x) = p(x)h(x)
for some h(x) ∈ F [x ].

• Then p(x) = f (x)g(x) = p(x)[h(x)g(x)], and h(x)g(x) = 1.
Thus, g(x) is a unit. �



Proof of ⇒ in Theorem 27.25

• Assume that p(x) is irreducible over F . We need to prove
that
• 〈p(x)〉 6= F [x ],
• if I is an ideal such that 〈p(x)〉 ⊂ I ⊂ F [x ], then either

I = 〈p(x)〉 or I = F [x ].

• If 〈p(x)〉 = F [x ], then p(x) is a unit in F [x ]. By definition, a
unit is not an irreducible. Thus, 〈p(x)〉 6= F [x ].

• Assume that 〈p(x)〉 ⊂ I ⊂ F [x ]. We have I = 〈f (x)〉 for
some f (x) ∈ F [x ].

• Since 〈p(x)〉 ⊂ 〈f (x)〉, we have p(x) = f (x)g(x) for some
g(x) ∈ F [x ].

• Because p(x) is irreducible, either f (x) or g(x) is a unit.

• If f (x) is a unit, then I = 〈f (x)〉 = F [x ]. If g(x) is a unit,
then 〈f (x)〉 = 〈p(x)〉. �.



Unique factorization in F [x ]

Theorem (27.27)
Let p(x) be an irreducible polynomial in F [x ]. If p(x)|r(x)s(x)
for some r(x), s(x) ∈ F [x ], then p(x)|r(x) or p(x)|s(x).

Proof.
If p(x)|r(x)s(x), then r(x)s(x) ∈ 〈p(x)〉. By Theorem 27.25,
〈p(x)〉 is a maximal ideal, which by Corollary 27.16, is a prime
ideal. Thus, r(x) ∈ 〈p(x)〉 or s(x) ∈ 〈p(x)〉, which in turn
implies that p(x)|r(x) or p(x)|s(x).



Homework

1. Problems 4, 8, 15–18, 30, 34, 35 of Section 27.

2. Give an example where I and J are ideals of a ring R, but
the set

{ab : a ∈ I, b ∈ J}

is not an ideal of R. (Compare this with Problem 35.)
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