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Introduction

n

2 3 n

a a1

1

For example, (a1, a2, a3, a4, a5) = (2, 1, 3, 5, 2) is a parking function,

but (3, 1, 4, 5, 3) is not.
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Parking functions

A parking function of length n is a sequence α = (a1, . . . , an) of positive

integers such that the non-decreasing rearrangement b1 ≤ · · · ≤ bn of α

satisfies bi ≤ i.

Konheim and Weiss first derived that the number of parking functions of

length n is (n+ 1)n−1 when they dealt with a hashing problem in computer

science.
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The following numbers are equal to (n+ 1)(n−1).

1. the number of parking functions of length n,

2. the number of labeled trees on the vertex set {0, 1, . . . , n},

3. the number of regions in the Shi arrangements in Rn,

4. the number of maximal chains in the poset of noncrossing partitions of

{1, . . . , n+ 1},

5. the number of ways to decompose an (n + 1)-cycle σ ∈ Sn+1 into a

product of n+ 1 transpositions,

6. the number of critical states in the dollar game on Kn+1.
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Generalized parking functions

Let x = (x1, . . . , xn) be a sequence of positive integers. An x-parking

function is a sequence (a1, . . . , an) of positive integers whose non-

decreasing rearrangement b1 ≤ · · · ≤ bn satisfies bi ≤ x1 + · · · + xi.

Ordinary parking functions are the case x = (1, . . . , 1).
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Motivation

A parking function (a1, . . . , an) is said to be k-leading if a1 = k. Let pn,k

denote the number of k-leading parking functions of length n. Foata and
Riordan derived the generating function for pn,k algebraically,

n

k=1

pn,kxk =
x

1 − x
2(n + 1)n−2 −

n

k=1

�

n − 1

k − 1 �

kk−2(n − k + 1)n−k−1xk .

Main results: We provide a unified combinatorial approach to the enumeration

of (a, b, . . . , b)-parking functions by their leading terms, which include the

cases x = (1, . . . , 1), (a, 1, . . . , 1), and (b, . . . , b).

6



Tree structures for parking functions

For example, consider α = (1,4,2,9,1,5,1,5,4). The non-decreasing re-

arrangement of α is (1,1,1,2,4,5,5,9).

9

0

1 11

2 4 4

5 5
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Tree structures for parking functions

For example, consider α = (1,4,2,9,1,5,1,5,4). The non-decreasing re-

arrangement of α is (1,1,1,2,4,5,5,9).

9

0

2 31

2 5 6

5 5
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1

4 4 4

1 1

7 8

The breadth-first search (BFS) order of α is πα = (1,5,4,9,2,7,3,8,6).
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Triplet-labeled rooted trees

We associate α = (1,4,2,9,1,5,1,5,4) with a triplet-labeled rooted tree. The

triplets are columns of the following array.

i 1 2 3 4 5 6 7 8 9

ai 1 4 2 9 1 5 1 5 4

πα 1 5 4 9 2 7 3 8 6

(1,1,1)
(5,1,2)

(7,1,3)

(3,2,4)
(2,4,5) (9,4,6)

(6,5,7)
(8,5,8)

(4,9,9)

(0,0,0)
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Definition of triplet-labeled rooted trees

Given a parking function α = (a1, . . . , an), for 1 ≤ i ≤ n, we define

πα(i) = Card{aj ∈ α| either aj < ai, or aj = ai and j < i}. (1)

Note that (πα(1), . . . , πα(n)) is a permutation of [n] := {1, . . . , n}.

We associate α with a triplet-labeled rooted tree Tα whose vertex set is

{(0, 0, 0)} ∪ {(i, ai, πα(i))| ai ∈ α}.

Let Tα be rooted at (0, 0, 0). For any two vertices u = (i, ai, πα(i)) and

v = (j, aj , πα(j)), u is a child of v if ai = πα(j) + 1.
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The bijection ψ

Let Pn denote the set of parking functions of length n. Let Tn denote the

set of labeled trees on the vertex set [0, n].

The mapping ψ : Pn → Tn is defined as follows. ψ(α) is the same as the

triplet-labeled rooted tree Tα associated with α with vertices labeled by the

first entries of the triplets.

(1,1,1) 7

3

8

4

0

92

51

6

(5,1,2)
(7,1,3)

(3,2,4)
(2,4,5) (9,4,6)

(6,5,7)
(8,5,8)

(4,9,9)

(0,0,0)
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The inverse ψ−1

To describeψ−1, for each T ∈ Tn, we express T in a form, called canonical

form. Let T be rooted at 0. If a vertex of T has more than one child then the

labels of these children are increasing from left to right.

To find ψ−1, we associate the vertex 0 ∈ T with the triplet (0, 0, 0), and for

1 ≤ i ≤ n, associate the vertex i ∈ T with a triplet (i, pi, qi), where pi

and qi are determined by the following algorithm.
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Algorithm A.

1. Traverse T from the root by a breadth-first search and label the third

entries qi of the vertices from 0 to n.

2. For any two vertices u = (i, pi, qi) and v = (j, pj , qj), if u is a child

of v then pi = qj + 1.

(1,1,1) 7

3

8

4

0

92

51

6

(5,1,2)
(7,1,3)

(3,2,4)
(2,4,5) (9,4,6)

(6,5,7)
(8,5,8)

(4,9,9)

(0,0,0)
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A bijective result

Theorem. For 1 ≤ k ≤ n − 1, there is a bijection between the set of

k-leading parking functions α of length n that satisfy at least one of the two

conditions

(i) α has more than one term equal to k,

(ii) α has at least k terms less than k,

and the set of (k + 1)-leading parking functions of length n.
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Example

On the left is the tree Tα associated with α = (1,4,2,9,1,5,1,5,4).

Let u = (1, 1, 1). Note that v = (5, 1, 2) is the first vertex of Tα − T (u)

that is visited by a BFS.

On the right is the tree φ(Tα). The corresponding 2-leading parking function

is (2,3,4,9,1,7,1,7,3).

(0,0,0)

(5,1,2)
(7,1,3)(1,1,1) (7,1,2)(5,1,1)

(3,2,4)
(2,4,5) (9,4,6)

(6,5,7)
(8,5,8)

(4,9,9)

(0,0,0)

(1,2,3)
(9,3,5)(2,3,4)

(3,4,6)

(8,7,8)

(4,9,9)
(6,7,7)
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Enumeration of parking functions by leading terms

Let pn,k denote the number of k-leading parking functions of length n. By

the previous bijective result, we derive the following recurrence relations.

Theorem. For 1 ≤ k ≤ n− 1, we have

pn,k − pn,k+1 =

�

n − 1

k − 1 �

kk−2(n − k + 1)n−k−1.

(0,0,0)

(1,k,k)
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The initial condition

In order to evaluate pn,k by the above recurrence relations, we derive the

initial condition.

Theorem. pn,1 = 2(n+ 1)n−2.

0

1
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An interesting two-to-one correspondence

Theorem. If n is even, then there is a two-to-one correspondence between

the set of 1-leading parking functions of length n and the set of (n
2 + 1)-

leading parking functions of length n.

For example, take n = 6. On the left are the trees T corresponding to the

parking functions (1, 4, 1, 2, 4, 1) and (1, 5, 2, 1, 5, 2). On the right is the

tree corresponding to (4, 3, 1, 6, 3, 1).

0 0

6

2 5

1 4

6

2 5

0

3
6

2

1

4

53

3

4

1
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Forest structures for the (a, 1, . . . , 1)-parking functions

Consider the (2, 1)-parking function α = (2,5,9,1,5,7,2,4,1). The non-

decreasing rearrangement is (1,1,2,2,4,5,5,7,9).

7

ρ 1ρ

2

9

2

5 5

1 1

4

0
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Forest structures for the (a, 1, . . . , 1)-parking functions

Consider the (2, 1)-parking function α = (2,5,9,1,5,7,2,4,1). The non-

decreasing rearrangement is (1,1,2,2,4,5,5,7,9).

10

2

9

1

22 3

6 5

1 1

4

7

7

10

54

5 8

9

ρ ρ0

The breadth-first search (BFS) order of α is τα = (4,7,10,2,8,9,5,6,3).
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The BFS order τα

Given an (a, 1)-parking function α = (a1, . . . , an), we define the permu-

tation (πα(1), . . . , πα(n)) as in (1), i.e.,

πα(i) = Card{aj ∈ α| either aj < ai, or aj = ai and j < i},

and define

τα(i) = πα(i) + a− 1, for 1 ≤ i ≤ n.

21



Triplet-labeled rooted forests

We associate α with an a-component forest Fα, called triplet-labelled rooted

forests. The vertex set is

{(i, ai, τα(i))| ai ∈ α} ∪ {(ρi, 0, i)| 0 ≤ i ≤ a − 1}.

Let (ρ0, 0, 0), . . . , (ρa−1, 0, a − 1) be the roots of distinct trees. For any

two vertices u1 = (x1, y1, z1) and u2 = (x2, y2, z2), u2 is a child of u1

if y2 = z1 + 1.
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Example

Consider the (2, 1)-parking function α = (2,5,9,1,5,7,2,4,1). We have the

permutation (πα(1), . . . , πα(n)) = (3,6,9,1,7,8,4,5,2) and the sequence

(τα(1), . . . , τα(n)) = (4,7,10,2,8,9,5,6,3). The triplet-labelled rooted

forest associated with α is shown below.

1

(8,4,6)

(6,7,9)

(ρ ,0,0)
0

(4,1,2)

(2,5,7)

(1,2,4)
(7,2,5)(9,1,3)

(5,5,8)

(3,9,10)

(ρ ,0,1)
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The bijection ϕ

Let Pn(a, 1) denote the set of (a, 1)-parking functions of length n

and let Fn(a, 1) denote the set of a-component rooted forests on

the set {ρ0, . . . , ρa−1} ∪ [n] with roots ρ0, . . . , ρa−1. The bijection

ϕ : Pn(a, 1) → Fn(a, 1) is a generalization of ψ.

For example,

0

(8,4,6)

(6,7,9)

(ρ ,0,0)
0

(4,1,2)

(2,5,7)

(1,2,4)
(7,2,5)(9,1,3)

(5,5,8)

(3,9,10)

7
1

3

52

1ρρ

6

8

94

(ρ ,0,1)
1

24



Another bijective result

Theorem. For a ≤ k ≤ a+ n− 2, there is a bijection between the set of

k-leading (a, 1)-parking functions α of length n that satisfy at least one of

the two conditions

(i) α has more than one term equal to k,

(ii) α has at least k − a+ 1 terms less than k,

and the set of (k + 1)-leading (a, 1)-parking functions of length n.
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Example

On the left is forest F associated with (2,5,9,1,5,7,2,4,1).

Let u = (1, 2, 4). Note that v = (4, 1, 2) is the second vertex of F−T (u)

that is visited by a BFS.

On the right is the forest φ(F ). The corresponding 3-leading parking

function is (3,6,9,1,6,7,2,4,1).

(7,2,4)

(8,4,6)

(6,7,9)

(ρ ,0,0)
0

(4,1,2)

(2,5,7)

(1,2,4)
(7,2,5)(9,1,3)

(5,5,8)

(3,9,10)

(ρ ,0,1)
1

(ρ ,0,0)
0 1

(ρ ,0,1)

(4,1,2) (9,1,3)

(8,4,6)

(6,7,9)

(1,3,5)

(2,6,7)
(3,9,10)

(5,6,8)
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Enumeration

Theorem. For a ≤ k ≤ a+ n− 2, we have

p
(a,1)
n,k − p

(a,1)
n,k+1 =

(
n− 1

k − a

)
akk−a−1(n− k + a)n−k+a−2. (2)

Theorem. If 1 ≤ k ≤ a, then the number of k-leading (a, 1)-parking

function of length n is (a+ 1)(a+ n)n−2, which is independent of k.
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The case of (a, b, . . . , b)-parking functions

A rooted b-forest is a labeled rooted forest with edges colored with the colors

0, . . . , b− 1.

Consider a sequence (S0, . . . , St) of rooted b-forests on [n] such that

(i) each Si is a rooted b-forest,

(ii) Si and Sj are disjoint if i 6= j, and

(iii) the union of the vertex sets Si (1 ≤ i ≤ t) is [n].

Let Ŝi denote the rooted tree obtained by connecting the roots of Si to a

new root vertex ρi, where the edges incident to ρi are not colored with any

color, denoted by −1 for such an edge.
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Extended b-forests

Fn(a, b) denoted the set of a-component rooted forests of the form

(Ŝ0, . . . , Ŝa−1), where (S0, . . . , Sa−1) is a sequence of rooted b-forest

on [n]. We call members of Fn(a, b) extended b-forests.

Let κ(i) denote the color of the edge that connects the vertex i and its

parent.
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Reduction of (a, b)-parking functions

Let Pn(a, b) denote the set of (a, b)-parking functions of length n.

Given an α = (a1, . . . , an) ∈ Pn(a, b), we associate α with two
sequences β = (p1, . . . , pn) and γ = (r1, . . . , rn), where

pi =

�
�
�

�
�
�

�
ai if ai ≤ a,

�

ai − a

b �

+ a otherwise;

ri =

�
�

�
�

�

−1 if ai ≤ a,

b(pi − a) − ai + a otherwise.

One can verify that β is an (a, 1)-parking function of length n and γ ∈

[−1, b− 1]n with ri = −1 whenever ai ≤ a.
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The bijection ϕb : Pn(a, b) → Fn(a, b)

For example, take a = 2 and b = 2. For the α = (2,7,15,1,8,12,2,5,1), we

have the associated pair (β, γ), where β = (2,5,9,1,5,7,2,4,1) and γ =

(−1,1,1,−1,0,0,−1,1,−1). To establish the mapping ϕb, we first locate the

labeled rooted forest ϕ(β) ∈ Fn(a, 1) and then define ϕb by carrying α

into ϕ(β) with the edge-coloring κ(i) = ri, for 1 ≤ i ≤ n.

0
ρρ

6

8

94 7
1

3

52

1
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The enumeration

Theorem. Let p
(a,b)
n,m denote the number of m-leading (a, b)-parking

functions of length n.

1. For 0 ≤ k ≤ n− 2 and bk + a+ 1 ≤ i, j ≤ b(k + 1) + a,

p
(a,b)
n,i = p

(a,b)
n,j .

2. For 0 ≤ k ≤ n− 2,

p
(a,b)
n,bk+a

− p
(a,b)
n,bk+a+1 =

�

n − 1

k �

abn−k−1(a + bk)k−1(n − k)n−k−2.

3. For 1 ≤ m ≤ a,

p
(a,b)
n,m =

n−1

j=0

�

n − 1

j �

abn−j−1(a + bj)j−1(n − j)n−j−2.
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