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Overview

e In Exercise 12 of Section 26, we show that a factor ring of
an integral domain may be a field. For example, if p is a
prime, then Z/pZ is a field.

e Also, in Exercise 13 of the same section, we show that a
factor ring of an integral domain may have a zero divisor.
For example, if n is composite, then Z/nZ has zero
divisors.

e In this section, we will determine when a factor ring of an
integral domain is again an integral, and when it becomes
a field.

e We will then apply the results to the polynomial rings F[x],
where F is a field.



Proper/improper and trivial/nontrivial ideals

Definition

Let R be a nonzero ring. The ideal {0} is the trivial ideal, and
the ring R itself is the improper ideal. Any other ideal is a
proper nontrivial ideal.



A field contains no proper nontrivial ideals

Theorem (27.5)
Let R be a ring with unity. If an ideal | contains a unit, then

| =R.
Proof.
Let u be a unit contained in I. Then 1 = u~1u € I. It follows that
r=rlelforallr € R. ]

Corollary (27.6)
A field contains no proper nontrivial ideals.

Proof.
Any nontrivial ideal of a field contains a unit. Then Theorem
27.5 says that the ideal must be the whole field. Ol



Maximal ideals

Definition (27.7)

A proper ideal M of aring R is a maximal ideal such that there
is no proper ideal N of R properly containing M. (That is, if N is
anideal suchthatM ¢ N Cc R,thenN =M orN =R))

Example
Let p be a prime. Then pZ is a maximal ideal of Z.



When is R/I a field?

Theorem (27.9)

Let R be a commutative ring with unity. Then M is a maximal
ideal if and only if R/M is a field.

Corollary (27.11)

A commutative ring with unity is a field if and only if it has no
proper nontrivial ideals.

Key observation

Let ¢ : R — R’ be a ring homomorphism with kernel Ker(¢). If I
is a proper nontrivial ideal of #(R), then | = ¢~1(1’) is a proper
ideal of R with Ker(¢) C 1.



Proof of M maximal = R/M a field

e Let M be a maximal ideal. We need to show that if
a+ M # M, then there exists b + M such that
(a+M)(b+M)=1+M.

e Equivalently, we need to show that the principal ideal
(a+ M) of R/M is the whole ring R/M.

e Consider the canonical homomorphism v : R — R/M
defined by v(r) =r + M.

e Now (a+ M) is a nontrivial ideal since a + M # M.

e If (a+ M) is also a proper ideal, then by the remark on the
previous page, v~ 1((a + M)) is a proper ideal containing
properly Ker(~) = M. This contradicts to the assumption
that M is a maximal ideal.

e Therefore, (a + M) = R/M. This concludes the proof. [



Proof of R/M field = M maximal

e Assume that R/M is afield, and N be an ideal of R such
that M C N C R. We need to prove that either N = M or
N =R.

e Consider the canonical homomorphism v : R — R/M
givenby~v:a— a+ M.

e Since N is an ideal of R, N/M = ~(N) is an ideal of
#(R) = R/M.

e Since R/M is afield, by Corollary 27.6, N /M is either the
trivial ideal {0 + M} or the whole field R/M.

e The first case yields N = M, while the second case gives
N =R. O



Prime ideals

Definition (27.13)

An ideal P # R in a commutative ring is a prime ideal if ab € P
impliesacPorbeP.

Example

1. If R is an integral domain, then {0} is a prime ideal.

2. Z x {0} is a prime ideal of Z x Z.

3. Let R = Z, and n be a positive integer. If n is composite,
say n = ab witha,b > 1, thenab =n € nZ, buta,b ¢ nZ,
and nZ is not a prime ideal.

4. If n = pis aprime and ab € pZ, then p|ab, which implies
pla or p|b. Thus, ab € pZ does imply a € pZ or b € pZ.
Therefore, pZ is a prime ideal of Z.



When is R/I an integral domain?

Theorem (27.15)
Let R be a commutative ring with unity. Then P is a prime ideal
of R if and only if R/P is an integral domain.

Proof.

R/P is an integral domain
< (a+P)(b+P)=0+P=a+P=0+Porb+P=0+P
sabeP=acPorbeP
< P is a prime ideal.



Maximal implies prime

Corollary (27.16)

Every maximal ideal in a commutative ring with unity is a prime
ideal.

Example

The trivial ideal {0} of Z is a prime ideal, but not a maximal
ideal.



Examples of prime ideals

1. Let R be an integral domain. Then {0} is a prime ideal. We
find R/{0} ~ R is indeed an integral domain.

2. LetZ x {0} be a prime ideal of Z x Z. Then we have
Z x ZL/(Z x {0}) ~ Z, which is an integral domain.

3. Let n be a composite number, then nZ is not a prime ideal,
and Z/nZ = Zy is not an integral domain.

4. Let p be a prime, then pZ is a prime ideal, and Z/pZ = Zy
is an integral domain (actually a field).



Principal ideals

Definition (27.21)

Let R be a commutative ring with unity, and a € R. The ideal
{ra: r € R} is the principal ideal generated by a, and is
denoted by (a). Anideal | of R is a principal ideal if | = (a) for
some a € R.

Observations

e If (a) =R, then ais a unitsince 1 € R = ra = 1 for some
reR.

e Assume that R is an integral domain. Then (a) = (b) if and
only if b = ua for some unitu € R.



ldeals in F[x]

Theorem (27.24)
Let F be a field. Then every ideal | in F[x] is principal.
Proof.

If I = {0}, then | = (0) is principal.

If I # {0}, let g(x) be a nonzero element of | of minimal
degree. We claim that | = (g(x)).

Let f(x) € I. Using the division algorithm (Theorem 23.1),
we find f(x) = q(x)g(x) + r(x), where r(x) = 0 or
degr(x) < degg(x).

Now r(x) = f(x) — q(x)g(x) € |. By the minimality of
degg(x), we must have r(x) = 0, instead of

degr(x) < degg(x).

Thus, f(x) = q(x)g(x) € (g(x)), and I = (g(x)).



Maximal ideals in F[x]

Theorem (27.25)

Anideal (p(x)) # {0} in F[x] is maximal if and only if p(x) is
irreducible over F.

Corollary

The factor ring F[x]/(p(x)) is a field if and only if p(x) is
irreducible over F.

Remark

Theorem 27.25 is extremely important in our study of the field
theory.



Proof of = in Theorem 27.25

e Let (p(x)) be a maximal ideal. We need to prove that

e p(x) is not a constant polynomial,
e if p(x) = f(x)g(x) then either f(x) or g(x) is a unit in F[x].
e If p(x) is a nonzero constant polynomial, then p(x) is a unit
in F[x] and by Theorem 27.5 (p(x)) = F[x], contradicting
to the assumption. Thus, p(x) is not a constant polynomial.

e Now suppose that p(x) = f(x)g(x). Then (p(x)) C (f(x)).

e Since (p(x)) is a maximal ideal, either (f(x)) = F[x] or
(f(x)) = (p(x)).

o If (f(x)) = F[x], then f(x) is a unit.

o IE{f(x)) = (p(x)), then f(x) € (p(x)) and f(x) = p(x)h(x)
for some h(x) € F[x].

e Then p(x) = f(x)g(x) = p(x)[h(x)g(x)], and h(x)g(x) = 1.
Thus, g(x) is a unit. O



Proof of = in Theorem 27.25

e Assume that p(x) is irreducible over F. We need to prove
that

e (p(x)) # F[x],
e if | is an ideal such that (p(x)) C | C F[x], then either
I = (p(x)) or I = F[x].
e If (p(x)) = F[x], then p(x) is a unit in F[x]. By definition, a
unit is not an irreducible. Thus, (p(x)) # F[x].
e Assume that (p(x)) C | C F[x]. We have | = (f(x)) for
some f(x) € F[x].
e Since (p(x)) C (f(x)), we have p(x) = f(x)g(x) for some
9(x) € F[x].
e Because p(x) is irreducible, either f(x) or g(x) is a unit.
e Iff(x)is a unit, then | = (f(x)) = F[x]. If g(x) is a unit,
then (f(x)) = (p(x)). a.



Unique factorization in F[x]

Theorem (27.27)
Let p(x) be an irreducible polynomial in F[x]. If p(x)|r(x)s(x)
for some r(x),s(x) € F[x], then p(x)|r(x) or p(x)|s(x).

Proof.

If p(x)|r(x)s(x), then r(x)s(x) € (p(x)). By Theorem 27.25,
(p(x)) is a maximal ideal, which by Corollary 27.16, is a prime
ideal. Thus, r(x) € (p(x)) or s(x) € (p(x)), which in turn
implies that p(x)|r(x) or p(x)|s(x). O



Homework

1. Problems 4, 8, 15-18, 30, 34, 35 of Section 27.
2. Give an example where | and J are ideals of a ring R, but
the set
{ab: acl, bed}

is not an ideal of R. (Compare this with Problem 35.)
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