Boson-Fermion Correspondence and Jacobi Triple Product Identity

Shun-Jen Cheng

Department of Mathematics
National Taiwan University

Organization

Organization

1. Representation Theory

Organization

1. Representation Theory
2. Example of Lie (super)algebras

Organization

1. Representation Theory
2. Example of Lie (super)algebras
3. Clifford Algebra and the fermionic Fock Space

Organization

1. Representation Theory
2. Example of Lie (super)algebras
3. Clifford Algebra and the fermionic Fock Space
4. Heisenberg Algebra and the bosonic Fock Space

Organization

1. Representation Theory
2. Example of Lie (super)algebras
3. Clifford Algebra and the fermionic Fock Space
4. Heisenberg Algebra and the bosonic Fock Space
5. Decomposition of the fermionic Fock Space

Organization

1. Representation Theory
2. Example of Lie (super)algebras
3. Clifford Algebra and the fermionic Fock Space
4. Heisenberg Algebra and the bosonic Fock Space
5. Decomposition of the fermionic Fock Space
6. Computation of the Character and Jacobi Triple Product Identity

1. Representation Theory

1. Representation Theory

- What is representation theory all about?

1. Representation Theory

- What is representation theory all about?
- One may say that representation theory is the realization of abstract structures as matrices.

1. Representation Theory

- What is representation theory all about?
- One may say that representation theory is the realization of abstract structures as matrices.
- Example: Take an abstract finite group G. A representation of G consists of two pieces of data:

1. Representation Theory

- What is representation theory all about?
- One may say that representation theory is the realization of abstract structures as matrices.
- Example: Take an abstract finite group G. A representation of G consists of two pieces of data:

1. A vector space V over some field k.

1. Representation Theory

- What is representation theory all about?
- One may say that representation theory is the realization of abstract structures as matrices.
- Example: Take an abstract finite group G. A representation of G consists of two pieces of data:

1. A vector space V over some field k.
2. A group homomorphism $\rho: G \rightarrow \mathrm{GL}_{k}(V)$. $\operatorname{Here}^{\operatorname{GL}}(V)$ is just the group of all invertible k-linear maps from V to V itself. So we can think of elements in $\mathrm{GL}_{k}(V)$ as matrices.

1. Representation Theory

- What is representation theory all about?
- One may say that representation theory is the realization of abstract structures as matrices.
- Example: Take an abstract finite group G. A representation of G consists of two pieces of data:

1. A vector space V over some field k.
2. A group homomorphism $\rho: G \rightarrow \mathrm{GL}_{k}(V)$. $\operatorname{Here}^{\mathrm{GL}_{k}}(V)$ is just the group of all invertible k-linear maps from V to V itself. So we can think of elements in $\mathrm{GL}_{k}(V)$ as matrices.

- The fact that ρ is a group homomorphism means that

$$
\rho(x y)=\rho(x) \rho(y),
$$

and hence the group structure of G, namely the group multiplication, is preserved.

1. Representation Theory

- What is representation theory all about?
- One may say that representation theory is the realization of abstract structures as matrices.
- Example: Take an abstract finite group G. A representation of G consists of two pieces of data:

1. A vector space V over some field k.
2. A group homomorphism $\rho: G \rightarrow \mathrm{GL}_{k}(V)$. $\operatorname{Here}^{\mathrm{GL}_{k}}(V)$ is just the group of all invertible k-linear maps from V to V itself. So we can think of elements in $\mathrm{GL}_{k}(V)$ as matrices.

- The fact that ρ is a group homomorphism means that

$$
\rho(x y)=\rho(x) \rho(y),
$$

and hence the group structure of G, namely the group multiplication, is preserved.

- So representation is just a way of realizing something that may be very abstract as matrices.

An Easy Example

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2. Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2 . Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.
- What kind of representations do we know?

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2 . Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.
- What kind of representations do we know?
- Take $V=\mathbb{C}$ the field of complex numbers, which we regard as a one-dimensional vector space over \mathbb{C} itself.

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2 . Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.
- What kind of representations do we know?
- Take $V=\mathbb{C}$ the field of complex numbers, which we regard as a one-dimensional vector space over \mathbb{C} itself.

So we are now looking at homomorphisms

$$
\rho: \mathbb{Z}_{2} \rightarrow \mathrm{GL}_{\mathbb{C}}(\mathbb{C})=\mathbb{C}^{*}
$$

where $\mathbb{C}^{*}=\mathbb{C}-0$.

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2 . Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.
- What kind of representations do we know?
- Take $V=\mathbb{C}$ the field of complex numbers, which we regard as a one-dimensional vector space over \mathbb{C} itself.

So we are now looking at homomorphisms

$$
\rho: \mathbb{Z}_{2} \rightarrow \mathrm{GL}_{\mathbb{C}}(\mathbb{C})=\mathbb{C}^{*}
$$

where $\mathbb{C}^{*}=\mathbb{C}-0$.
Since we must have $\rho\left(x^{2}\right)=\rho(x)^{2}=\rho(e)=1$ we must have $\rho(x)= \pm 1$. So we have only two representations here, namely

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2 . Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.
- What kind of representations do we know?
- Take $V=\mathbb{C}$ the field of complex numbers, which we regard as a one-dimensional vector space over \mathbb{C} itself.

So we are now looking at homomorphisms

$$
\rho: \mathbb{Z}_{2} \rightarrow \mathrm{GL}_{\mathbb{C}}(\mathbb{C})=\mathbb{C}^{*}
$$

where $\mathbb{C}^{*}=\mathbb{C}-0$.
Since we must have $\rho\left(x^{2}\right)=\rho(x)^{2}=\rho(e)=1$ we must have $\rho(x)= \pm 1$. So we have only two representations here, namely

- The trivial representation

$$
\rho(e)=1, \quad \rho(x)=1 .
$$

An Easy Example

- Let us take $G=\mathbb{Z}_{2}$, the group of order 2 . Let's say that $G=\{e, x\}$, where $x^{2}=e$, and e is the identity element.
- What kind of representations do we know?
- Take $V=\mathbb{C}$ the field of complex numbers, which we regard as a one-dimensional vector space over \mathbb{C} itself.

So we are now looking at homomorphisms

$$
\rho: \mathbb{Z}_{2} \rightarrow \mathrm{GL}_{\mathbb{C}}(\mathbb{C})=\mathbb{C}^{*}
$$

where $\mathbb{C}^{*}=\mathbb{C}-0$.
Since we must have $\rho\left(x^{2}\right)=\rho(x)^{2}=\rho(e)=1$ we must have $\rho(x)= \pm 1$. So we have only two representations here, namely

- The trivial representation

$$
\rho(e)=1, \quad \rho(x)=1
$$

- The sign representation

$$
\rho(e)=1, \quad \rho(x)=-1 .
$$

Representations and Modules

Representations and Modules

- Given a representation ρ of G on a vector space V over a field k.

Representations and Modules

- Given a representation ρ of G on a vector space V over a field k.
- We can make V into a G-module by defining:

Representations and Modules

- Given a representation ρ of G on a vector space V over a field k.
- We can make V into a G-module by defining:
$g \cdot v:=\rho(g) v, \quad g \in G ; v \in V$.

Representations and Modules

- Given a representation ρ of G on a vector space V over a field k.
- We can make V into a G-module by defining:
$g \cdot v:=\rho(g) v, \quad g \in G ; v \in V$.
- Conversely given a G-module V we can define a representation ρ of G on V by defining:

Representations and Modules

- Given a representation ρ of G on a vector space V over a field k.
- We can make V into a G-module by defining:
$g \cdot v:=\rho(g) v, \quad g \in G ; v \in V$.
- Conversely given a G-module V we can define a representation ρ of G on V by defining:
$\rho(g)(v):=g \cdot v, \quad g \in G ; v \in V$.

Representations and Modules

- Given a representation ρ of G on a vector space V over a field k.
- We can make V into a G-module by defining:
$g \cdot v:=\rho(g) v, \quad g \in G ; v \in V$.
- Conversely given a G-module V we can define a representation ρ of G on V by defining:
$\rho(g)(v):=g \cdot v, \quad g \in G ; v \in V$.
- So the notion of representation of G is the SAME as the notion of a G-module.

2. Examples of Lie (super)algebras

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or
non-associative algebras.

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or
non-associative algebras.
- Of particular interest in this talk are:

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or
non-associative algebras.
- Of particular interest in this talk are:
representations of Lie algebras.

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or
non-associative algebras.
- Of particular interest in this talk are:
representations of Lie algebras.
- A Lie algebra is a vector space L over a field k equipped with a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying:

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or
non-associative algebras.
- Of particular interest in this talk are:
representations of Lie algebras.
- A Lie algebra is a vector space L over a field k equipped with a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying:
(1) $[X, Y]=-[Y, X]$, skew-symmetry and

2. Examples of Lie (super)algebras

- Finite groups are not the only thing we can represent.
- We can represent many other abstract structures, for example associative algebras
or
non-associative algebras.
- Of particular interest in this talk are:
representations of Lie algebras.
- A Lie algebra is a vector space L over a field k equipped with a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying:
(1) $[X, Y]=-[Y, X]$, skew-symmetry and
(2) $[X,[Y, Z]]=[[X, Y], Z]+[Y,[X, Z]]$, for all $X, Y, Z \in L$. Jacobi identity.
- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.
- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

Then skew-symmetry and Jacobi identity are satisfied.

- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

Then skew-symmetry and Jacobi identity are satisfied.
So $\operatorname{End}_{k}(V)$ is naturally a Lie algebra.

- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

Then skew-symmetry and Jacobi identity are satisfied.
So $\operatorname{End}_{k}(V)$ is naturally a Lie algebra.

- We need also notion of a Lie superalgebra.
- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

Then skew-symmetry and Jacobi identity are satisfied.
So $\operatorname{End}_{k}(V)$ is naturally a Lie algebra.

- We need also notion of a Lie superalgebra.

A Lie superalgebra L is a \mathbb{Z}_{2}-graded space, i.e. L is a direct sum of two vector spaces

$$
L=L_{\overline{0}} \oplus L_{\overline{1}},
$$

equipped with a degree-preserving (i.e. $\left[L_{\epsilon}, L_{\delta}\right] \subseteq L_{\epsilon+\delta}, \epsilon, \delta \in \mathbb{Z}_{2}$) bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying

- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

Then skew-symmetry and Jacobi identity are satisfied.
So $\operatorname{End}_{k}(V)$ is naturally a Lie algebra.

- We need also notion of a Lie superalgebra.

A Lie superalgebra L is a \mathbb{Z}_{2}-graded space, i.e. L is a direct sum of two vector spaces

$$
L=L_{\overline{0}} \oplus L_{\overline{1}},
$$

equipped with a degree-preserving (i.e. $\left[L_{\epsilon}, L_{\delta}\right] \subseteq L_{\epsilon+\delta}, \epsilon, \delta \in \mathbb{Z}_{2}$) bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying
(1) $[X, Y]=-(-1)^{x y}[Y, X]$, super-skew-symmetry and

- Let V be any vector space over k and consider $\operatorname{End}_{k}(V)$, the space of all k-linear maps from V to V.

We can make $\operatorname{End}_{k}(V)$ into a Lie algebra by defining $[\cdot, \cdot]$ by:

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \operatorname{End}_{k}(V)
$$

Then skew-symmetry and Jacobi identity are satisfied.
So $\operatorname{End}_{k}(V)$ is naturally a Lie algebra.

- We need also notion of a Lie superalgebra.

A Lie superalgebra L is a \mathbb{Z}_{2}-graded space, i.e. L is a direct sum of two vector spaces

$$
L=L_{\overline{0}} \oplus L_{\overline{1}},
$$

equipped with a degree-preserving (i.e. $\left[L_{\epsilon}, L_{\delta}\right] \subseteq L_{\epsilon+\delta}, \epsilon, \delta \in \mathbb{Z}_{2}$) bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying
(1) $[X, Y]=-(-1)^{x y}[Y, X]$, super-skew-symmetry and
(2) $[X,[Y, Z]]=[[X, Y], Z]+(-1)^{x y}[Y,[X, Z]]$. super Jacobi identity.

Above X, Y, Z are all homogeneous elements of L and $x=\epsilon$, if $X \in L_{\epsilon}$.
3. Clifford superalgebra and the fermionic Fock Space
3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.
- Let \mathcal{C} be the vector space spanned by the following basis elements:

3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.
- Let \mathcal{C} be the vector space spanned by the following basis elements:

$$
\mathbf{1}, \quad \psi_{r}^{+}, \quad \psi_{r}^{-}, \quad r \in \frac{1}{2}+\mathbb{Z}
$$

3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.
- Let \mathcal{C} be the vector space spanned by the following basis elements:

$$
\mathbf{1}, \quad \psi_{r}^{+}, \quad \psi_{r}^{-}, \quad r \in \frac{1}{2}+\mathbb{Z}
$$

Set $L_{\overline{0}}=\mathbb{C} 1$ and $L_{\overline{1}}=\sum_{r} \mathbb{C} \psi_{r}^{+}+\sum_{r} \mathbb{C} \psi_{r}^{-}$.

3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.
- Let \mathcal{C} be the vector space spanned by the following basis elements:

$$
\mathbf{1}, \quad \psi_{r}^{+}, \quad \psi_{r}^{-}, \quad r \in \frac{1}{2}+\mathbb{Z}
$$

Set $L_{\overline{0}}=\mathbb{C} 1$ and $L_{\overline{1}}=\sum_{r} \mathbb{C} \psi_{r}^{+}+\sum_{r} \mathbb{C} \psi_{r}^{-}$.
Define the only non-zero Lie super-bracket $[\cdot, \cdot]$ on \mathcal{C} by

$$
\left[\psi_{r}^{+}, \psi_{s}^{-}\right]=\left[\psi_{s}^{-}, \psi_{r}^{+}\right]=\delta_{r+s, 0} \mathbf{1} .
$$

3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.
- Let \mathcal{C} be the vector space spanned by the following basis elements:

$$
\mathbf{1}, \quad \psi_{r}^{+}, \quad \psi_{r}^{-}, \quad r \in \frac{1}{2}+\mathbb{Z}
$$

Set $L_{\overline{0}}=\mathbb{C} 1$ and $L_{\overline{1}}=\sum_{r} \mathbb{C} \psi_{r}^{+}+\sum_{r} \mathbb{C} \psi_{r}^{-}$.
Define the only non-zero Lie super-bracket $[\cdot, \cdot]$ on \mathcal{C} by

$$
\left[\psi_{r}^{+}, \psi_{s}^{-}\right]=\left[\psi_{s}^{-}, \psi_{r}^{+}\right]=\delta_{r+s, 0} \mathbf{1} .
$$

Then the super-skew-symmetry is satisfied by definition, while Jacobi identity is trivially satisfied.

3. Clifford superalgebra and the fermionic Fock Space

- Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.
- Let \mathcal{C} be the vector space spanned by the following basis elements:

$$
\mathbf{1}, \quad \psi_{r}^{+}, \quad \psi_{r}^{-}, \quad r \in \frac{1}{2}+\mathbb{Z}
$$

Set $L_{\overline{0}}=\mathbb{C} 1$ and $L_{\overline{1}}=\sum_{r} \mathbb{C} \psi_{r}^{+}+\sum_{r} \mathbb{C} \psi_{r}^{-}$.
Define the only non-zero Lie super-bracket $[\cdot, \cdot]$ on \mathcal{C} by

$$
\left[\psi_{r}^{+}, \psi_{s}^{-}\right]=\left[\psi_{s}^{-}, \psi_{r}^{+}\right]=\delta_{r+s, 0} \mathbf{1}
$$

Then the super-skew-symmetry is satisfied by definition, while Jacobi identity is trivially satisfied.

This is an example of an infinite-dimensional Lie superalgebra.

- Let's construct the following representation \mathcal{F} of \mathcal{C}. \mathcal{F} is called the fermionic Fock space.
- Let's construct the following representation \mathcal{F} of \mathcal{C}. \mathcal{F} is called the fermionic Fock space.
\mathcal{F} is the space spanned by basis elements of the form

$$
\psi_{-r_{k}}^{+} \psi_{-r_{k-1}}^{+} \cdots \psi_{-r_{1}}^{+} \psi_{-s_{l}}^{-} \psi_{-s_{l-1}}^{-} \cdots \psi_{-s_{1}}^{-}|0\rangle
$$

where $r_{k}>r_{k-1}>\cdots>r_{1}>0$ and $s_{l}>s_{l-1}>\cdots>s_{1}>0$.

- Let's construct the following representation \mathcal{F} of \mathcal{C}. \mathcal{F} is called the fermionic Fock space.
\mathcal{F} is the space spanned by basis elements of the form

$$
\psi_{-r_{k}}^{+} \psi_{-r_{k-1}}^{+} \cdots \psi_{-r_{1}}^{+} \psi_{-s_{l}}^{-} \psi_{-s_{l-1}}^{-} \cdots \psi_{-s_{1}}^{-}|0\rangle
$$

where $r_{k}>r_{k-1}>\cdots>r_{1}>0$ and $s_{l}>s_{l-1}>\cdots>s_{1}>0$.
Here is how \mathcal{C} acts on \mathcal{F} :

$$
\begin{aligned}
& \psi_{r}^{ \pm}|0\rangle:=0, \quad r>0 \\
& \mathbf{1}|0\rangle:=|0\rangle
\end{aligned}
$$

- Let's construct the following representation \mathcal{F} of \mathcal{C}. \mathcal{F} is called the fermionic Fock space.
\mathcal{F} is the space spanned by basis elements of the form

$$
\psi_{-r_{k}}^{+} \psi_{-r_{k-1}}^{+} \cdots \psi_{-r_{1}}^{+} \psi_{-s_{l}}^{-} \psi_{-s_{l-1}}^{-} \cdots \psi_{-s_{1}}^{-}|0\rangle
$$

where $r_{k}>r_{k-1}>\cdots>r_{1}>0$ and $s_{l}>s_{l-1}>\cdots>s_{1}>0$.
Here is how \mathcal{C} acts on \mathcal{F} :

$$
\begin{aligned}
& \psi_{r}^{ \pm}|0\rangle:=0, \quad r>0, \\
& \mathbf{1}|0\rangle:=|0\rangle .
\end{aligned}
$$

and the remaining action is determined by the relation

$$
\begin{array}{r}
\psi_{r}^{+} \psi_{s}^{-}+\psi_{s}^{-} \psi_{r}^{+}=\delta_{r s} \mathbf{1} \\
\psi_{r}^{+} \psi_{s}^{+}+\psi_{s}^{+} \psi_{r}^{+}=0 \\
\psi_{r}^{-} \psi_{s}^{-}+\psi_{s}^{-} \psi_{r}^{-}=0
\end{array}
$$

- Let's construct the following representation \mathcal{F} of \mathcal{C}. \mathcal{F} is called the fermionic Fock space.
\mathcal{F} is the space spanned by basis elements of the form

$$
\psi_{-r_{k}}^{+} \psi_{-r_{k-1}}^{+} \cdots \psi_{-r_{1}}^{+} \psi_{-s_{l}}^{-} \psi_{-s_{l-1}}^{-} \cdots \psi_{-s_{1}}^{-}|0\rangle
$$

where $r_{k}>r_{k-1}>\cdots>r_{1}>0$ and $s_{l}>s_{l-1}>\cdots>s_{1}>0$.
Here is how \mathcal{C} acts on \mathcal{F} :

$$
\begin{aligned}
& \psi_{r}^{ \pm}|0\rangle:=0, \quad r>0, \\
& \mathbf{1}|0\rangle:=|0\rangle .
\end{aligned}
$$

and the remaining action is determined by the relation

$$
\begin{array}{r}
\psi_{r}^{+} \psi_{s}^{-}+\psi_{s}^{-} \psi_{r}^{+}=\delta_{r s} \mathbf{1} \\
\psi_{r}^{+} \psi_{s}^{+}+\psi_{s}^{+} \psi_{r}^{+}=0 \\
\psi_{r}^{-} \psi_{s}^{-}+\psi_{s}^{-} \psi_{r}^{-}=0
\end{array}
$$

For example: $\psi_{\frac{1}{2}}^{+} \cdot \psi_{-\frac{1}{2}}^{-}|0\rangle=-\psi_{-\frac{1}{2}}^{-} \cdot \psi_{\frac{1}{2}}^{+}|0\rangle+\mathbf{1}|0\rangle=|0\rangle$.
4. Heisenberg Algebra and the bosonic Fock space

4. Heisenberg Algebra and the bosonic Fock space

- Here is an easy example of a Lie algebra, called the Heisenberg algebra.

4. Heisenberg Algebra and the bosonic Fock space

- Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take \mathcal{H} to be the vector space spanned by the basis elements

4. Heisenberg Algebra and the bosonic Fock space

- Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take \mathcal{H} to be the vector space spanned by the basis elements

$$
\mathbf{1}, \quad \alpha_{m}, \quad m \in \mathbb{Z}
$$

4. Heisenberg Algebra and the bosonic Fock space

- Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take \mathcal{H} to be the vector space spanned by the basis elements

$$
\mathbf{1}, \quad \alpha_{m}, \quad m \in \mathbb{Z}
$$

Define the only non-zero Lie bracket to be

$$
\left[\alpha_{m}, \alpha_{n}\right]=m \delta_{m+n, 0} \mathbf{1} .
$$

4. Heisenberg Algebra and the bosonic Fock space

- Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take \mathcal{H} to be the vector space spanned by the basis elements

$$
\mathbf{1}, \quad \alpha_{m}, \quad m \in \mathbb{Z}
$$

Define the only non-zero Lie bracket to be

$$
\left[\alpha_{m}, \alpha_{n}\right]=m \delta_{m+n, 0} \mathbf{1}
$$

Again skew-symmetry is satisfied by definition, while the Jacobi identity is trivially satisfied.

4. Heisenberg Algebra and the bosonic Fock space

- Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take \mathcal{H} to be the vector space spanned by the basis elements

$$
\mathbf{1}, \quad \alpha_{m}, \quad m \in \mathbb{Z}
$$

Define the only non-zero Lie bracket to be

$$
\left[\alpha_{m}, \alpha_{n}\right]=m \delta_{m+n, 0} \mathbf{1}
$$

Again skew-symmetry is satisfied by definition, while the Jacobi identity is trivially satisfied.

This is an example of an infinite-dimensional Lie algebra.

- Let us construct representations of \mathcal{H} :
- Let us construct representations of \mathcal{H} :

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \cdots\right]$ be the polynomial ring in infinitely many variables $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.

- Let us construct representations of \mathcal{H} :

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \cdots\right]$ be the polynomial ring in infinitely many variables $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.

For any fixed complex number $\lambda \in \mathbb{C}$ define an \mathcal{H}-module (and hence a representation of \mathcal{H}) by the formulas:

- Let us construct representations of \mathcal{H} :

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \cdots\right]$ be the polynomial ring in infinitely many variables $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.

For any fixed complex number $\lambda \in \mathbb{C}$ define an \mathcal{H}-module (and hence a representation of \mathcal{H}) by the formulas:

$$
\begin{gathered}
\alpha_{-m}:=m x_{m}, \quad m>0 \\
\alpha_{m}:=\frac{\partial}{\partial x_{m}}, \quad m>0 \\
\alpha_{0}:=\lambda
\end{gathered}
$$

- Let us construct representations of \mathcal{H} :

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \cdots\right]$ be the polynomial ring in infinitely many variables $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.

For any fixed complex number $\lambda \in \mathbb{C}$ define an \mathcal{H}-module (and hence a representation of \mathcal{H}) by the formulas:

$$
\begin{gathered}
\alpha_{-m}:=m x_{m}, \quad m>0 \\
\alpha_{m}:=\frac{\partial}{\partial x_{m}}, \quad m>0 \\
\alpha_{0}:=\lambda
\end{gathered}
$$

Above the formulas give the way the elements α_{m} acts on a polynomial in $\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$, for example

$$
\alpha_{1} \cdot x_{1}=1 ; \quad \alpha_{-1} x_{1}=x_{1}^{2} ; \quad \alpha_{0} x_{1}=\lambda x_{1} .
$$

- Let us construct representations of \mathcal{H} :

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \cdots\right]$ be the polynomial ring in infinitely many variables $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.

For any fixed complex number $\lambda \in \mathbb{C}$ define an \mathcal{H}-module (and hence a representation of \mathcal{H}) by the formulas:

$$
\begin{gathered}
\alpha_{-m}:=m x_{m}, \quad m>0, \\
\alpha_{m}:=\frac{\partial}{\partial x_{m}}, \quad m>0, \\
\alpha_{0}:=\lambda .
\end{gathered}
$$

Above the formulas give the way the elements α_{m} acts on a polynomial in $\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$, for example

$$
\alpha_{1} \cdot x_{1}=1 ; \quad \alpha_{-1} x_{1}=x_{1}^{2} ; \quad \alpha_{0} x_{1}=\lambda x_{1} .
$$

This way we obtain a one-parameter family of \mathcal{H}-modules, which we will denote by

$$
V_{\lambda}, \quad \lambda \in \mathbb{C}
$$

5. Decomposition of the fermionic Fock Space

5. Decomposition of the fermionic Fock Space

- Now there is an action of the Heisenberg Lie algebra \mathcal{H} on the fermionic Fock space \mathcal{F}. We can see this as follows:

5. Decomposition of the fermionic Fock Space

- Now there is an action of the Heisenberg Lie algebra \mathcal{H} on the fermionic Fock space \mathcal{F}. We can see this as follows:

We need to find a way to have α_{m} act on \mathcal{F}, for all $m \in \mathbb{Z}$, in a way compatible with the Lie bracket of \mathcal{H}.

5. Decomposition of the fermionic Fock Space

- Now there is an action of the Heisenberg Lie algebra \mathcal{H} on the fermionic Fock space \mathcal{F}. We can see this as follows:

We need to find a way to have α_{m} act on \mathcal{F}, for all $m \in \mathbb{Z}$, in a way compatible with the Lie bracket of \mathcal{H}.

Let us define the normal ordering : .. : of two ψ operators by

$$
\begin{aligned}
& : \psi_{r}^{ \pm} \psi_{s}^{ \pm}:=-\psi_{s}^{ \pm} \psi_{r}^{ \pm}, \quad \text { if } s<0 \text { and } r>0 \\
& : \psi_{r}^{ \pm} \psi_{s}^{ \pm}:=\psi_{r}^{ \pm} \psi_{s}^{ \pm}, \quad \text { otherwise }
\end{aligned}
$$

5. Decomposition of the fermionic Fock Space

- Now there is an action of the Heisenberg Lie algebra \mathcal{H} on the fermionic Fock space \mathcal{F}. We can see this as follows:

We need to find a way to have α_{m} act on \mathcal{F}, for all $m \in \mathbb{Z}$, in a way compatible with the Lie bracket of \mathcal{H}.

Let us define the normal ordering : .. : of two ψ operators by

$$
\begin{aligned}
& : \psi_{r}^{ \pm} \psi_{s}^{ \pm}:=-\psi_{s}^{ \pm} \psi_{r}^{ \pm}, \quad \text { if } s<0 \text { and } r>0 \\
& : \psi_{r}^{ \pm} \psi_{s}^{ \pm}:=\psi_{r}^{ \pm} \psi_{s}^{ \pm}, \quad \text { otherwise }
\end{aligned}
$$

Similarly define the normal ordering : .. : of two α operators by

$$
\begin{aligned}
& : \alpha_{m} \alpha_{n}:=\alpha_{n} \alpha_{m}, \quad \text { if } n<0 \text { and } m>0 \\
& : \alpha_{m} \alpha_{n}:=\alpha_{m} \alpha_{n}, \quad \text { otherwise }
\end{aligned}
$$

5. Decomposition of the fermionic Fock Space

- Now there is an action of the Heisenberg Lie algebra \mathcal{H} on the fermionic Fock space \mathcal{F}. We can see this as follows:

We need to find a way to have α_{m} act on \mathcal{F}, for all $m \in \mathbb{Z}$, in a way compatible with the Lie bracket of \mathcal{H}.

Let us define the normal ordering : .. : of two ψ operators by

$$
\begin{aligned}
& : \psi_{r}^{ \pm} \psi_{s}^{ \pm}:=-\psi_{s}^{ \pm} \psi_{r}^{ \pm}, \quad \text { if } s<0 \text { and } r>0 \\
& : \psi_{r}^{ \pm} \psi_{s}^{ \pm}:=\psi_{r}^{ \pm} \psi_{s}^{ \pm}, \quad \text { otherwise }
\end{aligned}
$$

Similarly define the normal ordering : .. : of two α operators by

$$
\begin{array}{ll}
: \alpha_{m} \alpha_{n}:=\alpha_{n} \alpha_{m}, & \text { if } n<0 \text { and } m>0, \\
: \alpha_{m} \alpha_{n}:=\alpha_{m} \alpha_{n}, & \text { otherwise } .
\end{array}
$$

- Introduce three generating series (z an indeterminate):

$$
\begin{aligned}
\psi^{ \pm}(z) & :=\sum_{r \in \frac{1}{2}+\mathbb{Z}} \psi_{r}^{ \pm} z^{-r-\frac{1}{2}} \\
\alpha(z) & :=\sum_{m \in \mathbb{Z}} \alpha_{m} z^{-m-1}
\end{aligned}
$$

- Then we have the following:
- Then we have the following:

$$
\alpha(z)=: \psi^{+}(z) \psi_{-}(z):
$$

- Then we have the following:

$$
\alpha(z)=: \psi^{+}(z) \psi_{-}(z):
$$

The statement above means the following:

- Then we have the following:

$$
\alpha(z)=: \psi^{+}(z) \psi_{-}(z):
$$

The statement above means the following:
If we write $A(z)=: \psi^{+}(z) \psi^{-}(z)$: by collecting all the powers of z, then $A(z)=\sum_{m \in \mathbb{Z}} A_{m} z^{-m-1}$. The statement simply means that

$$
\left[A_{m}, A_{n}\right]=A_{m} A_{n}-A_{n} A_{m}=m \delta_{m+n, 0} \cdot 1 .
$$

- Then we have the following:

$$
\alpha(z)=: \psi^{+}(z) \psi_{-}(z):
$$

The statement above means the following:
If we write $A(z)=: \psi^{+}(z) \psi^{-}(z)$: by collecting all the powers of z, then $A(z)=\sum_{m \in \mathbb{Z}} A_{m} z^{-m-1}$. The statement simply means that

$$
\left[A_{m}, A_{n}\right]=A_{m} A_{n}-A_{n} A_{m}=m \delta_{m+n, 0} \cdot 1
$$

Hence if we let α_{m} act by A_{m} and 1 act by 1 , then \mathcal{F} is a representation of \mathcal{H}.

- Then we have the following:

$$
\alpha(z)=: \psi^{+}(z) \psi_{-}(z):
$$

The statement above means the following:
If we write $A(z)=: \psi^{+}(z) \psi^{-}(z)$: by collecting all the powers of z, then $A(z)=\sum_{m \in \mathbb{Z}} A_{m} z^{-m-1}$. The statement simply means that

$$
\left[A_{m}, A_{n}\right]=A_{m} A_{n}-A_{n} A_{m}=m \delta_{m+n, 0} \cdot 1
$$

Hence if we let α_{m} act by A_{m} and 1 act by 1 , then \mathcal{F} is a representation of \mathcal{H}.

- Note that A_{m} is always a sum of infinitely many operators. Let us write down for example

$$
A_{0}:=\sum_{r \in \frac{1}{2}+\mathbb{Z}}: \psi_{r}^{+} \psi_{-r}^{-}:=\alpha_{0}
$$

- The Fock space \mathcal{F} as a \mathcal{H}-module is decomposed as follows:
- The Fock space \mathcal{F} as a \mathscr{H}-module is decomposed as follows:

$$
\mathcal{F}=\bigoplus_{\lambda \in \mathbb{Z}} V_{\lambda} .
$$

- The Fock space \mathcal{F} as a \mathcal{H}-module is decomposed as follows:

$$
\mathcal{F}=\bigoplus_{\lambda \in \mathbb{Z}} V_{\lambda} .
$$

We know from earlier that, when thinking of V_{λ} as an \mathscr{F}-module, we can think of it as $\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.

- The Fock space \mathcal{F} as a \mathscr{H}-module is decomposed as follows:

$$
\mathcal{F}=\bigoplus_{\lambda \in \mathbb{Z}} V_{\lambda} .
$$

We know from earlier that, when thinking of V_{λ} as an \mathcal{H}-module, we can think of it as $\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.

So in V_{λ} there is a vector corresponding to $1 \in \mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.

- The Fock space \mathcal{F} as a \mathscr{H}-module is decomposed as follows:

$$
\mathcal{F}=\bigoplus_{\lambda \in \mathbb{Z}} V_{\lambda} .
$$

We know from earlier that, when thinking of V_{λ} as an \mathcal{H}-module, we can think of it as $\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.

So in V_{λ} there is a vector corresponding to $1 \in \mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.
We can write the formula for this vector in \mathcal{F}, which we denote by $|\lambda\rangle$:

- The Fock space \mathcal{F} as a \mathcal{H}-module is decomposed as follows:

$$
\mathcal{F}=\bigoplus_{\lambda \in \mathbb{Z}} V_{\lambda} .
$$

We know from earlier that, when thinking of V_{λ} as an \mathscr{H}-module, we can think of it as $\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.

So in V_{λ} there is a vector corresponding to $1 \in \mathbb{C}\left[x_{1}, x_{2}, \cdots\right]$.
We can write the formula for this vector in \mathcal{F}, which we denote by $|\lambda\rangle$:

$$
\begin{array}{ll}
|\lambda\rangle=|0\rangle, & \lambda=0 \\
|\lambda\rangle=\psi_{-\lambda+\frac{1}{2}}^{+} \cdots \psi_{-\frac{1}{2}}^{+}|0\rangle, & \lambda>0 \\
|\lambda\rangle=\psi_{\lambda+\frac{1}{2}}^{-} \cdots \psi_{-\frac{1}{2}}^{-}|0\rangle, & \lambda<0 .
\end{array}
$$

- Another interesting operator is the following.
- Another interesting operator is the following.

Define $L(z):=\sum_{m \in \mathbb{Z}} L_{m} z^{-m-2}$, where $L(z):=\frac{1}{2}: \alpha(z) \alpha(z):$.

- Another interesting operator is the following.

Define $L(z):=\sum_{m \in \mathbb{Z}} L_{m} z^{-m-2}$, where $L(z):=\frac{1}{2}: \alpha(z) \alpha(z):$.
Take out the coefficient of z^{-2}, which is

$$
L_{0}=\frac{1}{2} \sum_{m \in \mathbb{Z}}: \alpha_{m} \alpha_{-m}: .
$$

- Another interesting operator is the following.

Define $L(z):=\sum_{m \in \mathbb{Z}} L_{m} z^{-m-2}$, where $L(z):=\frac{1}{2}: \alpha(z) \alpha(z):$.
Take out the coefficient of z^{-2}, which is

$$
L_{0}=\frac{1}{2} \sum_{m \in \mathbb{Z}}: \alpha_{m} \alpha_{-m}:
$$

- The following formulas are needed later on:

$$
\begin{aligned}
& {\left[L_{0}, \alpha_{n}\right]=-n \alpha_{n}} \\
& {\left[L_{0}, \psi_{r}^{ \pm}\right]=-r \psi_{r}^{ \pm}} \\
& {\left[\alpha_{0}, \psi_{r}^{ \pm}\right]= \pm \psi_{r}^{ \pm}}
\end{aligned}
$$

6. Computation of the Character and Jacobi Triple Product

Identity

- Suppose $T: W \rightarrow W$ is a diagonalizable linear map.

6. Computation of the Character and Jacobi Triple Product

Identity

- Suppose $T: W \rightarrow W$ is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its eigenspaces $W_{\mu}:=\{w \in W \mid T w=\mu w\}$ are all finite-dimensional.

6. Computation of the Character and Jacobi Triple Product

Identity

- Suppose $T: W \rightarrow W$ is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its eigenspaces $W_{\mu}:=\{w \in W \mid T w=\mu w\}$ are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these eigenvalues.

6. Computation of the Character and Jacobi Triple Product

Identity

- Suppose $T: W \rightarrow W$ is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its eigenspaces $W_{\mu}:=\{w \in W \mid T w=\mu w\}$ are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these eigenvalues.

How can we write down all this information in a short way?

6. Computation of the Character and Jacobi Triple Product

Identity

- Suppose $T: W \rightarrow W$ is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its eigenspaces $W_{\mu}:=\{w \in W \mid T w=\mu w\}$ are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these eigenvalues.

How can we write down all this information in a short way?
Here is one: Let x be a formal symbol and write the expression

$$
\operatorname{Tr}\left(x^{T}\right):=\sum_{\mu} \operatorname{dim} W_{\mu} x^{\mu} .
$$

6. Computation of the Character and Jacobi Triple Product

Identity

- Suppose $T: W \rightarrow W$ is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all its eigenspaces $W_{\mu}:=\{w \in W \mid T w=\mu w\}$ are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of these eigenvalues.

How can we write down all this information in a short way?
Here is one: Let x be a formal symbol and write the expression

$$
\operatorname{Tr}\left(x^{T}\right):=\sum_{\mu} \operatorname{dim} W_{\mu} x^{\mu} .
$$

The reason to call the above expression Trace of x^{T} is because if we think of x^{T} acting on W_{μ} as x^{μ}, then the expression is precisely the trace of x^{T} on W !

- Suppose $T: W \rightarrow W$ and $S: W \rightarrow W$ are two diagonalizable linear maps and $[T, S]=T S-S T=0$. Then it is well-known from linear algebra that T and S can be simultaneously diagonalized.
- Suppose $T: W \rightarrow W$ and $S: W \rightarrow W$ are two diagonalizable linear maps and $[T, S]=T S-S T=0$. Then it is well-known from linear algebra that T and S can be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the expression

$$
\operatorname{Tr}\left(x^{T} q^{S}\right)=\sum \operatorname{dim} W_{\mu, \nu} x^{\mu} q^{\nu}
$$

where $W_{\mu, \nu}:=\{w \in W \mid T w=\mu w, S w=\nu w\}$.

- Suppose $T: W \rightarrow W$ and $S: W \rightarrow W$ are two diagonalizable linear maps and $[T, S]=T S-S T=0$. Then it is well-known from linear algebra that T and S can be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the expression

$$
\operatorname{Tr}\left(x^{T} q^{S}\right)=\sum \operatorname{dim} W_{\mu, \nu} x^{\mu} q^{\nu}
$$

where $W_{\mu, \nu}:=\{w \in W \mid T w=\mu w, S w=\nu w\}$.

- Now we apply this knowledge to \mathcal{F}.
- Suppose $T: W \rightarrow W$ and $S: W \rightarrow W$ are two diagonalizable linear maps and $[T, S]=T S-S T=0$. Then it is well-known from linear algebra that T and S can be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the expression

$$
\operatorname{Tr}\left(x^{T} q^{S}\right)=\sum \operatorname{dim} W_{\mu, \nu} x^{\mu} q^{\nu}
$$

where $W_{\mu, \nu}:=\{w \in W \mid T w=\mu w, S w=\nu w\}$.

- Now we apply this knowledge to \mathcal{F}.

We have two commuting diagonalizable maps $L_{0}: \mathcal{F} \rightarrow \mathcal{F}$ and $\alpha_{0}: \mathcal{F} \rightarrow \mathcal{F}$.

- Suppose $T: W \rightarrow W$ and $S: W \rightarrow W$ are two diagonalizable linear maps and $[T, S]=T S-S T=0$. Then it is well-known from linear algebra that T and S can be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the expression

$$
\operatorname{Tr}\left(x^{T} q^{S}\right)=\sum \operatorname{dim} W_{\mu, \nu} x^{\mu} q^{\nu}
$$

where $W_{\mu, \nu}:=\{w \in W \mid T w=\mu w, S w=\nu w\}$.

- Now we apply this knowledge to \mathcal{F}.

We have two commuting diagonalizable maps $L_{0}: \mathcal{F} \rightarrow \mathcal{F}$ and $\alpha_{0}: \mathcal{F} \rightarrow \mathcal{F}$.
So we can compute $\operatorname{Tr}\left(x^{L_{0}} q^{\alpha_{0}}\right)$ on \mathcal{F}.

- Suppose $T: W \rightarrow W$ and $S: W \rightarrow W$ are two diagonalizable linear maps and $[T, S]=T S-S T=0$. Then it is well-known from linear algebra that T and S can be simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute the expression

$$
\operatorname{Tr}\left(x^{T} q^{S}\right)=\sum \operatorname{dim} W_{\mu, \nu} x^{\mu} q^{\nu}
$$

where $W_{\mu, \nu}:=\{w \in W \mid T w=\mu w, S w=\nu w\}$.

- Now we apply this knowledge to \mathcal{F}.

We have two commuting diagonalizable maps $L_{0}: \mathcal{F} \rightarrow \mathcal{F}$ and $\alpha_{0}: \mathcal{F} \rightarrow \mathcal{F}$.
So we can compute $\operatorname{Tr}\left(x^{L_{0}} q^{\alpha_{0}}\right)$ on \mathcal{F}.
There are two methods to compute this.

First Method

- We use the formulas:

First Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \psi_{r}^{ \pm}\right]= \pm \psi_{r}^{ \pm}} \\
& {\left[L_{0}, \psi_{r}^{ \pm}\right]=-r \psi_{r}^{ \pm} .}
\end{aligned}
$$

First Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \psi_{r}^{ \pm}\right]= \pm \psi_{r}^{ \pm}} \\
& {\left[L_{0}, \psi_{r}^{ \pm}\right]=-r \psi_{r}^{ \pm}}
\end{aligned}
$$

- The Fock space \mathcal{F} has a basis of the form

$$
\psi_{r_{k}}^{ \pm} \cdots \psi_{r_{1}}^{ \pm}|0\rangle
$$

where there are no repetitions of the $\psi_{r_{i}}^{ \pm}$and $r_{i}<0$.

First Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \psi_{r}^{ \pm}\right]= \pm \psi_{r}^{ \pm}} \\
& {\left[L_{0}, \psi_{r}^{ \pm}\right]=-r \psi_{r}^{ \pm}}
\end{aligned}
$$

- The Fock space \mathcal{F} has a basis of the form

$$
\psi_{r_{k}}^{ \pm} \cdots \psi_{r_{1}}^{ \pm}|0\rangle
$$

where there are no repetitions of the $\psi_{r_{i}}^{ \pm}$and $r_{i}<0$.
Now $L_{0}|0\rangle=0$ and $\alpha_{0}|0\rangle=0$ and hence

First Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \psi_{r}^{ \pm}\right]= \pm \psi_{r}^{ \pm}} \\
& {\left[L_{0}, \psi_{r}^{ \pm}\right]=-r \psi_{r}^{ \pm}}
\end{aligned}
$$

- The Fock space \mathcal{F} has a basis of the form

$$
\psi_{r_{k}}^{ \pm} \cdots \psi_{r_{1}}^{ \pm}|0\rangle
$$

where there are no repetitions of the $\psi_{r_{i}}^{ \pm}$and $r_{i}<0$.
Now $L_{0}|0\rangle=0$ and $\alpha_{0}|0\rangle=0$ and hence

$$
\operatorname{Tr}\left(x^{\alpha} q^{L_{0}}\right)=\prod_{r \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right) .
$$

Second Method

- We use the formulas:

Second Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \alpha_{n}\right]=0,} \\
& {\left[L_{0}, \alpha_{n}\right]=-n \alpha_{n}}
\end{aligned}
$$

Second Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \alpha_{n}\right]=0,} \\
& {\left[L_{0}, \alpha_{n}\right]=-n \alpha_{n} .}
\end{aligned}
$$

- The bosonic Fock space V_{λ} has a basis of the form

$$
\alpha_{m_{k}} \cdots \alpha_{m_{1}}|\lambda\rangle
$$

where there are repetitions of the $\alpha_{m_{i}}$ are allowed and $m_{i}<0$.

Second Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \alpha_{n}\right]=0,} \\
& {\left[L_{0}, \alpha_{n}\right]=-n \alpha_{n} .}
\end{aligned}
$$

- The bosonic Fock space V_{λ} has a basis of the form

$$
\alpha_{m_{k}} \cdots \alpha_{m_{1}}|\lambda\rangle
$$

where there are repetitions of the $\alpha_{m_{i}}$ are allowed and $m_{i}<0$.
Now $L_{0}|\lambda\rangle=\left(\sum_{i=1}^{\lambda}\left(i-\frac{1}{2}\right)\right)|\lambda\rangle=\frac{\lambda^{2}}{2}|\lambda\rangle$ and $\alpha_{0}|\lambda\rangle=\lambda|\lambda\rangle$ and hence

Second Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \alpha_{n}\right]=0,} \\
& {\left[L_{0}, \alpha_{n}\right]=-n \alpha_{n} .}
\end{aligned}
$$

- The bosonic Fock space V_{λ} has a basis of the form

$$
\alpha_{m_{k}} \cdots \alpha_{m_{1}}|\lambda\rangle,
$$

where there are repetitions of the $\alpha_{m_{i}}$ are allowed and $m_{i}<0$.
Now $L_{0}|\lambda\rangle=\left(\sum_{i=1}^{\lambda}\left(i-\frac{1}{2}\right)\right)|\lambda\rangle=\frac{\lambda^{2}}{2}|\lambda\rangle$ and $\alpha_{0}|\lambda\rangle=\lambda|\lambda\rangle$ and hence
$\left.\operatorname{Tr}\left(x^{\alpha} q^{L_{0}}\right)\right|_{V_{\lambda}}=x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}$.
Thus

$$
\operatorname{Tr}\left(x^{\alpha} q^{L_{0}}\right)=\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}} .
$$

Second Method

- We use the formulas:

$$
\begin{aligned}
& {\left[\alpha_{0}, \alpha_{n}\right]=0,} \\
& {\left[L_{0}, \alpha_{n}\right]=-n \alpha_{n} .}
\end{aligned}
$$

- The bosonic Fock space V_{λ} has a basis of the form

$$
\alpha_{m_{k}} \cdots \alpha_{m_{1}}|\lambda\rangle,
$$

where there are repetitions of the $\alpha_{m_{i}}$ are allowed and $m_{i}<0$.
Now $L_{0}|\lambda\rangle=\left(\sum_{i=1}^{\lambda}\left(i-\frac{1}{2}\right)\right)|\lambda\rangle=\frac{\lambda^{2}}{2}|\lambda\rangle$ and $\alpha_{0}|\lambda\rangle=\lambda|\lambda\rangle$ and hence
$\left.\operatorname{Tr}\left(x^{\alpha} q^{L_{0}}\right)\right|_{V_{\lambda}}=x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}$.
Thus

$$
\operatorname{Tr}\left(x^{\alpha} q^{L_{0}}\right)=\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}} .
$$

- Now we combine both formulas together and we get
- Now we combine both formulas together and we get

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)
$$

- Now we combine both formulas together and we get

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)
$$

Hence

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)\left(1-q^{r+\frac{1}{2}}\right)
$$

- Now we combine both formulas together and we get

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)
$$

Hence

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)\left(1-q^{r+\frac{1}{2}}\right)
$$

This is the celebrated Jacobi Triple Product Identity.

- Now we combine both formulas together and we get

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)
$$

Hence

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)\left(1-q^{r+\frac{1}{2}}\right)
$$

This is the celebrated Jacobi Triple Product Identity.
Remark: Many other combinatorial identities can be obtained from similar method using representation theory. So main idea here is to compute the character of the same object in two different ways. From this we have an identity of characters and hence a combinatorial identity.

- Now we combine both formulas together and we get

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}} \prod_{j \in \mathbb{N}} \frac{1}{1-q^{j}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)
$$

Hence

$$
\sum_{\lambda \in \mathbb{Z}} x^{\lambda} q^{\frac{\lambda^{2}}{2}}=\prod_{r \in \frac{1}{2}+\mathbb{Z}_{+}}\left(1+x q^{r}\right)\left(1+x^{-1} q^{r}\right)\left(1-q^{r+\frac{1}{2}}\right)
$$

This is the celebrated Jacobi Triple Product Identity.
Remark: Many other combinatorial identities can be obtained from similar method using representation theory. So main idea here is to compute the character of the same object in two different ways. From this we have an identity of characters and hence a combinatorial identity.

