# On the Enumeration of Parking Functions by Leading Numbers 

Sen-Peng Eu, Tung-Shan Fu, and Chun-Ju Lai

February 21, 2005

## Outline

1. Introduction

- parking functions
- related combinatorial structures

2. The tool - triplet-labeled rooted trees
3. The required bijection
4. The enumeration
5. Generalized parking functions and forest structures

## Introduction



For example, $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,1,3,5,2)$ is a parking function, but $(3,1,4,5,3)$ is not.

## Parking functions

A parking function of length $n$ is a sequence $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ of positive integers such that the non-decreasing rearrangement $b_{1} \leq \cdots \leq b_{n}$ of $\alpha$ satisfies $b_{i} \leq i$.

Konheim and Weiss first derived that the number of parking functions of length $n$ is $(n+1)^{n-1}$ when they dealt with a hashing problem in computer science.

## The following numbers are equal to $(n+1)^{(n-1)}$.

1. the number of parking functions of length $n$,
2. the number of labeled trees on the vertex set $\{0,1, \ldots, n\}$,
3. the number of regions in the Shi arrangements in $\mathbb{R}^{n}$,
4. the number of maximal chains in the poset of noncrossing partitions of $\{1, \ldots, n+1\}$,
5. the number of ways to decompose an $(n+1)$-cycle $\sigma \in S_{n+1}$ into a product of $n+1$ transpositions,
6. the number of critical states in the dollar game on $K_{n+1}$.

## Generalized parking functions

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence of positive integers. An $\mathbf{x}$-parking function is a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers whose nondecreasing rearrangement $b_{1} \leq \cdots \leq b_{n}$ satisfies $b_{i} \leq x_{1}+\cdots+x_{i}$.

Ordinary parking functions are the case $\mathbf{x}=(1, \ldots, 1)$.

## Motivation

A parking function $\left(a_{1}, \ldots, a_{n}\right)$ is said to be $k$-leading if $a_{1}=k$. Let $p_{n, k}$ denote the number of $k$-leading parking functions of length $n$. Foata and Riordan derived the generating function for $p_{n, k}$ algebraically,
$\sum_{k=1}^{n} p_{n, k} x^{k}=\frac{x}{1-x}\left(2(n+1)^{n-2}-\sum_{k=1}^{n}\binom{n-1}{k-1} k^{k-2}(n-k+1)^{n-k-1} x^{k}\right)$

Main results: We provide a unified combinatorial approach to the enumeration of $(a, b, \ldots, b)$-parking functions by their leading terms, which include the cases $\mathbf{x}=(1, \ldots, 1),(a, 1, \ldots, 1)$, and $(b, \ldots, b)$.

## Tree structures for parking functions

For example, consider $\alpha=(1,4,2,9,1,5,1,5,4)$. The non-decreasing rearrangement of $\alpha$ is $(1,1,1,2,4,5,5,9)$.


## Tree structures for parking functions

For example, consider $\alpha=(1,4,2,9,1,5,1,5,4)$. The non-decreasing rearrangement of $\alpha$ is $(1,1,1,2,4,5,5,9)$.


The breadth-first search (BFS) order of $\alpha$ is $\pi_{\alpha}=(1,5,4,9,2,7,3,8,6)$.

## Triplet-labeled rooted trees

We associate $\alpha=(1,4,2,9,1,5,1,5,4)$ with a triplet-labeled rooted tree. The triplets are columns of the following array.

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{i}$ | 1 | 4 | 2 | 9 | 1 | 5 | 1 | 5 | 4 |
| $\pi_{\alpha}$ | 1 | 5 | 4 | 9 | 2 | 7 | 3 | 8 | 6 |



## Definition of triplet-labeled rooted trees

Given a parking function $\alpha=\left(a_{1}, \ldots, a_{n}\right)$, for $1 \leq i \leq n$, we define

$$
\begin{equation*}
\pi_{\alpha}(i)=\operatorname{Card}\left\{a_{j} \in \alpha \mid \text { either } a_{j}<a_{i}, \text { or } a_{j}=a_{i} \text { and } j<i\right\} . \tag{1}
\end{equation*}
$$

Note that $\left(\pi_{\alpha}(1), \ldots, \pi_{\alpha}(n)\right)$ is a permutation of $[n]:=\{1, \ldots, n\}$.
We associate $\alpha$ with a triplet-labeled rooted tree $T_{\alpha}$ whose vertex set is

$$
\{(0,0,0)\} \cup\left\{\left(i, a_{i}, \pi_{\alpha}(i)\right) \mid a_{i} \in \alpha\right\}
$$

Let $T_{\alpha}$ be rooted at $(0,0,0)$. For any two vertices $u=\left(i, a_{i}, \pi_{\alpha}(i)\right)$ and $v=\left(j, a_{j}, \pi_{\alpha}(j)\right), u$ is a child of $v$ if $a_{i}=\pi_{\alpha}(j)+1$.

## The bijection $\psi$

Let $\mathcal{P}_{n}$ denote the set of parking functions of length $n$. Let $\mathcal{T}_{n}$ denote the set of labeled trees on the vertex set $[0, n]$.
The mapping $\psi: \mathcal{P}_{n} \rightarrow \mathcal{T}_{n}$ is defined as follows. $\psi(\alpha)$ is the same as the triplet-labeled rooted tree $T_{\alpha}$ associated with $\alpha$ with vertices labeled by the first entries of the triplets.


## The inverse $\psi^{-1}$

To describe $\psi^{-1}$, for each $T \in \mathcal{T}_{n}$, we express $T$ in a form, called canonical form. Let $T$ be rooted at 0 . If a vertex of $T$ has more than one child then the labels of these children are increasing from left to right.

To find $\psi^{-1}$, we associate the vertex $0 \in T$ with the triplet $(0,0,0)$, and for $1 \leq i \leq n$, associate the vertex $i \in T$ with a triplet $\left(i, p_{i}, q_{i}\right)$, where $p_{i}$ and $q_{i}$ are determined by the following algorithm.

## Algorithm A.

1. Traverse $T$ from the root by a breadth-first search and label the third entries $q_{i}$ of the vertices from 0 to $n$.
2. For any two vertices $u=\left(i, p_{i}, q_{i}\right)$ and $v=\left(j, p_{j}, q_{j}\right)$, if $u$ is a child of $v$ then $p_{i}=q_{j}+1$.


## A bijective result

Theorem. For $1 \leq k \leq n-1$, there is a bijection between the set of $k$-leading parking functions $\alpha$ of length $n$ that satisfy at least one of the two conditions
(i) $\alpha$ has more than one term equal to $k$,
(ii) $\alpha$ has at least $k$ terms less than $k$,
and the set of $(k+1)$-leading parking functions of length $n$.

## Example

On the left is the tree $T_{\alpha}$ associated with $\alpha=(1,4,2,9,1,5,1,5,4)$.
Let $u=(1,1,1)$. Note that $v=(5,1,2)$ is the first vertex of $T_{\alpha}-T(u)$ that is visited by a BFS.

On the right is the tree $\phi\left(T_{\alpha}\right)$. The corresponding 2 -leading parking function is $(2,3,4,9,1,7,1,7,3)$.


## Enumeration of parking functions by leading terms

Let $p_{n, k}$ denote the number of $k$-leading parking functions of length $n$. By the previous bijective result, we derive the following recurrence relations.
Theorem. For $1 \leq k \leq n-1$, we have

$$
p_{n, k}-p_{n, k+1}=\binom{n-1}{k-1} k^{k-2}(n-k+1)^{n-k-1}
$$



## The initial condition

In order to evaluate $p_{n, k}$ by the above recurrence relations, we derive the initial condition.

Theorem. $p_{n, 1}=2(n+1)^{n-2}$.


## An interesting two-to-one correspondence

Theorem. If $n$ is even, then there is a two-to-one correspondence between the set of 1 -leading parking functions of length $n$ and the set of $\left(\frac{n}{2}+1\right)$ leading parking functions of length $n$.

For example, take $n=6$. On the left are the trees $T$ corresponding to the parking functions $(1,4,1,2,4,1)$ and $(1,5,2,1,5,2)$. On the right is the tree corresponding to $(4,3,1,6,3,1)$.


Forest structures for the ( $a, 1, \ldots, 1$ )-parking functions Consider the $(2, \overline{1})$-parking function $\alpha=(2,5,9,1,5,7,2,4,1)$. The nondecreasing rearrangement is ( $1,1,2,2,4,5,5,7,9$ ).


## Forest structures for the ( $a, 1, \ldots, 1$ )-parking functions

Consider the $(2, \overline{1})$-parking function $\alpha=(2,5,9,1,5,7,2,4,1)$. The nondecreasing rearrangement is ( $1,1,2,2,4,5,5,7,9$ ).


The breadth-first search (BFS) order of $\alpha$ is $\tau_{\alpha}=(4,7,10,2,8,9,5,6,3)$.

## The BFS order $\tau_{\alpha}$

Given an $(a, \overline{1})$-parking function $\alpha=\left(a_{1}, \ldots, a_{n}\right)$, we define the permutation $\left(\pi_{\alpha}(1), \ldots, \pi_{\alpha}(n)\right)$ as in (1), i.e.,

$$
\pi_{\alpha}(i)=\operatorname{Card}\left\{a_{j} \in \alpha \mid \text { either } a_{j}<a_{i}, \text { or } a_{j}=a_{i} \text { and } j<i\right\}
$$

and define

$$
\tau_{\alpha}(i)=\pi_{\alpha}(i)+a-1, \text { for } 1 \leq i \leq n .
$$

## Triplet-labeled rooted forests

We associate $\alpha$ with an $a$-component forest $F_{\alpha}$, called triplet-labelled rooted forests. The vertex set is

$$
\left\{\left(i, a_{i}, \tau_{\alpha}(i)\right) \mid a_{i} \in \alpha\right\} \cup\left\{\left(\rho_{i}, 0, i\right) \mid 0 \leq i \leq a-1\right\} .
$$

Let $\left(\rho_{0}, 0,0\right), \ldots,\left(\rho_{a-1}, 0, a-1\right)$ be the roots of distinct trees. For any two vertices $u_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $u_{2}=\left(x_{2}, y_{2}, z_{2}\right), u_{2}$ is a child of $u_{1}$ if $y_{2}=z_{1}+1$.

## Example

Consider the $(2, \overline{1})$-parking function $\alpha=(2,5,9,1,5,7,2,4,1)$. We have the permutation $\left(\pi_{\alpha}(1), \ldots, \pi_{\alpha}(n)\right)=(3,6,9,1,7,8,4,5,2)$ and the sequence $\left(\tau_{\alpha}(1), \ldots, \tau_{\alpha}(n)\right)=(4,7,10,2,8,9,5,6,3)$. The triplet-labelled rooted forest associated with $\alpha$ is shown below.


## The bijection $\varphi$

Let $\mathcal{P}_{n}(a, \overline{1})$ denote the set of $(a, \overline{1})$-parking functions of length $n$ and let $\mathcal{F}_{n}(a, \overline{1})$ denote the set of $a$-component rooted forests on the set $\left\{\rho_{0}, \ldots, \rho_{a-1}\right\} \cup[n]$ with roots $\rho_{0}, \ldots, \rho_{a-1}$. The bijection $\varphi: \mathcal{P}_{n}(a, \overline{1}) \rightarrow \mathcal{F}_{n}(a, \overline{1})$ is a generalization of $\psi$.

For example,


## Another bijective result

Theorem. For $a \leq k \leq a+n-2$, there is a bijection between the set of $k$-leading $(a, \overline{1})$-parking functions $\alpha$ of length $n$ that satisfy at least one of the two conditions
(i) $\alpha$ has more than one term equal to $k$,
(ii) $\alpha$ has at least $k-a+1$ terms less than $k$,
and the set of $(k+1)$-leading $(a, \overline{1})$-parking functions of length $n$.

## Example

On the left is forest $F$ associated with (2,5,9,1,5,7,2,4,1).
Let $u=(1,2,4)$. Note that $v=(4,1,2)$ is the second vertex of $F-T(u)$ that is visited by a BFS.

On the right is the forest $\phi(F)$. The corresponding 3-leading parking function is (3,6,9,1,6,7,2,4,1).


## Enumeration

Theorem. For $a \leq k \leq a+n-2$, we have

$$
\begin{equation*}
p_{n, k}^{(a, \overline{1})}-p_{n, k+1}^{(a, \overline{1})}=\binom{n-1}{k-a} a k^{k-a-1}(n-k+a)^{n-k+a-2} \tag{2}
\end{equation*}
$$

Theorem. If $1 \leq k \leq a$, then the number of $k$-leading ( $a, \overline{1}$ )-parking function of length $n$ is $(a+1)(a+n)^{n-2}$, which is independent of $k$.

## The case of $(a, b, \ldots, b)$-parking functions

A rooted $b$-forest is a labeled rooted forest with edges colored with the colors $0, \ldots, b-1$.

Consider a sequence $\left(S_{0}, \ldots, S_{t}\right)$ of rooted $b$-forests on $[n]$ such that
(i) each $S_{i}$ is a rooted $b$-forest,
(ii) $S_{i}$ and $S_{j}$ are disjoint if $i \neq j$, and
(iii) the union of the vertex sets $S_{i}(1 \leq i \leq t)$ is $[n]$.

Let $\widehat{S_{i}}$ denote the rooted tree obtained by connecting the roots of $S_{i}$ to a new root vertex $\rho_{i}$, where the edges incident to $\rho_{i}$ are not colored with any color, denoted by -1 for such an edge.

## Extended $b$-forests

$\mathcal{F}_{n}(a, \bar{b})$ denoted the set of $a$-component rooted forests of the form $\left(\widehat{S_{0}}, \ldots, \widehat{S_{a-1}}\right)$, where $\left(S_{0}, \ldots, S_{a-1}\right)$ is a sequence of rooted $b$-forest on $[n]$. We call members of $\mathcal{F}_{n}(a, \bar{b})$ extended $b$-forests.

Let $\kappa(i)$ denote the color of the edge that connects the vertex $i$ and its parent.

## Reduction of $(a, \bar{b})$-parking functions

Let $\mathcal{P}_{n}(a, \bar{b})$ denote the set of $(a, \bar{b})$-parking functions of length $n$.
Given an $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{P}_{n}(a, \bar{b})$, we associate $\alpha$ with two sequences $\beta=\left(p_{1}, \ldots, p_{n}\right)$ and $\gamma=\left(r_{1}, \ldots, r_{n}\right)$, where

$$
\begin{aligned}
& p_{i}= \begin{cases}a_{i} & \text { if } a_{i} \leq a \\
\left\lceil\frac{a_{i}-a}{b}\right]+a & \text { otherwise }\end{cases} \\
& r_{i}= \begin{cases}-1 & \text { if } a_{i} \leq a \\
b\left(p_{i}-a\right)-a_{i}+a & \text { otherwise }\end{cases}
\end{aligned}
$$

One can verify that $\beta$ is an $(a, \overline{1})$-parking function of length $n$ and $\gamma \in$ $[-1, b-1]^{n}$ with $r_{i}=-1$ whenever $a_{i} \leq a$.

The bijection $\varphi_{b}: \mathcal{P}_{n}(a, \bar{b}) \rightarrow \mathcal{F}_{n}(a, \bar{b})$
For example, take $a=2$ and $b=2$. For the $\alpha=(2,7,15,1,8,12,2,5,1)$, we have the associated pair $(\beta, \gamma)$, where $\beta=(2,5,9,1,5,7,2,4,1)$ and $\gamma=$ $(-1,1,1,-1,0,0,-1,1,-1)$. To establish the mapping $\varphi_{b}$, we first locate the labeled rooted forest $\varphi(\beta) \in \mathcal{F}_{n}(a, \overline{1})$ and then define $\varphi_{b}$ by carrying $\alpha$ into $\varphi(\beta)$ with the edge-coloring $\kappa(i)=r_{i}$, for $1 \leq i \leq n$.


## The enumeration

Theorem. Let $p_{n, m}^{(a, \bar{b})}$ denote the number of $m$-leading ( $a, \bar{b}$ )-parking functions of length $n$.

1. For $0 \leq k \leq n-2$ and $b k+a+1 \leq i, j \leq b(k+1)+a$,

$$
p_{n, i}^{(a, \bar{b})}=p_{n, j}^{(a, \bar{b})} .
$$

2. For $0 \leq k \leq n-2$,

$$
p_{n, b k+a}^{(a, \bar{b})}-p_{n, b k+a+1}^{(a, \bar{b})}=\binom{n-1}{k} a b^{n-k-1}(a+b k)^{k-1}(n-k)^{n-k-2} .
$$

3. For $1 \leq m \leq a$,

$$
p_{n, m}^{(a, \bar{b})}=\sum_{j=0}^{n-1}\binom{n-1}{j} a b^{n-j-1}(a+b j)^{j-1}(n-j)^{n-j-2} .
$$

