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Cosets

Theorem (10.1)
Let H be a subgroup of G. Let the relation ∼L on G be defined
by

a ∼L b ⇔ a−1b ∈ H,

and the relation ∼R be defined by

a ∼R b ⇔ ab−1 ∈ H.

Then ∼L and ∼R are both equivalence relations on G.



Cosets

Proof.
Here we only prove the ∼R case. We need to show

1. Reflexive: We need to show that aa−1 is in H. We have
aa−1 = e. Since H is a subgroup, H contains e = aa−1.

2. Summetric: We need to show that ab−1 ∈ H implies
ba−1 ∈ H. Now ba−1 = (ab−1)−1. Because H is a
subgroup, if ab−1 is in H, so is its inverse (ab−1)−1 = ba−1.

3. Transitive: We need to show that if ab−1, bc−1 ∈ H, then so
is ac−1. We have ac−1 = (ab−1)(bc−1). Since H is a
subgroup, if ac−1 and bc−1 are in H, so is their product
(ab−1)(bc−1) = ac−1.

This completes the proof.



Cosets

Definition
Let H be a subgroup of a group G. The equivalence class
{b ∈ G : a ∼L b} is called the left coset of H containing a.
Likewise, the equivalence class {b ∈ G : a ∼R b} is called the
right coset of H containing a.

Remark
It is straightforward to see that the left coset of H containing a is
exactly aH = {ah : h ∈ H}, and the right coset of H containing
a is Ha = {ha : h ∈ H}. This is why ∼L is left and ∼R is right.



Examples

Let G = Z and H = 3Z. We have

m ∼L n ⇔ (−m) + n ∈ H ⇔ 3|(n −m).

Thus, a left coset of 3Z is just a residue class modulo 3. There
are three distinct left cosets 3Z, 1 + 3Z, and 2 + 3Z. Similarly,
we have

m ∼R n ⇔ m + (−n) ∈ H ⇔ 3|(m − n).

Again, we find that a right coset of 3Z is just a residue class
modulo 3. In this case, we see that left cosets and right cosets
are the same. Also, m + 3Z = 3Z + m for all m ∈ Z.



Examples

Let G = Z6 and H = {0̄, 3̄}. The left cosets are m̄ + H for
m̄ ∈ Z6. We find that they are H = {0̄, 3̄}, 1̄ + H = {1̄, 4̄}, and
2̄ + H = {2̄, 5̄}. The right cosets are H + m̄. In this case, we
find that left cosets are also right cosets, and m̄ + H = H + m̄.



Examples

Let G = S3 = {e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} and
H = {e, (1, 2)}. The left cosets are H = {e, (1, 2)} itself,

(1, 3)H = {(1, 3), (1, 3)(1, 2)} = {(1, 3), (1, 2, 3)},

and

(2, 3)H = {(2, 3), (2, 3)(1, 2)} = {(2, 3), (1, 3, 2)}.

The right cosets are H itselft,
H(1, 3) = {(1, 3), (1, 2)(1, 3)} = {(1, 3), (1, 3, 2)}, and
H(2, 3) = {(2, 3), (1, 2)(2, 3)} = {(2, 3), (1, 2, 3)}. In this case,
we find (1, 3)H 6= H(1, 3) and (2, 3)H 6= H(2, 3). In fact, the
subset (1, 3)H = {(1, 3), (1, 2, 3)} is a left coset, but not a right
coset.



Examples

Let G = S3 and H = {e, (1, 2, 3), (1, 2, 3)2 = (1, 3, 2)}. The left
cosets are H itself and

(1, 2)H = {(1, 2), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)}
= {(1, 2), (2, 3), (1, 3)}.

The right cosets are H and

H(1, 2) = {(1, 2), (1, 2, 3)(1, 2), (1, 3, 2)(1, 2)}
= {(1, 2), (1, 3), (2, 3)}.

In this case, we find that each left coset is also a right coset
and σH = Hσ for all σ ∈ S3.



Remark

1. If a group G is abelian and H is a subgroup, then each left
coset is also right coset. In fact, we have

aH = {ah : h ∈ H} = {ha : h ∈ H} = Ha.

In this case, we simply call a left or right coset a coset.

2. If H is a subgroup of a non-abelian group G, then a left
coset of H may or may not be a right coset of H.



In-class exercises

1. Let G = Z12 and H = 〈3̄〉. Find all the cosets of H.

2. Recall that the 4-th dihedral group D4 is given by
{e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}, where σ and τ satisfy
σ4 = τ2 = e and στ = τσ3. Let G = D4 and H = {e, τ}.
Find all the left cosets of H.

3. Let G = D4 and H = {e, τ}. Find all the right cosets of H.



Theorem of Lagrange

Lemma
Let H be a subgroup of a finite group G. Then every coset
(either left or right) has the same number of elements as H

Proof.
Let a ∈ G. We will prove |H| = |aH| by constructing a
one-to-one and onto function from H to aH. A natural function
to consider is φ : H → aH defined by φ(h) = ah for all h ∈ H.
We verify that it is

1. one-to-one: Suppose that φ(h1) = φ(h2). Then ah1 = ah2.
By the left cancellation law, it implies that h1 = h2. Thus φ
is one-to-one.

2. onto: It is obvious from the definition of aH.



Theorem of Lagrange

Theorem (10.10, Theorem of Lagrange)
Let H be a subgroup of a finite group G. Then the order of H
divides the order of G.

Proof.
Since ∼L is an equivalence relation, the left cosets of H form a
partition of G (i.e., each element of G is in exactly one of the
cells). By the above lemma, each left coset contains the same
number of elements as H. Thus

|G| = |H| × (the number of left cosets).

This proves the theorem.



The Lagrange theorem

Theorem (10.12)
The order of an element of a finite group divides the order of
the group.

Proof.
Let a ∈ G. Apply the Lagrange theorem to H = 〈a〉. We have
|〈a〉|

∣∣|G|.



Corollary 10.11
Every group of prime order is cyclic.

Proof.
Let g ∈ G be an element not equal to e. Then |〈g〉| divides the
order of G. Since |G| is a prime, either |〈g〉| = 1 or |G|. The
former case can not occur because g 6= e. Then |〈g〉| = |G|
implies 〈g〉 = G, i.e., G is cyclic.



Index

Definition
Let H be a subgroup of a group G. The number of left cosets of
H is the index of H in G, and is denoted by (G : H).

Theorem (10.14)
Suppose that H and K are subgroups of a group G such that
K ≤ H ≤ G. Suppose that (G : H) and (H : K ) are finite. Then
(G : K ) is also finite and (G : K ) = (G : H)(H : K ).

Proof.
Exercise 38.



Applications

Find all the subgroups of S3.
Solution. Since |S3| = 6, by the Lagrange theorem, the possible
orders of a subgroup H are 1, 2, 3, and 6.

1. Case |H| = 1: H = {e}.
2. Case |H| = 2: Since every group of order 2 is isomorphic

to the cyclic group Z2, H = 〈σ〉 for some elements σ of
order 2. There are three such elements, namely, (1, 2),
(1, 3), and (2, 3). Thus, there are three subgroups of order
2. They are {e, (1, 2)}, {e, (1, 3)}, and {e, (2, 3)}.

3. Case |H| = 3: By the same token, every subgroup of order
3 is cyclic. There are two elements of order 3, namely,
(1, 2, 3) and (1, 3, 2). They both generate
{e, (1, 2, 3), (1, 3, 2)}.

4. Case |H| = 6: In this case, H = S3.

Thus, we see that S3 has 6 subgroups. �



Applications

Find all the subgroups of D4 = {e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}.
Solutions. The possible orders are 1, 2, 4, and 8.

1. Case |H| = 1: We have H = {e}.
2. Case |H| = 2: Again H = 〈g〉 for some elements g of order

2. There are 5 elements of order 2. They are σ2, τ , στ ,
σ2τ , and σ3τ . That is, there are 5 subgroups of order 2.

3. Case |H| = 4: Groups of order 4 are either isomorphic to
the cyclic group Z4, or the non-cyclic group 〈Z∗8, ·〉, where
Z∗8 = {1̄, 3̄, 5̄, 7̄}. There are two elements in D4 that have
order 4. They are σ and σ3. They generate the same
subgroup 〈σ〉 of order 4. It remains to consider the
subgroups that are isomorphic to Z∗8. We will continue on
the next slide.

4. Case |H| = 8: We have H = D4.



Applications

Note that a group isomorphic to Z∗8 can be written as
{e, a, b, ab} where a2 = b2 = e and ab = ba. Thus, we are
looking for two elements a and b of order 2 in D4 that satisfies
ab = ba. There are 5 elements of order 2. They are σ2, τ , στ ,
σ2τ , and σ3τ . Consider case by case. We find the following
pairs (a, b) satisfy ab = ba: (σ2, τ), (σ2, στ), (σ2, σ2τ),
(σ2, σ3τ), (τ, σ2τ), and (στ, σ3τ). The subgroups they generate
are {e, σ2, τ, σ2τ} and {e, σ2, στ, σ3τ}.

Conclusion. There are 10 subgroups in D4. One has order 1, 5
has order 2, 1 is cyclic of order 4, two are non-cyclic of order 4,
and one is D4 itself. The subgroup diagram is given on Page 80.



Homework

Do Problems 4, 6, 12, 16, 28, 29, 32, 33, 35, 38, 39, 40 of
Section 10.
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