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Overview

• In section 27 we have seen that if F is a field, then every
nonconstant polynomial in F [x ] can be factored into a
product of irreducible polynomials, and the factorization is
unique except for order and for units.

• In the same section, we have also seen that every ideal in
F [x ] is a principal ideal.

• In general, if an integral domain has the unique
factorization property, we say it is a unique factorization
domain (UFD).

• If an integral domain has the property that every ideal is
principal, we say it is a principal ideal domain (PID).

• We will show that if an integral domain is a PID, then it is a
UFD.

• We will also describe the result that if D is a UFD, then so
is D[x ], although we will not go over the proof in the class.



Divisibility, associates, and irreducibles

Definition
Let R be a commutative ring with unity. Let a, b ∈ R.

• If there exists c ∈ R such that b = ac, then a divides b (or
a is a factor of b, denoted by a|b. The notation a - b means
a does not divide b.

• An element u is a unit if u divides 1.

• a and b are associates if a = ub for some unit u ∈ R.

Assume that D is an integral domain.

• A nonzero element p that is not a unit is an irreducible of D
if any factorization p = ab in D has the property that either
a or b is a unit.



Examples

Example

• The units in Z are ±1. Thus, the associates of any integer
n 6= 0 are −n and n. The irreducibles are just prime
numbers and their associates.

• Every nonzero element of a field F is a unit. Thus, any two
nonzero elements are associates to each other. None of
the elements is an irreducible.

• Let F be a field. The units in F [x ] are nonzero constant
polynomials.



Unique factorization domains

Definition
An integral domain D is a unique factorization domain (UFD) is

• Every nonzero non-unit element of D can be factored into
a product of a finite number of irreducibles.

• If a ∈ D has two factorizations p1 . . . pr and q1 . . . qs into
products of irreducibles, then r = s and qj can be
renumbered so that pi and qi are associates.

Example

• Let F be a field. Then F [x ] is a UFD, by Theorem 23.20.

• Z is a UFD. (Fundamental theorem of arithmetics.)

• The integral domain Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} is

not a UFD. (We have 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5),

where 2, 3, 1 ±
√
−5 are all irreducibles, but mutually

non-associates.)



Remark

• The notion of a UFD was first raised in 1840’s in
connection of Fermat’s Last Theorem.

• Lamé in 1847 announced a “proof” of FLT, in which he
used the assumption that Z[e2πi/p] is a UFD.

• However, 1n 1844, Kummer already showed that Z[e2πi/23]
is not a UFD.

• Still, Lamé’s argument showed that if Z[e2πi/p] is a UFD,
then xp + yp = zp has no nontrivial solutions.

• Kummer found a way to measure how far Z[e2πi/p] is from
being a UFD, and proved the FLT for many cases where
Z[e2πi/p] is not a UFD.



Principal ideal domains

Definition
An integral domain D is a principal ideal domain (PID) if every
ideal in D is principal.

Example

• Z is a PID since an ideal in Z takes the form nZ for some
integer n.

• By Theorem 27.24, if F is a field, then F [x ] is a PID.



PID ⇒ UFD, first part

Theorem (45.11)
Let D be a PID. Then every nonzero non-unit element of D is a
product of irreducibles.

Lemma (45.9)
Let R be a commutative ring. Suppose that I1 ⊆ I2 ⊆ · · · is an
ascending chain of ideals in R. Then I = ∪i Ii is an ideal of R.



Proof of Lemma 45.9

• We need to show that
• If a, b ∈ I, then a + b ∈ I.
• If a ∈ I and r ∈ R, then ra ∈ I.

• Assume a, b ∈ I. Then a ∈ Ik and b ∈ Im for some k , m. Let
n = max(k , m). Then Ik , Im ⊆ In, and a, b ∈ In. It follows
that a + b ∈ In ⊆ I.

• Now assume that a ∈ I. Then a ∈ Ik for some k . Since Ik is
an ideal, for all r ∈ R, we have ra ∈ Ik ⊆ I. �



Ascending chain condition for a PID

Lemma (45.10, ascending chain condition for a PID)
Let D be a PID. Let I1 ⊆ I2 ⊆ · · · be an ascending chain of
ideals. Then there is a positive number N such that In = IN for
all n ≥ N.

Remarks

• The statement can also be given as: In a PID, every strictly
ascending chain of ideals must be of finite length.

• We refer to this property of a PID by saying that the
ascending chain condition (ACC) holds for ideals in a PID.



Proof of Theorem 45.11

We first show that every nonzero non-unit element a has an
irreducible factor.

• Suppose a is irreducible. Then there is nothing to be done.
So let us assume that a is not an irreducible.

• Then we have a = a1b1, where neither a1 nor b1 is a unit.

• This implies that 〈a〉 ( 〈a1〉.
• If a1 is an irreducible, then we are done. If not, then

a1 = a2b2 for some non-unit a2 and b2, and we have
〈a1〉 ( 〈a2〉.

• Continuing this way, we obtain a sctrictly ascending chain
of ideals 〈a〉 ( 〈a1〉 ( 〈a2〉 ( · · · .

• By ACC, this chain of ideals can not go on forever.

• This means that at some point an must be an irreducible,
which is what we are looking for.



Proof of Theorem 45.11, continued

We now show that every nonzero non-unit element a is a
product of irreducibles.

• If a is an irreducible, there is nothing to be done. So let us
assume that a is not an irreducible.

• Previously we have shown that a has an irreducible factor,
say, a = p1a1 for some irreducible p1 and a1 is not a unit.
Then 〈a〉 ( 〈a1〉.

• If a1 is an irreducible, we are done; otherwise, a1 = p2a2

for some irreducible p2 and some non-unit a2. We have
〈a〉 ( 〈a1〉 ( 〈a2〉.

• Continuing this way, we obtain a strictly ascending chain of
ideals 〈a〉 ( 〈a1〉 ( 〈a2〉 ( · · · .

• By ACC, this process terminates at some point, i.e.,
a = p1 · · ·pr , where pi are all irreducibles. �



Analogue of Theorem 27.25

Lemma (45.12)
An ideal 〈p〉 in a PID is a maximal ideal if and only if p is an
irreducible.

Proof.
The proof follows exactly the proof of Theorem 27.25, where we
show that an ideal 〈p(x)〉 in F [x ] is a maximal ideal if and only if
p(x) is an irreducible polynomial.



Analogue of Theorem 27.27

Lemma (45.13)
In a PID, if an irreducible p divides ab, then either p|a or p|b.

Proof.
The proof follows exactly the proof of Theorem 27.27, where we
show that if an irreducible polynomial p(x) in F [x ] divides
r(x)s(x), then p(x)|r(x) or p(x)|s(x).

Corollary (45.14)
In a PID, if an irreducible p divides a1 . . . an, then p|ai for at
least one i .



Prime

Definition
A nonzero non-unit element p of an integral domain D is a
prime if p|ab implies p|a or p|b.

Remarks

• In Z, an integer prime p has two properties
• Only positive divisors of p are 1 (unit) and p itself.
• If p|ab, then p|a or p|b.

• In a general integral domain, an element with the first
property is called an irreducible, while an element with
second property is a prime.

• In an integral domain, a prime is always an irreducible, but
an irreducible may not be a prime. (Exercise 25.)

• In a UFD, an element is an irreducible if and only if it is a
prime. (Exercise 26.)



Examples of irreducibles that are not primes

• In Z[
√
−5], 2, 3, 1 ±

√
−5 are all irreducibles, but neither of

them is a prime. (We have
6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5), but 2 does not divide

1 +
√
−5 nor 1 −

√
−5 in Z[

√
−5].)

• Let F be a field and D = F [x2, xy , y2]. Then x2, xy , y2 are
all irreducibles, but neither of them is a prime. (We have
(xy)|(x2)(y2), but xy does not divide x2 nor y2.)



Proof of PID ⇒ UFD, second part

We have shown that every nonzero non-unit element is a
product of irreducibles. We now show the uniqueness.

• Assume that a = p1 . . . pr and a = q1 . . . qs are two
factorizations into products of irreducibles.

• By Corollary 45.14, p1 divides one of qi . By rearranging
the index, we assume that p1 divides q1.

• Then q1 = p1u1 for some u1 ∈ D.

• Since q1 is an irreducible, u1 must be a unit. That is, p1

and q1 are associates.

• We then have p2 . . . pr = u1q2 . . . qs.

• Applying the same argument to p2, we find q2 = p2u2 for
some unit u2, and p3 . . . pr = u1u2q3 . . . qs.

• Continuing this way, we find r = s and pi are associates of
qi for each i . �



D is a UFD ⇒ D[x ] is a UFD

Theorem (45.29)
If D is a UFD, then D[x ] is also a UFD.

Corollary (45.30)
If F is a field, then F [x1, . . . , xn] is a UFD.

Remark
The above corollary gives an example of a UFD that is not a
PID.
Let I be the set of all polynomials in F [x , y ] whose constant
term is zero. Then I is not a principal ideal. Thus, F [x , y ] is a
UFD, but not a PID.



Homework

Problems 4, 5, 10, 24, 25, 26, 30, 32 of Section 45.


