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2. Example of Lie (super)algebras

3. Clifford Algebra and the fermionic Fock Space

4. Heisenberg Algebra and the bosonic Fock Space

5. Decomposition of the fermionic Fock Space
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Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20



1. Representation Theory

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20



1. Representation Theory

• What is representation theory all about?

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20



1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures as
matrices.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20



1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures as
matrices.

• Example: Take an abstract finite group G. A representation of G consists of two
pieces of data:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20



1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures as
matrices.

• Example: Take an abstract finite group G. A representation of G consists of two
pieces of data:

1. A vector space V over some field k.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20



1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures as
matrices.

• Example: Take an abstract finite group G. A representation of G consists of two
pieces of data:

1. A vector space V over some field k.

2. A group homomorphism ρ : G → GLk(V ). Here GLk(V ) is just the group of all
invertible k-linear maps from V to V itself. So we can think of elements in GLk(V )

as matrices.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20



1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures as
matrices.

• Example: Take an abstract finite group G. A representation of G consists of two
pieces of data:

1. A vector space V over some field k.

2. A group homomorphism ρ : G → GLk(V ). Here GLk(V ) is just the group of all
invertible k-linear maps from V to V itself. So we can think of elements in GLk(V )

as matrices.

• The fact that ρ is a group homomorphism means that

ρ(xy) = ρ(x)ρ(y),

and hence the group structure of G, namely the group multiplication, is preserved.
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1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures as
matrices.

• Example: Take an abstract finite group G. A representation of G consists of two
pieces of data:

1. A vector space V over some field k.

2. A group homomorphism ρ : G → GLk(V ). Here GLk(V ) is just the group of all
invertible k-linear maps from V to V itself. So we can think of elements in GLk(V )

as matrices.

• The fact that ρ is a group homomorphism means that

ρ(xy) = ρ(x)ρ(y),

and hence the group structure of G, namely the group multiplication, is preserved.

• So representation is just a way of realizing something that may be very abstract as
matrices.
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• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,
and e is the identity element.
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vector space over C itself.
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ρ : Z2 → GLC(C) = C
∗,

where C∗ = C − 0.
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• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,
and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensional
vector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C
∗,

where C∗ = C − 0.

Since we must have ρ(x2) = ρ(x)2 = ρ(e) = 1 we must have ρ(x) = ±1. So we
have only two representations here, namely
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An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,
and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensional
vector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C
∗,

where C∗ = C − 0.

Since we must have ρ(x2) = ρ(x)2 = ρ(e) = 1 we must have ρ(x) = ±1. So we
have only two representations here, namely

• The trivial representation
ρ(e) = 1, ρ(x) = 1.
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An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,
and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensional
vector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C
∗,

where C∗ = C − 0.

Since we must have ρ(x2) = ρ(x)2 = ρ(e) = 1 we must have ρ(x) = ±1. So we
have only two representations here, namely

• The trivial representation
ρ(e) = 1, ρ(x) = 1.

• The sign representation
ρ(e) = 1, ρ(x) = −1.
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Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

• We can make V into a G-module by defining:

g · v := ρ(g)v, g ∈ G; v ∈ V.

• Conversely given a G-module V we can define a representation ρ of G on V by
defining:

ρ(g)(v) := g · v, g ∈ G; v ∈ V.

• So the notion of representation of G is the SAME as the notion of a G-module.
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2. Examples of Lie (super)algebras
• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

• Of particular interest in this talk are:

representations of Lie algebras.

• A Lie algebra is a vector space L over a field k equipped with a bilinear map
[·, ·] : L × L → L satisfying:

(1) [X, Y ] = −[Y, X], skew-symmetry and

(2) [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]], for all X, Y, Z ∈ L. Jacobi identity.
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• Let V be any vector space over k and consider Endk(V ), the space of all k-linear
maps from V to V .
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• Let V be any vector space over k and consider Endk(V ), the space of all k-linear
maps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

• We need also notion of a Lie superalgebra.

A Lie superalgebra L is a Z2-graded space, i.e. L is a direct sum of two vector
spaces

L = L0̄ ⊕ L1̄,

equipped with a degree-preserving (i.e. [Lε, Lδ] ⊆ Lε+δ , ε, δ ∈ Z2) bilinear map
[·, ·] : L × L → L satisfying
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• Let V be any vector space over k and consider Endk(V ), the space of all k-linear
maps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

• We need also notion of a Lie superalgebra.

A Lie superalgebra L is a Z2-graded space, i.e. L is a direct sum of two vector
spaces

L = L0̄ ⊕ L1̄,

equipped with a degree-preserving (i.e. [Lε, Lδ] ⊆ Lε+δ , ε, δ ∈ Z2) bilinear map
[·, ·] : L × L → L satisfying

(1) [X, Y ] = −(−1)xy [Y, X], super-skew-symmetry and

(2) [X, [Y, Z]] = [[X, Y ], Z] + (−1)xy [Y, [X, Z]]. super Jacobi identity.

Above X, Y, Z are all homogeneous elements of L and x = ε, if X ∈ Lε.
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1, ψ+
r , ψ−
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1

2
+ Z.
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• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+
r , ψ−

r , r ∈
1

2
+ Z.

Set L0̄ = C1 and L1̄ =
∑

r Cψ+
r +

∑

r Cψ−
r .
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• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+
r , ψ−

r , r ∈
1

2
+ Z.

Set L0̄ = C1 and L1̄ =
∑

r Cψ+
r +

∑

r Cψ−
r .

Define the only non-zero Lie super-bracket [·, ·] on C by

[ψ+
r , ψ−

s ] = [ψ−
s , ψ+

r ] = δr+s,01.
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Then the super-skew-symmetry is satisfied by definition, while Jacobi identity is
trivially satisfied.
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3. Clifford superalgebra and the fermionic Fock Space
• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+
r , ψ−

r , r ∈
1

2
+ Z.

Set L0̄ = C1 and L1̄ =
∑

r Cψ+
r +

∑

r Cψ−
r .

Define the only non-zero Lie super-bracket [·, ·] on C by

[ψ+
r , ψ−

s ] = [ψ−
s , ψ+

r ] = δr+s,01.

Then the super-skew-symmetry is satisfied by definition, while Jacobi identity is
trivially satisfied.

This is an example of an infinite-dimensional Lie superalgebra.
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• Let’s construct the following representation F of C. F is called the fermionic Fock
space.
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• Let’s construct the following representation F of C. F is called the fermionic Fock
space.

F is the space spanned by basis elements of the form

ψ+

−rk
ψ+

−rk−1
· · ·ψ+

−r1
ψ−
−sl

ψ−
−sl−1

· · ·ψ−
−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.
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ψ+
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· · ·ψ+

−r1
ψ−
−sl

ψ−
−sl−1

· · ·ψ−
−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Here is how C acts on F:

ψ±
r |0〉 := 0, r > 0,

1|0〉 := |0〉.
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· · ·ψ−
−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Here is how C acts on F:

ψ±
r |0〉 := 0, r > 0,

1|0〉 := |0〉.

and the remaining action is determined by the relation

ψ+
r ψ−

s + ψ−
s ψ+

r = δrs1,

ψ+
r ψ+

s + ψ+
s ψ+

r = 0,

ψ−
r ψ−

s + ψ−
s ψ−

r = 0.
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• Let’s construct the following representation F of C. F is called the fermionic Fock
space.

F is the space spanned by basis elements of the form

ψ+

−rk
ψ+

−rk−1
· · ·ψ+

−r1
ψ−
−sl

ψ−
−sl−1

· · ·ψ−
−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Here is how C acts on F:

ψ±
r |0〉 := 0, r > 0,

1|0〉 := |0〉.

and the remaining action is determined by the relation

ψ+
r ψ−

s + ψ−
s ψ+

r = δrs1,

ψ+
r ψ+

s + ψ+
s ψ+

r = 0,

ψ−
r ψ−

s + ψ−
s ψ−

r = 0.

For example: ψ+
1
2

· ψ−

− 1
2

|0〉 = −ψ−

− 1
2

· ψ+
1
2

|0〉 + 1|0〉 = |0〉.
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4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.
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4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Define the only non-zero Lie bracket to be

[αm, αn] = mδm+n,01.
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4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Define the only non-zero Lie bracket to be

[αm, αn] = mδm+n,01.

Again skew-symmetry is satisfied by definition, while the Jacobi identity is trivially
satisfied.
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4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Define the only non-zero Lie bracket to be

[αm, αn] = mδm+n,01.

Again skew-symmetry is satisfied by definition, while the Jacobi identity is trivially
satisfied.

This is an example of an infinite-dimensional Lie algebra.
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• Let us construct representations of H:
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• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables
{x1, x2, x3, · · · }.
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• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables
{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence a
representation of H) by the formulas:
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• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables
{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence a
representation of H) by the formulas:

α−m := mxm, m > 0,

αm :=
∂

∂xm

, m > 0,

α0 := λ.
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• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables
{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence a
representation of H) by the formulas:

α−m := mxm, m > 0,

αm :=
∂

∂xm

, m > 0,

α0 := λ.

Above the formulas give the way the elements αm acts on a polynomial in
C[x1, x2, · · · ], for example

α1 · x1 = 1; α−1x1 = x2
1; α0x1 = λx1.
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• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables
{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence a
representation of H) by the formulas:

α−m := mxm, m > 0,

αm :=
∂

∂xm

, m > 0,

α0 := λ.

Above the formulas give the way the elements αm acts on a polynomial in
C[x1, x2, · · · ], for example

α1 · x1 = 1; α−1x1 = x2
1; α0x1 = λx1.

This way we obtain a one-parameter family of H-modules, which we will denote by

Vλ, λ ∈ C.
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5. Decomposition of the fermionic Fock Space
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5. Decomposition of the fermionic Fock Space
• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:
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5. Decomposition of the fermionic Fock Space
• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible with
the Lie bracket of H.
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5. Decomposition of the fermionic Fock Space
• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible with
the Lie bracket of H.

Let us define the normal ordering : ·· : of two ψ operators by

: ψ±
r ψ±

s : = −ψ±
s ψ±

r , if s < 0 and r > 0,

: ψ±
r ψ±

s : = ψ±
r ψ±

s , otherwise.
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5. Decomposition of the fermionic Fock Space
• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible with
the Lie bracket of H.

Let us define the normal ordering : ·· : of two ψ operators by

: ψ±
r ψ±

s : = −ψ±
s ψ±

r , if s < 0 and r > 0,

: ψ±
r ψ±

s : = ψ±
r ψ±

s , otherwise.

Similarly define the normal ordering : ·· : of two α operators by

: αmαn : = αnαm, if n < 0 and m > 0,

: αmαn : = αmαn, otherwise.
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5. Decomposition of the fermionic Fock Space
• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible with
the Lie bracket of H.

Let us define the normal ordering : ·· : of two ψ operators by

: ψ±
r ψ±

s : = −ψ±
s ψ±

r , if s < 0 and r > 0,

: ψ±
r ψ±

s : = ψ±
r ψ±

s , otherwise.

Similarly define the normal ordering : ·· : of two α operators by

: αmαn : = αnαm, if n < 0 and m > 0,

: αmαn : = αmαn, otherwise.

• Introduce three generating series (z an indeterminate):

ψ±(z) :=
∑

r∈ 1
2
+Z

ψ±
r z−r− 1

2 ,

α(z) :=
∑

m∈Z

αmz−m−1.
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• Then we have the following:
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• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :
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• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:
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• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

If we write A(z) =: ψ+(z)ψ−(z) : by collecting all the powers of z, then
A(z) =

∑

m∈Z
Amz−m−1. The statement simply means that

[Am, An] = AmAn − AnAm = mδm+n,0 · 1.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20



• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

If we write A(z) =: ψ+(z)ψ−(z) : by collecting all the powers of z, then
A(z) =

∑

m∈Z
Amz−m−1. The statement simply means that

[Am, An] = AmAn − AnAm = mδm+n,0 · 1.

Hence if we let αm act by Am and 1 act by 1, then F is a representation of H.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20



• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

If we write A(z) =: ψ+(z)ψ−(z) : by collecting all the powers of z, then
A(z) =

∑

m∈Z
Amz−m−1. The statement simply means that

[Am, An] = AmAn − AnAm = mδm+n,0 · 1.

Hence if we let αm act by Am and 1 act by 1, then F is a representation of H.

• Note that Am is always a sum of infinitely many operators. Let us write down for
example

A0 :=
∑

r∈ 1
2
+Z

: ψ+
r ψ−

−r := α0.
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• The Fock space F as a H-module is decomposed as follows:
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• The Fock space F as a H-module is decomposed as follows:

F =
⊕

λ∈Z

Vλ.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20



• The Fock space F as a H-module is decomposed as follows:

F =
⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of it
as C[x1, x2, · · · ].
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• The Fock space F as a H-module is decomposed as follows:

F =
⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of it
as C[x1, x2, · · · ].

So in Vλ there is a vector corresponding to 1 ∈ C[x1, x2, · · · ].
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• The Fock space F as a H-module is decomposed as follows:

F =
⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of it
as C[x1, x2, · · · ].

So in Vλ there is a vector corresponding to 1 ∈ C[x1, x2, · · · ].

We can write the formula for this vector in F, which we denote by |λ〉:
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• The Fock space F as a H-module is decomposed as follows:

F =
⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of it
as C[x1, x2, · · · ].

So in Vλ there is a vector corresponding to 1 ∈ C[x1, x2, · · · ].

We can write the formula for this vector in F, which we denote by |λ〉:

|λ〉 = |0〉, λ = 0,

|λ〉 = ψ+

−λ+ 1
2

· · ·ψ+

− 1
2

|0〉, λ > 0,

|λ〉 = ψ−

λ+ 1
2

· · ·ψ−

− 1
2

|0〉, λ < 0.
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• Another interesting operator is the following.
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• Another interesting operator is the following.

Define L(z) :=
∑

m∈Z
Lmz−m−2, where L(z) := 1

2
: α(z)α(z) :.
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• Another interesting operator is the following.

Define L(z) :=
∑

m∈Z
Lmz−m−2, where L(z) := 1

2
: α(z)α(z) :.

Take out the coefficient of z−2, which is

L0 =
1

2

∑

m∈Z

: αmα−m : .
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• Another interesting operator is the following.

Define L(z) :=
∑

m∈Z
Lmz−m−2, where L(z) := 1

2
: α(z)α(z) :.

Take out the coefficient of z−2, which is

L0 =
1

2

∑

m∈Z

: αmα−m : .

• The following formulas are needed later on:

[L0, αn] = −nαn,

[L0, ψ±
r ] = −rψ±

r ,

[α0, ψ±
r ] = ±ψ±

r .
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6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.
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6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its
eigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.
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6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its
eigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these
eigenvalues.
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6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its
eigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these
eigenvalues.

How can we write down all this information in a short way?
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6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its
eigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these
eigenvalues.

How can we write down all this information in a short way?

Here is one: Let x be a formal symbol and write the expression

Tr(xT ) :=
∑

µ

dimWµxµ.
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6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its
eigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these
eigenvalues.

How can we write down all this information in a short way?

Here is one: Let x be a formal symbol and write the expression

Tr(xT ) :=
∑

µ

dimWµxµ.

The reason to call the above expression Trace of xT is because if we think of xT

acting on Wµ as xµ, then the expression is precisely the trace of xT on W !
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• Suppose T : W → W and S : W → W are two diagonalizable linear maps and
[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S can
be simultaneously diagonalized.
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• Suppose T : W → W and S : W → W are two diagonalizable linear maps and
[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S can
be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the
expression

Tr(xT qS) =
∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.
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• Suppose T : W → W and S : W → W are two diagonalizable linear maps and
[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S can
be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the
expression

Tr(xT qS) =
∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.
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• Suppose T : W → W and S : W → W are two diagonalizable linear maps and
[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S can
be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the
expression

Tr(xT qS) =
∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

We have two commuting diagonalizable maps L0 : F → F and α0 : F → F.
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• Suppose T : W → W and S : W → W are two diagonalizable linear maps and
[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S can
be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the
expression

Tr(xT qS) =
∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

We have two commuting diagonalizable maps L0 : F → F and α0 : F → F.

So we can compute Tr(xL0qα0 ) on F.
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• Suppose T : W → W and S : W → W are two diagonalizable linear maps and
[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S can
be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the
expression

Tr(xT qS) =
∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

We have two commuting diagonalizable maps L0 : F → F and α0 : F → F.

So we can compute Tr(xL0qα0 ) on F.

There are two methods to compute this.
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First Method

• We use the formulas:
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First Method
• We use the formulas:

[α0, ψ±
r ] = ±ψ±

r ,

[L0, ψ±
r ] = −rψ±

r .
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First Method
• We use the formulas:

[α0, ψ±
r ] = ±ψ±

r ,

[L0, ψ±
r ] = −rψ±

r .

• The Fock space F has a basis of the form

ψ±
rk

· · ·ψ±
r1
|0〉,

where there are no repetitions of the ψ±
ri

and ri < 0.
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First Method
• We use the formulas:

[α0, ψ±
r ] = ±ψ±

r ,

[L0, ψ±
r ] = −rψ±

r .

• The Fock space F has a basis of the form

ψ±
rk

· · ·ψ±
r1
|0〉,

where there are no repetitions of the ψ±
ri

and ri < 0.

Now L0|0〉 = 0 and α0|0〉 = 0 and hence
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First Method
• We use the formulas:

[α0, ψ±
r ] = ±ψ±

r ,

[L0, ψ±
r ] = −rψ±

r .

• The Fock space F has a basis of the form

ψ±
rk

· · ·ψ±
r1
|0〉,

where there are no repetitions of the ψ±
ri

and ri < 0.

Now L0|0〉 = 0 and α0|0〉 = 0 and hence

Tr(xαqL0 ) =
∏

r 1
2
+Z+

(1 + xqr)(1 + x−1qr).

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.18/20



Second Method

• We use the formulas:
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Second Method
• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.
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Second Method
• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk
· · ·αm1

|λ〉,

where there are repetitions of the αmi
are allowed and mi < 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20



Second Method
• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk
· · ·αm1

|λ〉,

where there are repetitions of the αmi
are allowed and mi < 0.

Now L0|λ〉 =
(

∑λ
i=1

(i − 1

2
)
)

|λ〉 = λ2

2
|λ〉 and α0|λ〉 = λ|λ〉 and hence
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Second Method
• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk
· · ·αm1

|λ〉,

where there are repetitions of the αmi
are allowed and mi < 0.

Now L0|λ〉 =
(

∑λ
i=1

(i − 1

2
)
)

|λ〉 = λ2

2
|λ〉 and α0|λ〉 = λ|λ〉 and hence

Tr(xαqL0 )|Vλ
= xλq

λ2

2
∏

j∈N

1

1−qj .

Thus

Tr(xαqL0 ) =
∑

λ∈Z

xλq
λ2

2

∏

j∈N

1

1 − qj
.
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Second Method
• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk
· · ·αm1

|λ〉,

where there are repetitions of the αmi
are allowed and mi < 0.

Now L0|λ〉 =
(

∑λ
i=1

(i − 1

2
)
)

|λ〉 = λ2

2
|λ〉 and α0|λ〉 = λ|λ〉 and hence

Tr(xαqL0 )|Vλ
= xλq

λ2

2
∏

j∈N

1

1−qj .

Thus

Tr(xαqL0 ) =
∑

λ∈Z

xλq
λ2

2

∏

j∈N

1

1 − qj
.
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• Now we combine both formulas together and we get
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• Now we combine both formulas together and we get

∑

λ∈Z

xλq
λ2

2

∏

j∈N

1

1 − qj
=

∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr).
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• Now we combine both formulas together and we get

∑

λ∈Z

xλq
λ2

2

∏

j∈N

1

1 − qj
=

∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr).

Hence

∑

λ∈Z

xλq
λ2

2 =
∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 1
2 ).
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• Now we combine both formulas together and we get

∑

λ∈Z

xλq
λ2

2

∏

j∈N

1

1 − qj
=

∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr).

Hence

∑

λ∈Z

xλq
λ2

2 =
∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 1
2 ).

This is the celebrated Jacobi Triple Product Identity.
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• Now we combine both formulas together and we get

∑

λ∈Z

xλq
λ2

2

∏

j∈N

1

1 − qj
=

∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr).

Hence

∑

λ∈Z

xλq
λ2

2 =
∏

r∈ 1
2
+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 1
2 ).

This is the celebrated Jacobi Triple Product Identity.

Remark: Many other combinatorial identities can be obtained from similar method
using representation theory. So main idea here is to compute the character of the
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