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Let sl2(C) = {A ∈ M2×2(C)| tr A = 0}.
It is a Lie algebra with the Lie bracket [A, B] = AB −BA.
Let

h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
.

Then sl2(C) = spanC{h, x, y} and

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Define adA(B) = [A, B]. Then adh acts semisimply (i.e., diagonal-
izable) on sl2(C).

Let H = Ch and define α : H → C by α(h) = 2.
Denote x = eα and y = e−α. Then we have

adh(eβ) = β(h)eβ.

The set {α,−α} is called the roots of sl2(C) and the Z-module
Q = Zα is called the root lattice.
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Irreducible representation

Let M be a finite dimensional irreducible modules of sl2(C). Then
M satisfies the following properties:

1. M = 〈v〉.
2. x · v = 0 and h · v = mv for some non-negative integer m.

3. Let v0 = v and vi = 1
i!y

i · v. Then {v0, v1, . . . , vm} is a basis of M

and h · vi = (m− 2i)v.

M is called a highest weight module.

Let P = Q⊗ZQ. It is called a weight lattice. β ∈ P is called integral
if < β, γ >∈ Z for all γ ∈ Q and dominant integral if < β, γ > ≥ 0 for
all γ ∈ Q also.

Hence, there is a 1 − 1 correspondence between finite dimensional
irreducible modules and dominant weights. (m ↔ mα/2)
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Fact: A toral subalgebra T is abelian, i.e., [h, k] = 0 for all h, k ∈ T

and thus [adh,adk] = ad[h, k] = 0.

Let H be a maximal toral subalgebra of L. Then {adh|h ∈ H} is a

set of mutually commutative semisimple endomorphisms of L. They

can be diagonalized simultaneously. There exists Φ ⊂ H∗ such that

L = H ⊕
(
⊕α∈Φ Lα,

)

where

Lα = {v ∈ L|adh(v) = α(h)v}
and

Φ = {α ∈ H∗ \ {0}|Lα 6= 0}.
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Facts:

1. dimLα = 1 for all α ∈ Φ. ( Denote Lα = Ceα).

2. α, β ∈ Φ implies [eα, eβ] ∈ Lα+β (i.e., [eα, eβ] = εα,βeα+β).

3. α ∈ Φ implies −α ∈ Φ.

Let hα = [eα, e−α]. Then span{hα, eα, e−α} ∼= sl2(C).
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Let Q = spanZ{Φ} be the root lattice and P = Q ⊗Z Q the weight

lattice.

The structure of the Lie algebra L is uniquely determined by the

root system Φ or equivalently by the root lattice Q. (Cartan matrix,

Coxeter graph, Dynkin Diagram)

Finite dimensional irreducible modules←→ dominant integral weights.

(They are Combinatorial objects!!!)
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Affine Lie algebra

Let g be a f.d. simple Lie algebra with an associative form < , >.
Define the affine Lie algebra ĝ = g⊗ C[t, t−1]⊕ Ck with the bracket

[x⊗ tm, y ⊗ t−n] = [x, y]⊗ tm+n + m < x, y > δm+n,0k,

[k, x⊗ tn] = 0.

Define d : ĝ → ĝ by d(k) = 0 and d(x⊗ tn) = nx⊗ tn.

The Lie algebra g̃ = ĝoCd = ĝ = g⊗C[t, t−1]⊕Ck⊕Cd is called the
affine Kac Moody algebra.

The notion of roots and weights can be defined similarly.

The roots of g̃ are given by

α + nd, α is a root of g, n ∈ Z,

nd, n ∈ Z \ {0}
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Vertex representations of affine Kac Moody algebra
(Lepowsky-Wilson (1978), Frenkel-Kac (1980))

Let L be the root lattice associated with the Lie algebra g and an

associative form 〈 · , · 〉.
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Let L be the root lattice associated with the Lie algebra g and an

associative form 〈 · , · 〉.

Let h = C⊗Z L, ĥ = h⊗ C[t, t−1]⊕ Ck its affine Lie algebra.

Denote α(n) = α⊗ tn and define M(1) = C[α(n) |α ∈ h, n < 0] · 1
– the unique irreducible ĥ-module such that

α(n) · 1 = 0 for α ∈ h, n ≥ 0 and k = 1.

Let C{L} = span{eα| α ∈ L} be a twisted group algebra of the

additive group L.
The vector space VL = M(1)⊗C{L} affords a natural representation

of the affine Kac Moody Lie algebra g̃.

Note: The above construction requires the only the properties of

the root lattice L. No Lie algebra is needed.
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Let L be any positive definite even lattice with inner product 〈 · , · 〉
and L∗ = {α ∈ Q⊗ZL| < α, L >⊂ Z} its dual lattice.
Let {0, α1, . . . , αn} be a set of coset representatives of L in L∗, i.e.,
L∗ = L ∪

(
∪n

i=1 (αi + L)
)
.

Denote C{α + L} = span{eβ | β ∈ α + L} ⊂ C{L∗} and

Vα+L = M(1)⊗ C{α + L}.

By a theorem of Dong,

{Vα+L| α + L is a coset of L∗/L}
is the set all inequivalent irreducible modules of VL.

If L is unimodular (i.e., L∗ = L), then VL is the only irreducible
module for VL.
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Let Λ be the Leech lattice (i.e., the unique even unimodular lattice

of rank 24 such that Λ2 = {α ∈ Λ| < α, α >= 2} = ∅.

Frenkel-Lepowsky-Meurman’s Moonshine VOA

V \ = V +
Λ ⊕ (V T

L )+,

VΛ=lattice VOA associated with Λ and V T
L is a twisted module of

VΛ.

Properties:

1. AutV \ =M=the Monster simple group.

2. ch V \ =
∞∑

n=0

dimV \
nqn−1 = j(q)− 744. ( A modular function)
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Let L be an even lattice and L = L∗ = {x ∈ Q⊗ZL| < x, L >∈ Z}
its dual lattice. Then G = L/L is a finite abelian group. Let

{Lg|g ∈ G = L/L} be the set of all cosets of L/L.

Denote Gn = G⊕ · · · ⊕G and let Ln = L⊕ · · · ⊕ L be the orthogonal

sum of n-copies of L.

For any δ =
(
δ1, · · · , δn

)
∈ Gn, define

Lδ = {(x1, . . . , xn)| xi ∈ Lδi
for i = 1, . . . , n}.

For any subgroup D ⊂ Gn, we define

LD =
⋃

δ∈D

Lδ.

Then, LD is sublattice of Ln.
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of rank 24 such that Λ2 = {α ∈ Λ| < α, α >= 2} = ∅.

Let L = A` (the root lattice for the Lie algebra sln+1(C)).

Theorem: For any ` divides 24, let Γ = A`
24/`. Then, there is at

least one (and in general several) isometric embedding
√

2Γ −→ Λ,

into the Leech lattice Λ.

Note

G = (
√

2A`)
∗/
√

2A`
∼=




Z`

2 × Z`+1 if ` is even,

Z`−1
2 × Z2(`+1) if ` is odd.
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That means there is a G-code D such that Λ = LD.

Question 1: Classify all possible D in each case.

(It is very important for understanding the structure of the Lattice

VOA VΛ and the Monster simple group. )

For ` = 1, it is equivalent to the classification of type II self-dual Z4

codes of length 24.

For ` = 2,3, some codes D are explicitly known but no explicit

example is known for ` = 4,6,8,12.

Question 2: For a given D, compute Aut D. Again it is related

to the determination of Aut VLD
and the properties of the Monster

group.
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In general, if N is a sublattice of Λ of rank 24, we may also study

the structure of the group Λ/N .

For example,

N =
√

2E3
8,

√
2E4

6,
√

2D2
12, etc

They somewhat reflect some properties of the Leech lattice VOA

and the Monster group.

Question 3: Classify all sublattice N of rank 24 inside the Leech

lattice Λ.

Is
√

kA
24/`
` ⊂ Λ for any positive integer k??


