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Let sl (C) = {A S MQXQ((C)| tr A = O}.
It is a Lie algebra with the Lie bracket [A, B] = AB — BA.
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Then si>(C) = spang{h,z,y} and

[hvx] — 2$7 [hay] — _2y7 [CC,y] = h.

Define adA(B) = [A, B]. Then adh acts semisimply (i.e., diagonal-
izable) on sl>(C).

Let H = Ch and define a: H — C by «a(h) = 2.
Denote x = e“ and y = e~ %. Then we have

ad h(e?) = B(h)e”.

The set {a,—a} is called the roots of sio(C) and the Z-module
() = Z« is called the root lattice.
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Irreducible representation

Let M be a finite dimensional irreducible modules of sl>(C). Then
M satisfies the following properties:

1. M = (v).
2. z-v=0 and h-v = mwv for some non-negative integer m.

3. Let vg =v and v; = ,y -v. Then {vg,v1,...,uvn} IS a basis of M
and h-v;, = (m — 27,)1)

M is called a highest weight module.

Let P =Q®yz Q. It is called a weight lattice. g € P is called integral
if < 3,y > Z for all v € Q@ and dominant integral if < 8, > > 0 for
all v € Q also.

Hence, there is a 1 — 1 correspondence between finite dimensional
irreducible modules and dominant weights. (m < ma/2)



Let £ be a finite dimensional simple Lie algebra.



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral



Let £ be a finite dimensional simple Lie algebra. A subalgebra 17" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian,



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh, adk] = ad[h, k] = 0.



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh, adk] = ad[h, k] = 0.

Let H be a maximal toral subalgebra of L.



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh, adk] = ad[h, k] = 0.

Let H be a maximal toral subalgebra of £. Then {adhlh € H} is a
set of mutually commutative semisimple endomorphisms of £.



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh, adk] = ad[h, k] = 0.

Let H be a maximal toral subalgebra of £. Then {adhlh € H} is a
set of mutually commutative semisimple endomorphisms of £. They
can be diagonalized simultaneously.



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh, adk] = ad[h, k] = 0.

Let H be a maximal toral subalgebra of £. Then {adhlh € H} is a
set of mutually commutative semisimple endomorphisms of £. They
can be diagonalized simultaneously. There exists & C H*



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh, adk] = ad[h, k] = 0.

Let H be a maximal toral subalgebra of £. Then {adhlh € H} is a
set of mutually commutative semisimple endomorphisms of £. They
can be diagonalized simultaneously. There exists ® C H* such that

£=Ho (Gaco Lo )



Let £ be a finite dimensional simple Lie algebra. A subalgebra 17" C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh,adk] = ad[h, k] = O.

Let H be a maximal toral subalgebra of £. Then {adhlh € H} is a
set of mutually commutative semisimple endomorphisms of £. They
can be diagonalized simultaneously. There exists ® C H* such that

£=Ho (Gaco Lo )
where

Lo = {v € £ladh(v) = a(h)v}



Let £ be a finite dimensional simple Lie algebra. A subalgebra 7' C £
is called toral if for any h € H, ad h is semisimple (diagonalizable).

Fact: A toral subalgebra T is abelian, i.e., [h,k] =0 for all h,k € T
and thus [adh,adk] = ad[h, k] = O.

Let H be a maximal toral subalgebra of £. Then {adhlh € H} is a
set of mutually commutative semisimple endomorphisms of £. They
can be diagonalized simultaneously. There exists & C H* such that

£=H® (Daco La )
where
o = {v € £lad h(v) = a(h)v}
and
b ={a e H*\ {0}| Lo # 0}.
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Facts:
1. dimLy =1 for all o« € ®. ( Denote Ly = Ce%).
2. a,8 € ® implies [e%, €] € Loy (i.e., [e% e’] = e, 5e2TP).

3. a € ® implies —a € P.
Let ho = [e¥, e @]. Then span{hq,e® e *} = sl (C).
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Let @ = spany{P} be the root lattice and P = Q ®y @@ the weight
lattice.

The structure of the Lie algebra £ is uniquely determined by the
root system & or equivalently by the root lattice . (Cartan matrix,
Coxeter graph, Dynkin Diagram)

Finite dimensional irreducible modules «—— dominant integral weights.

(They are Combinatorial objects!!!)
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Affine Lie algebra

Let g be a f.d. simple Lie algebra with an associative form <, >.
Define the affine Lie algebra § = g ® C[t,t~1] @ Ck with the bracket

[z @ty @t "] = [z,y] @ """ +m < 2,y > §tn.0k,
k,z®t"] = 0.
Defined:g— g by d(k) =0 and d(z ®t") = nx ® t".

The Lie algebrag=gxCd =3 =g®C[t,t 1] Cke® Cd is called the
affine Kac Moody algebra.

The notion of roots and weights can be defined similarly.

The roots of g are given by

a + nd, « is a root of g, n € Z,
nd, n € 7\ {0}
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Vertex representations of affine Kac Moody algebra
(Lepowsky-Wilson (1978), Frenkel-Kac (1980))

Let L be the root lattice associated with the Lie algebra g and an
associative form (-, -).

Let h=C®,; L, bh=hxC[tt 1]eCkits affine Lie algebra.
Denote a(n) = a®t™ and define M (1) = Cla(n) |a € h,n < 0] -1
— the unique irreducible h-module such that
a(n)-1=0foraech, n>0and k=1.

Let C{L} = span{e®| a € L} be a twisted group algebra of the
additive group L.

The vector space V; = M(1)®C{L} affords a natural representation
of the affine Kac Moody Lie algebra g.

Note: The above construction requires the only the properties of
the root lattice L. No Lie algebra is needed.
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Let L be any positive definite even lattice with inner product (-, -)
and L* = {a € QryzL| < a, L >C 7Z} its dual lattice.
Let {0,a1,...,an} be a set of coset representatives of L in L*, i.e.,
L*=LuU (U (0 +L)).
Denote C{o + L} = span{e’| g € a + L} Cc C{L*} and

Vogr = M(1) @ C{a + L}.

By a theorem of Dong,
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Representations of Lattice VOA

Let L be any positive definite even lattice with inner product (-, -)

and L* ={a € QryL| < o, L >C Z} its dual lattice.
Let {0,a1,...,an} be a set of coset representatives of L in L*, i.e.,

L*=LuU (U (a;+L)).
Denote C{a+ L} =span{e’| B € oo+ L} ¢ C{L*} and
Vot = M(1) ® C{a + L}.

By a theorem of Dong,

{Va+r| o+ L is a coset of L*/L}

is the set all inequivalent irreducible modules of V7.

If L is unimodular (i.e., L* = L), then V; is the only irreducible
module for Vp,.
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Moonshine VOA
Let A be the Leech lattice (i.e., the unique even unimodular lattice
of rank 24 such that Ao = {a € A| < a,a >= 2} = 0.

Frenkel-Lepowsky-Meurman's Moonshine VOA
Vi=viewhHT,
Va=lattice VOA associated with A and VLT is a twisted module of
VA.
Properties:

1. Aut Vi = M=the Monster simple group.

O

2. ch Vi= dim Vﬁq”_]L = j(q) — 744. ( A modular function)

n=0
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Glue Lattice: Constructing Lattices using codes

Let L be an even lattice and £ = L* = {z € Q®yL| < z,L >€ 7}
its dual lattice. Then G = L/L is a finite abelian group. Let
{L9)ge G=L/L} be the set of all cosets of L/L.

Denote G"=G&®---dGand let L" = L& ---H L be the orthogonal
sum of n-copies of L.

For any § = <51,--- ,5’”) c G, define

L5:{($1,...,$n)| Z; ELéi for ¢+ = 1,...,n}.

For any subgroup D C G™, we define

Lp= |J L°
éoeD

Then, Lp is sublattice of L™,
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Example: L = A1 = Za such that < a,a >= 2.
Then L=L"=75=LU(5+ L) and L/L = Z5. In this case,

1
Lp= \ﬁ{(asl, oo, xn) €2"(x1,...,on) € D mod 2}.
It is usually called “Construction A".

Fact: 1. Lp is even if and only if D is even.
2. Lp is even unimodular (i.e., L}, = Lp) if and only if D is
a type Il (i.e., < 6,6 >= 0 mod 4) self-dual code.

If D = Hg the Hamming (8,4,4) code, Lp = Eg.
If D = Gp4 the Golay (24,12,8) code, Lp = N(A%4)

Key point: If Lp is an even lattice, then Vg is a VOA and

Vip= @D Vs = D Vi ® - @ Vi
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The properties of V}, depends heavily on the code D (on Vi, also)
and D and AutD acts on Vg, naturally.
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Leech lattice

Let A be the Leech lattice (i.e., the unique even unimodular lattice
of rank 24 such that Ao = {a e A| < a,a >= 2} = ().

Let L = Ay (the root lattice for the Lie algebra si,41(C)).

Theorem: For any ¢ divides 24, let T = A,24/f. Then, there is at
least one (and in general several) isometric embedding

V2 — A,
into the Leech lattice A.

Note

75 x 7. if ¢ is even,
G = (V24,)* V24,2 72 7 Tl -
ZQ X ZQ(£_|_1) |f E IS Odd
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Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice
VOA Vi and the Monster simple group. )

For ¢ =1, it is equivalent to the classification of type II self-dual Zgy
codes of length 24.
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That means there is a G-code D such that A = Lp.

Question 1: Classify all possible D in each case.
(It is very important for understanding the structure of the Lattice
VOA Vi and the Monster simple group. )

For ¢ =1, it is equivalent to the classification of type II self-dual Zgy
codes of length 24.

For ¢ = 2,3, some codes D are explicitly known but no explicit
example is known for £ = 4,6,8,12.

Question 2: For a given D, compute AutD. Again it is related
to the determination of AutVy,, and the properties of the Monster
group.
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In general, if N is a sublattice of A of rank 24, we may also study
the structure of the group A/N.

For example,

N = \/§E§, \/§Eg, \ED%Q, etc

They somewhat reflect some properties of the Leech lattice VOA
and the Monster group.

Question 3: Classify all sublattice N of rank 24 inside the Leech
lattice A.

Is \/EAELW C A for any positive integer k?7?



