Section 10 – Cosets and the Theorem of Lagrange

Instructor: Yifan Yang

Fall 2006

Outline

Cosets

Theorem of Lagrange

Cosets

Theorem (10.1)

Let H be a subgroup of G. Let the relation \sim_L on G be defined by

$$a \sim_L b \Leftrightarrow a^{-1}b \in H$$
,

and the relation \sim_R be defined by

$$a \sim_R b \Leftrightarrow ab^{-1} \in H$$
.

Then \sim_L and \sim_R are both equivalence relations on G.

Cosets

Proof.

Here we only prove the \sim_R case. We need to show

- 1. Reflexive: We need to show that aa^{-1} is in H. We have $aa^{-1} = e$. Since H is a subgroup, H contains $e = aa^{-1}$.
- 2. Summetric: We need to show that $ab^{-1} \in H$ implies $ba^{-1} \in H$. Now $ba^{-1} = (ab^{-1})^{-1}$. Because H is a subgroup, if ab^{-1} is in H, so is its inverse $(ab^{-1})^{-1} = ba^{-1}$.
- 3. Transitive: We need to show that if ab^{-1} , $bc^{-1} \in H$, then so is ac^{-1} . We have $ac^{-1} = (ab^{-1})(bc^{-1})$. Since H is a subgroup, if ac^{-1} and bc^{-1} are in H, so is their product $(ab^{-1})(bc^{-1}) = ac^{-1}$.

This completes the proof.

Cosets

Definition

Let H be a subgroup of a group G. The equivalence class $\{b \in G : a \sim_L b\}$ is called the left coset of H containing a. Likewise, the equivalence class $\{b \in G : a \sim_R b\}$ is called the right coset of H containing a.

Remark

It is straightforward to see that the left coset of H containing a is exactly $aH = \{ah : h \in H\}$, and the right coset of H containing a is $Ha = \{ha : h \in H\}$. This is why \sim_L is *left* and \sim_R is *right*.

Let $G = \mathbb{Z}$ and $H = 3\mathbb{Z}$. We have

$$m \sim_L n \Leftrightarrow (-m) + n \in H \Leftrightarrow 3 | (n-m).$$

Thus, a left coset of $3\mathbb{Z}$ is just a residue class modulo 3. There are three distinct left cosets $3\mathbb{Z}$, $1+3\mathbb{Z}$, and $2+3\mathbb{Z}$. Similarly, we have

$$m \sim_R n \Leftrightarrow m + (-n) \in H \Leftrightarrow 3 | (m-n).$$

Again, we find that a right coset of $3\mathbb{Z}$ is just a residue class modulo 3. In this case, we see that left cosets and right cosets are the same. Also, $m + 3\mathbb{Z} = 3\mathbb{Z} + m$ for all $m \in \mathbb{Z}$.

Let $G=\mathbb{Z}_6$ and $H=\{\bar{0},\bar{3}\}$. The left cosets are $\bar{m}+H$ for $\bar{m}\in\mathbb{Z}_6$. We find that they are $H=\{\bar{0},\bar{3}\},\,\bar{1}+H=\{\bar{1},\bar{4}\}$, and $\bar{2}+H=\{\bar{2},\bar{5}\}$. The right cosets are $H+\bar{m}$. In this case, we find that left cosets are also right cosets, and $\bar{m}+H=H+\bar{m}$.

Let
$$G = S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$$
 and $H = \{e, (1, 2)\}$. The left cosets are $H = \{e, (1, 2)\}$ itself,

$$(1,3)H = \{(1,3),(1,3)(1,2)\} = \{(1,3),(1,2,3)\},$$

and

$$(2,3)H = \{(2,3),(2,3)(1,2)\} = \{(2,3),(1,3,2)\}.$$

The right cosets are *H* itselft,

 $H(1,3)=\{(1,3),(1,2)(1,3)\}=\{(1,3),(1,3,2)\},$ and $H(2,3)=\{(2,3),(1,2)(2,3)\}=\{(2,3),(1,2,3)\}.$ In this case, we find $(1,3)H\neq H(1,3)$ and $(2,3)H\neq H(2,3).$ In fact, the subset $(1,3)H=\{(1,3),(1,2,3)\}$ is a left coset, but not a right coset.

Let $G = S_3$ and $H = \{e, (1, 2, 3), (1, 2, 3)^2 = (1, 3, 2)\}$. The left cosets are H itself and

$$(1,2)H = \{(1,2), (1,2)(1,2,3), (1,2)(1,3,2)\}$$

= \{(1,2), (2,3), (1,3)\}.

The right cosets are H and

$$H(1,2) = \{(1,2), (1,2,3)(1,2), (1,3,2)(1,2)\}$$

= \{(1,2), (1,3), (2,3)\}.

In this case, we find that each left coset is also a right coset and $\sigma H = H\sigma$ for all $\sigma \in S_3$.

Remark

1. If a group *G* is abelian and *H* is a subgroup, then each left coset is also right coset. In fact, we have

$$aH = \{ah : h \in H\} = \{ha : h \in H\} = Ha.$$

In this case, we simply call a left or right coset a coset.

2. If *H* is a subgroup of a non-abelian group *G*, then a left coset of *H* may or may not be a right coset of *H*.

In-class exercises

- 1. Let $G = \mathbb{Z}_{12}$ and $H = \langle \bar{3} \rangle$. Find all the cosets of H.
- 2. Recall that the 4-th dihedral group D_4 is given by $\{e, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}$, where σ and τ satisfy $\sigma^4 = \tau^2 = e$ and $\sigma\tau = \tau\sigma^3$. Let $G = D_4$ and $H = \{e, \tau\}$. Find all the left cosets of H.
- 3. Let $G = D_4$ and $H = \{e, \tau\}$. Find all the right cosets of H.

Theorem of Lagrange

Lemma

Let *H* be a subgroup of a finite group *G*. Then every coset (either left or right) has the same number of elements as *H*

Proof.

Let $a \in G$. We will prove |H| = |aH| by constructing a one-to-one and onto function from H to aH. A natural function to consider is $\phi: H \to aH$ defined by $\phi(h) = ah$ for all $h \in H$. We verify that it is

- 1. one-to-one: Suppose that $\phi(h_1) = \phi(h_2)$. Then $ah_1 = ah_2$. By the left cancellation law, it implies that $h_1 = h_2$. Thus ϕ is one-to-one.
- onto: It is obvious from the definition of aH.

Theorem of Lagrange

Theorem (10.10, Theorem of Lagrange)

Let H be a subgroup of a finite group G. Then the order of H divides the order of G.

Proof.

Since \sim_L is an equivalence relation, the left cosets of H form a partition of G (i.e., each element of G is in exactly one of the cells). By the above lemma, each left coset contains the same number of elements as H. Thus

$$|G| = |H| \times (the number of left cosets).$$

This proves the theorem.

The Lagrange theorem

Theorem (10.12)

The order of an element of a finite group divides the order of the group.

Proof.

Let $a \in G$. Apply the Lagrange theorem to $H = \langle a \rangle$. We have $|\langle a \rangle| ||G|$.

Corollary 10.11

Every group of prime order is cyclic.

Proof.

Let $g\in G$ be an element not equal to e. Then $|\langle g\rangle|$ divides the order of G. Since |G| is a prime, either $|\langle g\rangle|=1$ or |G|. The former case can not occur because $g\neq e$. Then $|\langle g\rangle|=|G|$ implies $\langle g\rangle=G$, i.e., G is cyclic.

Index

Definition

Let H be a subgroup of a group G. The number of left cosets of H is the index of H in G, and is denoted by (G : H).

Theorem (10.14)

Suppose that H and K are subgroups of a group G such that $K \le H \le G$. Suppose that (G : H) and (H : K) are finite. Then (G : K) is also finite and (G : K) = (G : H)(H : K).

Proof.

Exercise 38.

Applications

Find all the subgroups of S_3 .

Solution. Since $|S_3| = 6$, by the Lagrange theorem, the possible orders of a subgroup H are 1, 2, 3, and 6.

- 1. Case |H| = 1: $H = \{e\}$.
- 2. Case |H|=2: Since every group of order 2 is isomorphic to the cyclic group \mathbb{Z}_2 , $H=\langle\sigma\rangle$ for some elements σ of order 2. There are three such elements, namely, (1,2), (1,3), and (2,3). Thus, there are three subgroups of order 2. They are $\{e,(1,2)\}$, $\{e,(1,3)\}$, and $\{e,(2,3)\}$.
- 3. Case |H| = 3: By the same token, every subgroup of order 3 is cyclic. There are two elements of order 3, namely, (1,2,3) and (1,3,2). They both generate $\{e,(1,2,3),(1,3,2)\}$.
- 4. Case |H| = 6: In this case, $H = S_3$.

Thus, we see that S_3 has 6 subgroups.

Applications

Find all the subgroups of $D_4 = \{e, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}$. Solutions. The possible orders are 1, 2, 4, and 8.

- 1. Case |H| = 1: We have $H = \{e\}$.
- 2. Case |H|=2: Again $H=\langle g\rangle$ for some elements g of order 2. There are 5 elements of order 2. They are σ^2 , τ , $\sigma\tau$, $\sigma^2\tau$, and $\sigma^3\tau$. That is, there are 5 subgroups of order 2.
- 3. Case |H|=4: Groups of order 4 are either isomorphic to the cyclic group \mathbb{Z}_4 , or the non-cyclic group $\langle \mathbb{Z}_8^*, \cdot \rangle$, where $\mathbb{Z}_8^* = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}$. There are two elements in D_4 that have order 4. They are σ and σ^3 . They generate the same subgroup $\langle \sigma \rangle$ of order 4. It remains to consider the subgroups that are isomorphic to \mathbb{Z}_8^* . We will continue on the next slide.
- 4. Case |H| = 8: We have $H = D_4$.

Applications

Note that a group isomorphic to \mathbb{Z}_8^* can be written as $\{e,a,b,ab\}$ where $a^2=b^2=e$ and ab=ba. Thus, we are looking for two elements a and b of order 2 in D_4 that satisfies ab=ba. There are 5 elements of order 2. They are σ^2 , τ , $\sigma\tau$, $\sigma^2\tau$, and $\sigma^3\tau$. Consider case by case. We find the following pairs (a,b) satisfy ab=ba: (σ^2,τ) , $(\sigma^2,\sigma\tau)$, $(\sigma^2,\sigma^2\tau)$, $(\sigma^2,\sigma^3\tau)$, $(\tau,\sigma^2\tau)$, and $(\sigma\tau,\sigma^3\tau)$. The subgroups they generate are $\{e,\sigma^2,\tau,\sigma^2\tau\}$ and $\{e,\sigma^2,\sigma\tau,\sigma^3\tau\}$.

Conclusion. There are 10 subgroups in D_4 . One has order 1, 5 has order 2, 1 is cyclic of order 4, two are non-cyclic of order 4, and one is D_4 itself. The subgroup diagram is given on Page 80.

Homework

Do Problems 4, 6, 12, 16, 28, 29, 32, 33, 35, 38, 39, 40 of Section 10.