Section 45 - Unique factorization domains

Instructor: Yifan Yang

Spring 2007

Overview

- In section 27 we have seen that if F is a field, then every nonconstant polynomial in $F[x]$ can be factored into a product of irreducible polynomials, and the factorization is unique except for order and for units.
- In the same section, we have also seen that every ideal in $F[x]$ is a principal ideal.
- In general, if an integral domain has the unique factorization property, we say it is a unique factorization domain (UFD).
- If an integral domain has the property that every ideal is principal, we say it is a principal ideal domain (PID).
- We will show that if an integral domain is a PID, then it is a UFD.
- We will also describe the result that if D is a UFD, then so is $D[x]$, although we will not go over the proof in the class.

Divisibility, associates, and irreducibles

Definition

Let R be a commutative ring with unity. Let $a, b \in R$.

- If there exists $c \in R$ such that $b=a c$, then a divides b (or a is a factor of b, denoted by $a \mid b$. The notation $a \nmid b$ means a does not divide b.
- An element u is a unit if u divides 1 .
- a and b are associates if $a=u b$ for some unit $u \in R$.

Assume that D is an integral domain.

- A nonzero element p that is not a unit is an irreducible of D if any factorization $p=a b$ in D has the property that either a or b is a unit.

Examples

Example

- The units in \mathbb{Z} are ± 1. Thus, the associates of any integer $n \neq 0$ are $-n$ and n. The irreducibles are just prime numbers and their associates.
- Every nonzero element of a field F is a unit. Thus, any two nonzero elements are associates to each other. None of the elements is an irreducible.
- Let F be a field. The units in $F[x]$ are nonzero constant polynomials.

Unique factorization domains

Definition
An integral domain D is a unique factorization domain (UFD) is

- Every nonzero non-unit element of D can be factored into a product of a finite number of irreducibles.
- If $a \in D$ has two factorizations $p_{1} \ldots p_{r}$ and $q_{1} \ldots q_{s}$ into products of irreducibles, then $r=s$ and q_{j} can be renumbered so that p_{i} and q_{i} are associates.

Example

- Let F be a field. Then $F[x]$ is a UFD, by Theorem 23.20.
- \mathbb{Z} is a UFD. (Fundamental theorem of arithmetics.)
- The integral domain $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$ is not a UFD. (We have $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$, where $2,3,1 \pm \sqrt{-5}$ are all irreducibles, but mutually non-associates.)

Remark

- The notion of a UFD was first raised in 1840's in connection of Fermat's Last Theorem.
- Lamé in 1847 announced a "proof" of FLT, in which he used the assumption that $\mathbb{Z}\left[e^{2 \pi i / p}\right]$ is a UFD.
- However, 1 n 1844 , Kummer already showed that $\mathbb{Z}\left[e^{2 \pi i / 23}\right]$ is not a UFD.
- Still, Lamé's argument showed that if $\mathbb{Z}\left[e^{2 \pi i / p}\right]$ is a UFD, then $x^{p}+y^{p}=z^{p}$ has no nontrivial solutions.
- Kummer found a way to measure how far $\mathbb{Z}\left[e^{2 \pi i / p}\right]$ is from being a UFD, and proved the FLT for many cases where $\mathbb{Z}\left[e^{2 \pi i / p}\right]$ is not a UFD.

Principal ideal domains

Definition
An integral domain D is a principal ideal domain (PID) if every ideal in D is principal.

Example

- \mathbb{Z} is a PID since an ideal in \mathbb{Z} takes the form $n \mathbb{Z}$ for some integer n.
- By Theorem 27.24, if F is a field, then $F[x]$ is a PID.

PID \Rightarrow UFD, first part

Theorem (45.11)
Let D be a PID. Then every nonzero non-unit element of D is a product of irreducibles.

Lemma (45.9)
Let R be a commutative ring. Suppose that $I_{1} \subseteq I_{2} \subseteq \cdots$ is an ascending chain of ideals in R. Then $I=\cup_{i} l_{i}$ is an ideal of R.

Proof of Lemma 45.9

- We need to show that
- If $a, b \in I$, then $a+b \in I$.
- If $a \in I$ and $r \in R$, then $r a \in I$.
- Assume $a, b \in I$. Then $a \in I_{k}$ and $b \in I_{m}$ for some k, m. Let $n=\max (k, m)$. Then $I_{k}, I_{m} \subseteq I_{n}$, and $a, b \in I_{n}$. It follows that $a+b \in I_{n} \subseteq I$.
- Now assume that $a \in I$. Then $a \in I_{k}$ for some k. Since I_{k} is an ideal, for all $r \in R$, we have $r a \in I_{k} \subseteq I$.

Ascending chain condition for a PID

Lemma (45.10, ascending chain condition for a PID)
Let D be a PID. Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain of ideals. Then there is a positive number N such that $I_{n}=I_{N}$ for all $n \geq N$.

Remarks

- The statement can also be given as: In a PID, every strictly ascending chain of ideals must be of finite length.
- We refer to this property of a PID by saying that the ascending chain condition (ACC) holds for ideals in a PID.

Proof of Theorem 45.11

We first show that every nonzero non-unit element a has an irreducible factor.

- Suppose a is irreducible. Then there is nothing to be done. So let us assume that a is not an irreducible.
- Then we have $a=a_{1} b_{1}$, where neither a_{1} nor b_{1} is a unit.
- This implies that $\langle a\rangle \subsetneq\left\langle a_{1}\right\rangle$.
- If a_{1} is an irreducible, then we are done. If not, then $a_{1}=a_{2} b_{2}$ for some non-unit a_{2} and b_{2}, and we have $\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{2}\right\rangle$.
- Continuing this way, we obtain a sctrictly ascending chain of ideals $\langle a\rangle \subsetneq\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{2}\right\rangle \subsetneq \cdots$.
- By ACC, this chain of ideals can not go on forever.
- This means that at some point a_{n} must be an irreducible, which is what we are looking for.

Proof of Theorem 45.11, continued

We now show that every nonzero non-unit element a is a product of irreducibles.

- If a is an irreducible, there is nothing to be done. So let us assume that a is not an irreducible.
- Previously we have shown that a has an irreducible factor, say, $a=p_{1} a_{1}$ for some irreducible p_{1} and a_{1} is not a unit. Then $\langle a\rangle \subsetneq\left\langle a_{1}\right\rangle$.
- If a_{1} is an irreducible, we are done; otherwise, $a_{1}=p_{2} a_{2}$ for some irreducible p_{2} and some non-unit a_{2}. We have $\langle a\rangle \subsetneq\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{2}\right\rangle$.
- Continuing this way, we obtain a strictly ascending chain of ideals $\langle a\rangle \subsetneq\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{2}\right\rangle \subsetneq \cdots$.
- By ACC, this process terminates at some point, i.e., $a=p_{1} \cdots p_{r}$, where p_{i} are all irreducibles.

Analogue of Theorem 27.25

Lemma (45.12)
An ideal $\langle p\rangle$ in a PID is a maximal ideal if and only if p is an irreducible.

Proof.

The proof follows exactly the proof of Theorem 27.25, where we show that an ideal $\langle p(x)\rangle$ in $F[x]$ is a maximal ideal if and only if $p(x)$ is an irreducible polynomial.

Analogue of Theorem 27.27

Lemma (45.13)
In a PID, if an irreducible p divides $a b$, then either $p \mid a$ or $p \mid b$.
Proof.
The proof follows exactly the proof of Theorem 27.27, where we show that if an irreducible polynomial $p(x)$ in $F[x]$ divides $r(x) s(x)$, then $p(x) \mid r(x)$ or $p(x) \mid s(x)$.
Corollary (45.14)
In a PID, if an irreducible p divides $a_{1} \ldots a_{n}$, then $p \mid a_{i}$ for at least one i.

Prime

Definition

A nonzero non-unit element p of an integral domain D is a prime if $p \mid a b$ implies $p \mid a$ or $p \mid b$.

Remarks

- In \mathbb{Z}, an integer prime p has two properties
- Only positive divisors of p are 1 (unit) and p itself.
- If $p \mid a b$, then $p \mid a$ or $p \mid b$.
- In a general integral domain, an element with the first property is called an irreducible, while an element with second property is a prime.
- In an integral domain, a prime is always an irreducible, but an irreducible may not be a prime. (Exercise 25.)
- In a UFD, an element is an irreducible if and only if it is a prime. (Exercise 26.)

Examples of irreducibles that are not primes

- In $\mathbb{Z}[\sqrt{-5}], 2,3,1 \pm \sqrt{-5}$ are all irreducibles, but neither of them is a prime. (We have $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$, but 2 does not divide $1+\sqrt{-5}$ nor $1-\sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$.)
- Let F be a field and $D=F\left[x^{2}, x y, y^{2}\right]$. Then $x^{2}, x y, y^{2}$ are all irreducibles, but neither of them is a prime. (We have $(x y) \mid\left(x^{2}\right)\left(y^{2}\right)$, but $x y$ does not divide x^{2} nor y^{2}.)

Proof of PID \Rightarrow UFD, second part

We have shown that every nonzero non-unit element is a product of irreducibles. We now show the uniqueness.

- Assume that $a=p_{1} \ldots p_{r}$ and $a=q_{1} \ldots q_{s}$ are two factorizations into products of irreducibles.
- By Corollary 45.14, p_{1} divides one of q_{i}. By rearranging the index, we assume that p_{1} divides q_{1}.
- Then $q_{1}=p_{1} u_{1}$ for some $u_{1} \in D$.
- Since q_{1} is an irreducible, u_{1} must be a unit. That is, p_{1} and q_{1} are associates.
- We then have $p_{2} \ldots p_{r}=u_{1} q_{2} \ldots q_{s}$.
- Applying the same argument to p_{2}, we find $q_{2}=p_{2} u_{2}$ for some unit u_{2}, and $p_{3} \ldots p_{r}=u_{1} u_{2} q_{3} \ldots q_{s}$.
- Continuing this way, we find $r=s$ and p_{i} are associates of q_{i} for each i.

D is a UFD $\Rightarrow D[x]$ is a UFD

Theorem (45.29)
If D is a UFD, then $D[x]$ is also a UFD.
Corollary (45.30)
If F is a field, then $F\left[x_{1}, \ldots, x_{n}\right]$ is a UFD.

Remark

The above corollary gives an example of a UFD that is not a PID.
Let / be the set of all polynomials in $F[x, y]$ whose constant term is zero. Then / is not a principal ideal. Thus, $F[x, y]$ is a UFD, but not a PID.

Homework

Problems 4, 5, 10, 24, 25, 26, 30, 32 of Section 45.

