Combinatorics arises from VOA theory

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system, root lattice,

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system, root lattice, highest weight modules

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system, root lattice, highest weight modules
2. Affine Kac Moody Lie algebra

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system, root lattice, highest weight modules
2. Affine Kac Moody Lie algebra
3. Lattice VOA and Moonshine VOA

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system, root lattice, highest weight modules
2. Affine Kac Moody Lie algebra
3. Lattice VOA and Moonshine VOA
4. Glue lattices/ Glue codes

Combinatorics arises from VOA theory

1. Finite dimensional Lie algebra - root system, root lattice, highest weight modules
2. Affine Kac Moody Lie algebra
3. Lattice VOA and Moonshine VOA
4. Glue lattices/ Glue codes
5. Questions

Finite Dimensional Lie algebras
Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.

Finite Dimensional Lie algebras
Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.

Finite Dimensional Lie algebras
Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Finite Dimensional Lie algebras
Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$

Finite Dimensional Lie algebras
Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $\operatorname{sl}_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Finite Dimensional Lie algebras
Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$.

Finite Dimensional Lie algebras

Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$. Then ad h acts semisimply (i.e., diagonalizable) on $s l_{2}(\mathbb{C})$.

Finite Dimensional Lie algebras

Let $s l_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$. Then ad h acts semisimply (i.e., diagonalizable) on $s_{2}(\mathbb{C})$.

Let $H=\mathbb{C} h$ and define $\alpha: H \rightarrow \mathbb{C}$ by $\alpha(h)=2$.

Finite Dimensional Lie algebras

Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$. Then ad h acts semisimply (i.e., diagonalizable) on $s_{2}(\mathbb{C})$.

Let $H=\mathbb{C} h$ and define $\alpha: H \rightarrow \mathbb{C}$ by $\alpha(h)=2$.
Denote $x=e^{\alpha}$ and $y=e^{-\alpha}$.

Finite Dimensional Lie algebras

Let $s l_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$. Then ad h acts semisimply (i.e., diagonalizable) on $s_{2}(\mathbb{C})$.

Let $H=\mathbb{C} h$ and define $\alpha: H \rightarrow \mathbb{C}$ by $\alpha(h)=2$.
Denote $x=e^{\alpha}$ and $y=e^{-\alpha}$. Then we have

$$
\operatorname{ad} h\left(e^{\beta}\right)=\beta(h) e^{\beta} .
$$

Finite Dimensional Lie algebras

Let $\operatorname{sl}_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$. Then ad h acts semisimply (i.e., diagonalizable) on $s_{2}(\mathbb{C})$.

Let $H=\mathbb{C} h$ and define $\alpha: H \rightarrow \mathbb{C}$ by $\alpha(h)=2$.
Denote $x=e^{\alpha}$ and $y=e^{-\alpha}$. Then we have

$$
\operatorname{ad} h\left(e^{\beta}\right)=\beta(h) e^{\beta}
$$

The set $\{\alpha,-\alpha\}$ is called the roots of $\operatorname{sl}_{2}(\mathbb{C})$

Finite Dimensional Lie algebras

Let $s l_{2}(\mathbb{C})=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} A=0\right\}$.
It is a Lie algebra with the Lie bracket $[A, B]=A B-B A$.
Let

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then $s l_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{h, x, y\}$ and

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

Define $\operatorname{ad} A(B)=[A, B]$. Then ad h acts semisimply (i.e., diagonalizable) on $s_{2}(\mathbb{C})$.

Let $H=\mathbb{C} h$ and define $\alpha: H \rightarrow \mathbb{C}$ by $\alpha(h)=2$. Denote $x=e^{\alpha}$ and $y=e^{-\alpha}$. Then we have

$$
\operatorname{ad} h\left(e^{\beta}\right)=\beta(h) e^{\beta} .
$$

The set $\{\alpha,-\alpha\}$ is called the roots of $\operatorname{sl}_{2}(\mathbb{C})$ and the \mathbb{Z}-module $Q=\mathbb{Z} \alpha$ is called the root lattice.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.

Let $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.

Let $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$. It is called a weight lattice.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.

Let $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$. It is called a weight lattice. $\beta \in P$ is called integral if $<\beta, \gamma>\in \mathbb{Z}$ for all $\gamma \in Q$

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.

Let $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$. It is called a weight lattice. $\beta \in P$ is called integral if $<\beta, \gamma\rangle \in \mathbb{Z}$ for all $\gamma \in Q$ and dominant integral if $\langle\beta, \gamma\rangle \geq 0$ for all $\gamma \in Q$ also.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.
Let $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$. It is called a weight lattice. $\beta \in P$ is called integral if $<\beta, \gamma>\in \mathbb{Z}$ for all $\gamma \in Q$ and dominant integral if $\langle\beta, \gamma\rangle \geq 0$ for all $\gamma \in Q$ also.

Hence, there is a $1-1$ correspondence between finite dimensional irreducible modules and dominant weights.

Irreducible representation

Let M be a finite dimensional irreducible modules of $s l_{2}(\mathbb{C})$. Then M satisfies the following properties:

1. $M=\langle v\rangle$.
2. $x \cdot v=0$ and $h \cdot v=m v$ for some non-negative integer m.
3. Let $v_{0}=v$ and $v_{i}=\frac{1}{i!} y^{i} \cdot v$. Then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is a basis of M and $h \cdot v_{i}=(m-2 i) v$.
M is called a highest weight module.
Let $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$. It is called a weight lattice. $\beta \in P$ is called integral if $<\beta, \gamma\rangle \in \mathbb{Z}$ for all $\gamma \in Q$ and dominant integral if $\langle\beta, \gamma\rangle \geq 0$ for all $\gamma \in Q$ also.

Hence, there is a $1-1$ correspondence between finite dimensional irreducible modules and dominant weights. ($m \leftrightarrow m \alpha / 2$)

Let \mathfrak{L} be a finite dimensional simple Lie algebra.

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian,

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}.

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}. Then $\{\operatorname{ad} h \mid h \in H\}$ is a set of mutually commutative semisimple endomorphisms of \mathfrak{L}.

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}. Then $\{\operatorname{ad} h \mid h \in H\}$ is a set of mutually commutative semisimple endomorphisms of \mathfrak{L}. They can be diagonalized simultaneously.

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}. Then $\{\operatorname{ad} h \mid h \in H\}$ is a set of mutually commutative semisimple endomorphisms of \mathfrak{L}. They can be diagonalized simultaneously. There exists $\Phi \subset H^{*}$

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}. Then $\{\operatorname{ad} h \mid h \in H\}$ is a set of mutually commutative semisimple endomorphisms of \mathfrak{L}. They can be diagonalized simultaneously. There exists $\Phi \subset H^{*}$ such that

$$
\mathfrak{L}=H \oplus\left(\oplus_{\alpha \in \Phi} L_{\alpha},\right)
$$

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}. Then $\{\operatorname{ad} h \mid h \in H\}$ is a set of mutually commutative semisimple endomorphisms of \mathfrak{L}. They can be diagonalized simultaneously. There exists $\Phi \subset H^{*}$ such that

$$
\mathfrak{L}=H \oplus\left(\oplus_{\alpha \in \Phi} L_{\alpha},\right)
$$

where

$$
L_{\alpha}=\{v \in \mathfrak{L} \mid \operatorname{ad} h(v)=\alpha(h) v\}
$$

Let \mathfrak{L} be a finite dimensional simple Lie algebra. A subalgebra $T \subset \mathfrak{L}$ is called toral if for any $h \in H$, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., $[h, k]=0$ for all $h, k \in T$ and thus $[\operatorname{ad} h, \operatorname{ad} k]=\operatorname{ad}[h, k]=0$.

Let H be a maximal toral subalgebra of \mathfrak{L}. Then $\{\operatorname{ad} h \mid h \in H\}$ is a set of mutually commutative semisimple endomorphisms of \mathfrak{L}. They can be diagonalized simultaneously. There exists $\Phi \subset H^{*}$ such that

$$
\mathfrak{L}=H \oplus\left(\oplus_{\alpha \in \Phi} L_{\alpha},\right)
$$

where

$$
L_{\alpha}=\{v \in \mathfrak{L} \mid \operatorname{ad} h(v)=\alpha(h) v\}
$$

and

$$
\Phi=\left\{\alpha \in H^{*} \backslash\{0\} \mid L_{\alpha} \neq 0\right\}
$$

Facts:

1. $\operatorname{dim} L_{\alpha}=1$ for all $\alpha \in \Phi$.

Facts:

1. $\operatorname{dim} L_{\alpha}=1$ for all $\alpha \in \Phi$. (Denote $L_{\alpha}=\mathbb{C} e^{\alpha}$).

Facts:

1. $\operatorname{dim} L_{\alpha}=1$ for all $\alpha \in \Phi$. (Denote $L_{\alpha}=\mathbb{C} e^{\alpha}$).
2. $\alpha, \beta \in \Phi$ implies $\left[e^{\alpha}, e^{\beta}\right] \in L_{\alpha+\beta}$

Facts:

1. $\operatorname{dim} L_{\alpha}=1$ for all $\alpha \in \Phi$. (Denote $L_{\alpha}=\mathbb{C} e^{\alpha}$).
2. $\alpha, \beta \in \Phi$ implies $\left[e^{\alpha}, e^{\beta}\right] \in L_{\alpha+\beta}$ (i.e., $\left[e^{\alpha}, e^{\beta}\right]=\varepsilon_{\alpha, \beta} e^{\alpha+\beta}$).

Facts:

1. $\operatorname{dim} L_{\alpha}=1$ for all $\alpha \in \Phi$. (Denote $L_{\alpha}=\mathbb{C} e^{\alpha}$).
2. $\alpha, \beta \in \Phi$ implies $\left[e^{\alpha}, e^{\beta}\right] \in L_{\alpha+\beta}$ (i.e., $\left[e^{\alpha}, e^{\beta}\right]=\varepsilon_{\alpha, \beta} e^{\alpha+\beta}$).
3. $\alpha \in \Phi$ implies $-\alpha \in \Phi$. Let $h_{\alpha}=\left[e^{\alpha}, e^{-\alpha}\right]$. Then $\operatorname{span}\left\{h_{\alpha}, e^{\alpha}, e^{-\alpha}\right\} \cong s l_{2}(\mathbb{C})$.

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

The structure of the Lie algebra \mathfrak{L} is uniquely determined by the root system Φ

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

The structure of the Lie algebra \mathfrak{L} is uniquely determined by the root system Φ or equivalently by the root lattice Q.

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

The structure of the Lie algebra \mathfrak{L} is uniquely determined by the root system Φ or equivalently by the root lattice Q.

Finite dimensional irreducible modules

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

The structure of the Lie algebra \mathfrak{L} is uniquely determined by the root system Φ or equivalently by the root lattice Q.

Finite dimensional irreducible modules \longleftrightarrow dominant integral weights.

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

The structure of the Lie algebra \mathfrak{L} is uniquely determined by the root system Φ or equivalently by the root lattice Q. (Cartan matrix, Coxeter graph, Dynkin Diagram)

Finite dimensional irreducible modules \longleftrightarrow dominant integral weights.

Let $Q=\operatorname{span}_{\mathbb{Z}}\{\Phi\}$ be the root lattice and $P=\mathbb{Q} \otimes_{\mathbb{Z}} Q$ the weight lattice.

The structure of the Lie algebra \mathfrak{L} is uniquely determined by the root system Φ or equivalently by the root lattice Q. (Cartan matrix, Coxeter graph, Dynkin Diagram)

Finite dimensional irreducible modules \longleftrightarrow dominant integral weights.
(They are Combinatorial objects!!!)

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$.

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k}$

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0 .
\end{aligned}
$$

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0 .
\end{aligned}
$$

Define $d: \widehat{\mathfrak{g}} \rightarrow \widehat{\mathfrak{g}}$

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0 .
\end{aligned}
$$

Define $d: \widehat{\mathfrak{g}} \rightarrow \mathfrak{\mathfrak { g }}$ by $d(\mathbf{k})=0$ and $d\left(x \otimes t^{n}\right)=n x \otimes t^{n}$.

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0 .
\end{aligned}
$$

Define $d: \widehat{\mathfrak{g}} \rightarrow \mathfrak{g}$ by $d(\mathbf{k})=0$ and $d\left(x \otimes t^{n}\right)=n x \otimes t^{n}$.

The Lie algebra $\tilde{\mathfrak{g}}=\widehat{\mathfrak{g}} \rtimes \mathbb{C} d=\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k} \oplus \mathbb{C} d$

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0
\end{aligned}
$$

Define $d: \mathfrak{g} \rightarrow \widehat{\mathfrak{g}}$ by $d(\mathbf{k})=0$ and $d\left(x \otimes t^{n}\right)=n x \otimes t^{n}$.

The Lie algebra $\tilde{\mathfrak{g}}=\widehat{\mathfrak{g}} \rtimes \mathbb{C} d=\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k} \oplus \mathbb{C} d$ is called the affine Kac Moody algebra.

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0
\end{aligned}
$$

Define $d: \mathfrak{g} \rightarrow \widehat{\mathfrak{g}}$ by $d(\mathbf{k})=0$ and $d\left(x \otimes t^{n}\right)=n x \otimes t^{n}$.

The Lie algebra $\mathfrak{g}=\mathfrak{g} \rtimes \mathbb{C} d=\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k} \oplus \mathbb{C} d$ is called the affine Kac Moody algebra.

The notion of roots and weights can be defined similarly.

Affine Lie algebra

Let \mathfrak{g} be a f.d. simple Lie algebra with an associative form $<,>$. Define the affine Lie algebra $\mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k}$ with the bracket

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{-n}\right] } & =[x, y] \otimes t^{m+n}+m<x, y>\delta_{m+n, 0} \mathbf{k} \\
{\left[\mathbf{k}, x \otimes t^{n}\right] } & =0 .
\end{aligned}
$$

Define $d: \mathfrak{g} \rightarrow \mathfrak{g}$ by $d(\mathbf{k})=0$ and $d\left(x \otimes t^{n}\right)=n x \otimes t^{n}$.
The Lie algebra $\tilde{\mathfrak{g}}=\widehat{\mathfrak{g}} \rtimes \mathbb{C} d=\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{k} \oplus \mathbb{C} d$ is called the affine Kac Moody algebra.

The notion of roots and weights can be defined similarly.
The roots of \mathfrak{g} are given by

$$
\begin{array}{ll}
\alpha+n d, & \alpha \text { is a root of } \mathfrak{g}, n \in \mathbb{Z}, \\
n d, & n \in \mathbb{Z} \backslash\{0\}
\end{array}
$$

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))
Vertex representations of affine Kac Moody algebra

(Lepowsky-Wilson (1978), Frenkel-Kac (1980))

Let L be the root lattice associated with the Lie algebra \mathfrak{g}

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Vertex representations of affine Kac Moody algebra

(Lepowsky-Wilson (1978), Frenkel-Kac (1980))
Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$,

Vertex representations of affine Kac Moody algebra

(Lepowsky-Wilson (1978), Frenkel-Kac (1980))
Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$,

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra.

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{h}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra.
Denote $\alpha(n)=\alpha \otimes t^{n}$

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

- the unique irreducible $\mathfrak{\mathfrak { h }}$-module such that

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

- the unique irreducible $\mathfrak{\mathfrak { h }}$-module such that
$\alpha(n) \cdot 1=0$ for $\alpha \in \mathfrak{h}, n \geq 0$ and $k=1$.

Vertex representations of affine Kac Moody algebra

 (Lepowsky-Wilson (1978), Frenkel-Kac (1980))Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

- the unique irreducible \mathfrak{h}-module such that
$\alpha(n) \cdot 1=0$ for $\alpha \in \mathfrak{h}, n \geq 0$ and $k=1$.

Let $\mathbb{C}\{L\}=\operatorname{span}\left\{e^{\alpha} \mid \alpha \in L\right\}$ be a twisted group algebra of the additive group L.

Vertex representations of affine Kac Moody algebra

(Lepowsky-Wilson (1978), Frenkel-Kac (1980))

Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

- the unique irreducible $\hat{\mathfrak{h}}$-module such that
$\alpha(n) \cdot 1=0$ for $\alpha \in \mathfrak{h}, n \geq 0$ and $\mathbf{k}=1$.

Let $\mathbb{C}\{L\}=\operatorname{span}\left\{e^{\alpha} \mid \alpha \in L\right\}$ be a twisted group algebra of the additive group L.
The vector space $V_{L}=M(1) \otimes \mathbb{C}\{L\}$ affords a natural representation of the affine Kac Moody Lie algebra \mathfrak{g}.

Vertex representations of affine Kac Moody algebra

(Lepowsky-Wilson (1978), Frenkel-Kac (1980))

Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \widehat{h}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

- the unique irreducible $\mathfrak{\mathfrak { h }}$-module such that
$\alpha(n) \cdot 1=0$ for $\alpha \in \mathfrak{h}, n \geq 0$ and $k=1$.

Let $\mathbb{C}\{L\}=\operatorname{span}\left\{e^{\alpha} \mid \alpha \in L\right\}$ be a twisted group algebra of the additive group L.
The vector space $V_{L}=M(1) \otimes \mathbb{C}\{L\}$ affords a natural representation of the affine Kac Moody Lie algebra \mathfrak{g}.

Note: The above construction requires the only the properties of the root lattice L.

Vertex representations of affine Kac Moody algebra

(Lepowsky-Wilson (1978), Frenkel-Kac (1980))
Let L be the root lattice associated with the Lie algebra \mathfrak{g} and an associative form $\langle\cdot, \cdot\rangle$.

Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \quad \hat{\mathfrak{h}}=\mathfrak{h} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$ its affine Lie algebra. Denote $\alpha(n)=\alpha \otimes t^{n}$ and define $M(1)=\mathbb{C}[\alpha(n) \mid \alpha \in \mathfrak{h}, n<0] \cdot 1$

- the unique irreducible $\mathfrak{\mathfrak { h }}$-module such that $\alpha(n) \cdot 1=0$ for $\alpha \in \mathfrak{h}, n \geq 0$ and $k=1$.

Let $\mathbb{C}\{L\}=\operatorname{span}\left\{e^{\alpha} \mid \alpha \in L\right\}$ be a twisted group algebra of the additive group L.
The vector space $V_{L}=M(1) \otimes \mathbb{C}\{L\}$ affords a natural representation of the affine Kac Moody Lie algebra \mathfrak{g}.

Note: The above construction requires the only the properties of the root lattice L. No Lie algebra is needed.

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$,

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \hat{\mathfrak{h}}$,

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \hat{\mathfrak{h}}, M(1)$

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \hat{\mathfrak{h}}, M(1)$ and $\mathbb{C}\{L\}$ as before.

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \widehat{\mathfrak{h}}, M(1)$ and $\mathbb{C}\{L\}$ as before.

The space

$$
V_{L}=M(1) \otimes \mathbb{C}\{L\}
$$

may no longer be related to Kac Moody algebra

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \widehat{\mathfrak{h}}, M(1)$ and $\mathbb{C}\{L\}$ as before.

The space

$$
V_{L}=M(1) \otimes \mathbb{C}\{L\}
$$

may no longer be related to Kac Moody algebra but it still affords an algebra structure called Vertex Operator Algebra.

Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ We can define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L, \widehat{\mathfrak{h}}, M(1)$ and $\mathbb{C}\{L\}$ as before.

The space

$$
V_{L}=M(1) \otimes \mathbb{C}\{L\}
$$

may no longer be related to Kac Moody algebra but it still affords an algebra structure called Vertex Operator Algebra.

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*},

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Denote $\mathbb{C}\{\alpha+L\}=\operatorname{span}\left\{e^{\beta} \mid \beta \in \alpha+L\right\} \subset \mathbb{C}\left\{L^{*}\right\}$

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Denote $\mathbb{C}\{\alpha+L\}=\operatorname{span}\left\{e^{\beta} \mid \beta \in \alpha+L\right\} \subset \mathbb{C}\left\{L^{*}\right\}$ and

$$
V_{\alpha+L}=M(1) \otimes \mathbb{C}\{\alpha+L\}
$$

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Denote $\mathbb{C}\{\alpha+L\}=\operatorname{span}\left\{e^{\beta} \mid \beta \in \alpha+L\right\} \subset \mathbb{C}\left\{L^{*}\right\}$ and

$$
V_{\alpha+L}=M(1) \otimes \mathbb{C}\{\alpha+L\}
$$

By a theorem of Dong,

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Denote $\mathbb{C}\{\alpha+L\}=\operatorname{span}\left\{e^{\beta} \mid \beta \in \alpha+L\right\} \subset \mathbb{C}\left\{L^{*}\right\}$ and

$$
V_{\alpha+L}=M(1) \otimes \mathbb{C}\{\alpha+L\}
$$

By a theorem of Dong,

$$
\left\{V_{\alpha+L} \mid \alpha+L \text { is a coset of } L^{*} / L\right\}
$$

is the set all inequivalent irreducible modules of V_{L}.

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice. Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Denote $\mathbb{C}\{\alpha+L\}=\operatorname{span}\left\{e^{\beta} \mid \beta \in \alpha+L\right\} \subset \mathbb{C}\left\{L^{*}\right\}$ and

$$
V_{\alpha+L}=M(1) \otimes \mathbb{C}\{\alpha+L\}
$$

By a theorem of Dong,

$$
\left\{V_{\alpha+L} \mid \alpha+L \text { is a coset of } L^{*} / L\right\}
$$

is the set all inequivalent irreducible modules of V_{L}.
If L is unimodular (i.e., $L^{*}=L$),

Representations of Lattice VOA

Let L be any positive definite even lattice with inner product $\langle\cdot, \cdot\rangle$ and $L^{*}=\left\{\alpha \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid<\alpha, L>\subset \mathbb{Z}\right\}$ its dual lattice.
Let $\left\{0, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of coset representatives of L in L^{*}, i.e., $L^{*}=L \cup\left(\cup_{i=1}^{n}\left(\alpha_{i}+L\right)\right)$.

Denote $\mathbb{C}\{\alpha+L\}=\operatorname{span}\left\{e^{\beta} \mid \beta \in \alpha+L\right\} \subset \mathbb{C}\left\{L^{*}\right\}$ and

$$
V_{\alpha+L}=M(1) \otimes \mathbb{C}\{\alpha+L\}
$$

By a theorem of Dong,

$$
\left\{V_{\alpha+L} \mid \alpha+L \text { is a coset of } L^{*} / L\right\}
$$

is the set all inequivalent irreducible modules of V_{L}.
If L is unimodular (i.e., $L^{*}=L$), then V_{L} is the only irreducible module for V_{L}.

Moonshine VOA

Let \wedge be the Leech lattice

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+},
$$

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+},
$$

$V_{\Lambda}=$ lattice VOA associated with \wedge

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+},
$$

$V_{\Lambda}=$ lattice $V O A$ associated with Λ and V_{L}^{T} is a twisted module of V_{\wedge}.

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+},
$$

$V_{\Lambda}=$ lattice VOA associated with Λ and V_{L}^{T} is a twisted module of V_{\wedge}.

Properties:

1. Aut $V^{\natural}=\mathbb{M}$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+}
$$

$V_{\Lambda}=$ lattice VOA associated with Λ and V_{L}^{T} is a twisted module of V_{\wedge}.

Properties:

1. Aut $V^{\natural}=\mathbb{M}=$ the Monster simple group.

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+},
$$

$V_{\Lambda}=$ lattice VOA associated with Λ and V_{L}^{T} is a twisted module of V_{\wedge}.

Properties:

1. Aut $V^{\natural}=\mathbb{M}=$ the Monster simple group.
2. ch $V^{\natural}=\sum_{n=0}^{\infty} \operatorname{dim} V_{n}^{\natural} q^{n-1}=j(q)-744$.

Moonshine VOA

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Frenkel-Lepowsky-Meurman's Moonshine VOA

$$
V^{\natural}=V_{\Lambda}^{+} \oplus\left(V_{L}^{T}\right)^{+},
$$

$V_{\Lambda}=$ lattice VOA associated with Λ and V_{L}^{T} is a twisted module of V_{\wedge}.

Properties:

1. Aut $V^{\natural}=\mathbb{M}=$ the Monster simple group.
2. ch $V^{\natural}=\sum_{n=0}^{\infty} \operatorname{dim} V_{n}^{\natural} q^{n-1}=j(q)-744$. (A modular function)

Glue Lattice: Constructing Lattices using codes

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice.

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group.

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$ and let $\mathcal{L}^{n}=\mathcal{L} \oplus \cdots \oplus \mathcal{L}$ be the orthogonal sum of n-copies of L.

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$ and let $\mathcal{L}^{n}=\mathcal{L} \oplus \cdots \oplus \mathcal{L}$ be the orthogonal sum of n-copies of L.

For any $\delta=\left(\delta^{1}, \cdots, \delta^{n}\right) \in G^{n}$,

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$ and let $\mathcal{L}^{n}=\mathcal{L} \oplus \cdots \oplus \mathcal{L}$ be the orthogonal sum of n-copies of \mathcal{L}.

For any $\delta=\left(\delta^{1}, \cdots, \delta^{n}\right) \in G^{n}$, define

$$
L^{\delta}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in L^{\delta^{i}} \text { for } i=1, \ldots, n\right\} .
$$

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$ and let $\mathcal{L}^{n}=\mathcal{L} \oplus \cdots \oplus \mathcal{L}$ be the orthogonal sum of n-copies of \mathcal{L}.

For any $\delta=\left(\delta^{1}, \cdots, \delta^{n}\right) \in G^{n}$, define

$$
L^{\delta}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in L^{\delta^{i}} \text { for } i=1, \ldots, n\right\} .
$$

For any subgroup $D \subset G^{n}$,

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$ and let $\mathcal{L}^{n}=\mathcal{L} \oplus \cdots \oplus \mathcal{L}$ be the orthogonal sum of n-copies of \mathcal{L}.

For any $\delta=\left(\delta^{1}, \cdots, \delta^{n}\right) \in G^{n}$, define

$$
L^{\delta}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in L^{\delta^{i}} \text { for } i=1, \ldots, n\right\} .
$$

For any subgroup $D \subset G^{n}$, we define

$$
L_{D}=\bigcup_{\delta \in D} L^{\delta} .
$$

Glue Lattice: Constructing Lattices using codes
Let L be an even lattice and $\mathcal{L}=L^{*}=\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} L \mid\langle x, L\rangle \in \mathbb{Z}\right\}$ its dual lattice. Then $G=\mathcal{L} / L$ is a finite abelian group. Let $\left\{L^{g} \mid g \in G=\mathcal{L} / L\right\}$ be the set of all cosets of \mathcal{L} / L.

Denote $G^{n}=G \oplus \cdots \oplus G$ and let $\mathcal{L}^{n}=\mathcal{L} \oplus \cdots \oplus \mathcal{L}$ be the orthogonal sum of n-copies of \mathcal{L}.

For any $\delta=\left(\delta^{1}, \cdots, \delta^{n}\right) \in G^{n}$, define

$$
L^{\delta}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in L^{\delta^{i}} \text { for } i=1, \ldots, n\right\} .
$$

For any subgroup $D \subset G^{n}$, we define

$$
L_{D}=\bigcup_{\delta \in D} L^{\delta} .
$$

Then, L_{D} is sublattice of \mathcal{L}^{n}.

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\left.<\alpha, \alpha\right\rangle=2$.

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\left.<\alpha, \alpha\right\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z}_{2}^{\alpha}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$.

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\left.<\alpha, \alpha\right\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\left.<\alpha, \alpha\right\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$)

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$.

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$. If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$.
If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$

Key point:

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$.
If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$

Key point: If L_{D} is an even lattice,

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $<\alpha, \alpha>=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$. If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$

Key point: If L_{D} is an even lattice, then $V_{L_{D}}$ is a VOA

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $<\alpha, \alpha>=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A ".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$. If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$

Key point: If L_{D} is an even lattice, then $V_{L_{D}}$ is a VOA and

$$
V_{L_{D}}=\bigoplus_{\delta \in D} V_{L^{\delta}}=\bigoplus_{\delta \in D} V_{L^{\delta_{1}}} \otimes \cdots \otimes V_{L^{\delta_{n}}}
$$

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $<\delta, \delta>=0 \bmod 4$) self-dual code.

If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$.
If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$
Key point: If L_{D} is an even lattice, then $V_{L_{D}}$ is a VOA and

$$
V_{L_{D}}=\bigoplus_{\delta \in D} V_{L^{\delta}}=\bigoplus_{\delta \in D} V_{L^{\delta_{1}}} \otimes \cdots \otimes V_{L^{\delta_{n}}}
$$

The properties of $V_{L_{D}}$ depends heavily on the code D

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z}_{2}^{\alpha}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\} .
$$

It is usually called "Construction A".
Fact: $1 . L_{D}$ is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is a type II (i.e., $\langle\delta, \delta\rangle=0 \bmod 4$) self-dual code.
If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$.
If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$
Key point: If L_{D} is an even lattice, then $V_{L_{D}}$ is a VOA and

$$
V_{L_{D}}=\bigoplus_{\delta \in D} V_{L^{\delta}}=\bigoplus_{\delta \in D} V_{L^{\delta} 1} \otimes \cdots \otimes V_{L^{\delta_{n}}}
$$

The properties of $V_{L_{D}}$ depends heavily on the code D (on V_{L} also)

Example: $L=A_{1}=\mathbb{Z} \alpha$ such that $\langle\alpha, \alpha\rangle=2$.
Then $\mathcal{L}=L^{*}=\mathbb{Z} \frac{\alpha}{2}=L \cup\left(\frac{\alpha}{2}+L\right)$ and $\mathcal{L} / L \cong \mathbb{Z}_{2}$. In this case,

$$
L_{D}=\frac{1}{\sqrt{2}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in D \quad \bmod 2\right\}
$$

It is usually called "Construction A".
Fact: 1. L_{D} is even if and only if D is even.
2. L_{D} is even unimodular (i.e., $L_{D}^{*}=L_{D}$) if and only if D is
a type II (i.e., $\langle\delta, \delta>=0 \bmod 4$) self-dual code.
If $D=H_{8}$ the Hamming $(8,4,4)$ code, $L_{D}=E_{8}$.
If $D=G_{24}$ the Golay $(24,12,8)$ code, $L_{D}=N\left(A_{1}^{24}\right)$
Key point: If L_{D} is an even lattice, then $V_{L_{D}}$ is a VOA and

$$
V_{L_{D}}=\bigoplus_{\delta \in D} V_{L^{\delta}}=\bigoplus_{\delta \in D} V_{L^{\delta_{1}}} \otimes \cdots \otimes V_{L^{\delta_{n}}}
$$

The properties of $V_{L_{D}}$ depends heavily on the code D (on V_{L} also) and D and Aut D acts on $V_{L_{D}}$ naturally.

Leech lattice

Let \wedge be the Leech lattice

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Let $L=A_{\ell}$ (the root lattice for the Lie algebra $s l_{n+1}(\mathbb{C})$).

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Let $L=A_{\ell}$ (the root lattice for the Lie algebra $s l_{n+1}(\mathbb{C})$).

Theorem: For any ℓ divides 24 , let $\Gamma=A_{\ell}{ }^{24 / \ell}$.

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Let $L=A_{\ell}$ (the root lattice for the Lie algebra $s l_{n+1}(\mathbb{C})$).
Theorem: For any ℓ divides 24 , let $\Gamma=A_{\ell}{ }^{24 / \ell}$. Then, there is at least one (and in general several) isometric embedding

$$
\sqrt{2}\ulcorner\longrightarrow \wedge
$$

into the Leech lattice \wedge.

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Let $L=A_{\ell}$ (the root lattice for the Lie algebra $s l_{n+1}(\mathbb{C})$).
Theorem: For any ℓ divides 24 , let $\Gamma=A_{\ell}{ }^{24 / \ell}$. Then, there is at least one (and in general several) isometric embedding

$$
\sqrt{2} \Gamma \longrightarrow \wedge
$$

into the Leech lattice \wedge.

Note

$$
G=\left(\sqrt{2} A_{\ell}\right)^{*} / \sqrt{2} A_{\ell}
$$

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Let $L=A_{\ell}$ (the root lattice for the Lie algebra $s l_{n+1}(\mathbb{C})$).

Theorem: For any ℓ divides 24 , let $\Gamma=A_{\ell}{ }^{24 / \ell}$. Then, there is at least one (and in general several) isometric embedding

$$
\sqrt{2} \Gamma \longrightarrow \wedge,
$$

into the Leech lattice \wedge.

Note

$$
G=\left(\sqrt{2} A_{\ell}\right)^{*} / \sqrt{2} A_{\ell} \cong\left\{\begin{array}{l}
\mathbb{Z}_{2}^{\ell} \times \mathbb{Z}_{\ell+1} \quad \text { if } \ell \text { is even },
\end{array}\right.
$$

Leech lattice

Let \wedge be the Leech lattice (i.e., the unique even unimodular lattice of rank 24 such that $\Lambda_{2}=\{\alpha \in \Lambda \mid<\alpha, \alpha>=2\}=\emptyset$.

Let $L=A_{\ell}$ (the root lattice for the Lie algebra $s l_{n+1}(\mathbb{C})$).

Theorem: For any ℓ divides 24 , let $\Gamma=A_{\ell}{ }^{24 / \ell}$. Then, there is at least one (and in general several) isometric embedding

$$
\sqrt{2} \Gamma \longrightarrow \wedge,
$$

into the Leech lattice \wedge.

Note

$$
G=\left(\sqrt{2} A_{\ell}\right)^{*} / \sqrt{2} A_{\ell} \cong \begin{cases}\mathbb{Z}_{2}^{\ell} \times \mathbb{Z}_{\ell+1} & \text { if } \ell \text { is even } \\ \mathbb{Z}_{2}^{\ell-1} \times \mathbb{Z}_{2(\ell+1)} & \text { if } \ell \text { is odd }\end{cases}
$$

That means there is a G-code D such that $\wedge=L_{D}$.

That means there is a G-code D such that $\wedge=L_{D}$.
Question 1:

That means there is a G-code D such that $\wedge=L_{D}$.
Question 1: Classify all possible D in each case.

That means there is a G-code D such that $\wedge=L_{D}$.
Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{Λ} and the Monster simple group.)

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$,

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$, it is equivalent to the classification of type II self-dual \mathbb{Z}_{4} codes of length 24.

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$, it is equivalent to the classification of type II self-dual \mathbb{Z}_{4} codes of length 24.

For $\ell=2,3$,

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$, it is equivalent to the classification of type II self-dual \mathbb{Z}_{4} codes of length 24.

For $\ell=2,3$, some codes D are explicitly known

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$, it is equivalent to the classification of type II self-dual \mathbb{Z}_{4} codes of length 24.

For $\ell=2,3$, some codes D are explicitly known but no explicit example is known for $\ell=4,6,8,12$.

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$, it is equivalent to the classification of type II self-dual \mathbb{Z}_{4} codes of length 24.

For $\ell=2,3$, some codes D are explicitly known but no explicit example is known for $\ell=4,6,8,12$.

Question 2: For a given D, compute Aut D.

That means there is a G-code D such that $\wedge=L_{D}$.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice VOA V_{\wedge} and the Monster simple group.)

For $\ell=1$, it is equivalent to the classification of type II self-dual \mathbb{Z}_{4} codes of length 24.

For $\ell=2,3$, some codes D are explicitly known but no explicit example is known for $\ell=4,6,8,12$.

Question 2: For a given D, compute $A u t D$. Again it is related to the determination of $A u t V_{L_{D}}$ and the properties of the Monster group.

In general, if N is a sublattice of \wedge of rank 24 ,

In general, if N is a sublattice of Λ of rank 24 , we may also study the structure of the group Λ / N.

In general, if N is a sublattice of \wedge of rank 24 , we may also study the structure of the group Λ / N.

For example,

$$
N=\sqrt{2} E_{8}^{3}, \quad \sqrt{2} E_{6}^{4}, \quad \sqrt{2} D_{12}^{2}, \quad \text { etc }
$$

In general, if N is a sublattice of Λ of rank 24, we may also study the structure of the group Λ / N.

For example,

$$
N=\sqrt{2} E_{8}^{3}, \quad \sqrt{2} E_{6}^{4}, \quad \sqrt{2} D_{12}^{2}, \quad e t c
$$

They somewhat reflect some properties of the Leech lattice VOA and the Monster group.

In general, if N is a sublattice of Λ of rank 24, we may also study the structure of the group Λ / N.

For example,

$$
N=\sqrt{2} E_{8}^{3}, \quad \sqrt{2} E_{6}^{4}, \quad \sqrt{2} D_{12}^{2}, \quad e t c
$$

They somewhat reflect some properties of the Leech lattice VOA and the Monster group.

Question 3: Classify all sublattice N of rank 24 inside the Leech lattice \wedge.

In general, if N is a sublattice of Λ of rank 24, we may also study the structure of the group Λ / N.

For example,

$$
N=\sqrt{2} E_{8}^{3}, \quad \sqrt{2} E_{6}^{4}, \quad \sqrt{2} D_{12}^{2}, \quad \text { etc }
$$

They somewhat reflect some properties of the Leech lattice VOA and the Monster group.

Question 3: Classify all sublattice N of rank 24 inside the Leech Iattice \wedge.

Is $\sqrt{k} A_{\ell}^{24 / \ell} \subset \Lambda$ for any positive integer $k ? ?$

