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Digital signature

It is useful for electronic commerce
It relies on Public key cryptosystems
Most well-known number-theoretical signature systems are
based on

modular exponentiation RSA
discrete logarithms problem ElGamal/DSA/ECC
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Introduction to Multivariate Schemes

Multivariate schemes:
1 using polynomials in stead of big numbers
2 Advantage: high performance
3 Disadvantage: big public key,

TRMS:
1 multivariate digital signature
2 based on Tractable Rational Maps
3 Similar to TTS
4 1000 times faster than RSA
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Design Philosophy of Multivariate Cryptosystem

1 solving general multivariate equations is NP
2 solving general quadratic multivariate equations is NP (MQ

problem)
3 finding some quadratic polynomial map with trapdoor
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Mathematical Background

Let L be the finite Galois field GF (pn) with pn elements.

Lemma
Every function f from Ln to L is an n-variable polynomial function.

Proposition
Every map f from Ln to Lm is a polynomial map.

The above proposition shows that:
the category of polynomial maps is as big as the category of maps.
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permutation polynomial

Definition
A polynomial f (x) ∈ L[x ] is called a permutation polynomial of L if
the associated polynomial function from L to L is a one-to-one and
onto function.

Examples:
1 Frobenius map x → xp

2 If L is a field extension of a field K , then any invertible affine
transformation of L over K is a permutation polynomial map.

Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, Bo-Yin YangTractable Rational Map Signature



permutation polynomial

Definition
A polynomial f (x) ∈ L[x ] is called a permutation polynomial of L if
the associated polynomial function from L to L is a one-to-one and
onto function.

Examples:
1 Frobenius map x → xp

2 If L is a field extension of a field K , then any invertible affine
transformation of L over K is a permutation polynomial map.

Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, Bo-Yin YangTractable Rational Map Signature



Tractable Rational Map

A tractable rational map is an invertible affine transformation or,
after a permutation of indices if necessary, a rational map of the
following form



y1
y2
...
yj
...

yn


=



r1(x1)

r2(x2) · p2(x1)
q2(x1)

+ f2(x1)
g2(x1)

...
rj(xj) ·

pj (x1,x2,...,xj−1)
qj (x1,x2,...,xj−1)

+
fj (x1,x2,...,xj−1)
gj (x1,x2,...,xj−1)

...
rn(xn) · pn(x1,x2,...,xn−1)

qn(x1,x2,...,xn−1)
+ fn(x1,x2,...,xn−1)

gn(x1,x2,...,xn−1)


where fj , gj , pj and qj are polynomials and rj are permutation
polynomials of the finite field L.
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Why in Rational Form

Note that, by Lagrange interpolation, any map over a finite field is
a polynomial map. There are both computational and categorical
reasons that we put our maps in rational form.
For computational reasons, it is faster to compute the division
between two function values by low degree polynomial maps than
to compute a single function value by a much higher degree

polynomial map. For example, it is much easier to compute
1
x

than to compute x254 over GF (256).
And categorically, even given a tractable rational map without
denominator, by the direct computation above, the inverse of that
map is most naturally described as a rational map. Therefore we
choose to put the map in the rational form. For details, see [35].
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Theorem

Theorem
Given a tractable rational map φ : S → Ln of the following form.



y1
y2
...
yj
...

yn


=



r1(x1)

r2(x2) · p2(x1)
q2(x1)

+ f2(x1)
g2(x1)

...
rj(xj) ·

pj (x1,x2,...,xj−1)
qj (x1,x2,...,xj−1)

+
fj (x1,x2,...,xj−1)
gj (x1,x2,...,xj−1)

...
rn(xn) · pn(x1,x2,...,xn−1)

qn(x1,x2,...,xn−1)
+ fn(x1,x2,...,xn−1)

gn(x1,x2,...,xn−1)


where S = {(x1, . . . , xn) |

∏n
j=2(pjqjgj)(x1, x2, . . . , xj−1) 6= 0}.

Then φ is one-to-one. Furthermore, given an image point, we can
get the pre-image constructively with the recursive algorithm.
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Proof

Given a image point (y1, . . . , yn). We can solve the following
system of equations inductively.

r1(x1)

r2(x2) · p2(x1)
q2(x1)

+ f2(x1)
g2(x1)

...
rj(xj) ·

pj (x1,x2,...,xj−1)
qj (x1,x2,...,xj−1)

+
fj (x1,x2,...,xj−1)
gj (x1,x2,...,xj−1)

...
rn(xn) · pn(x1,x2,...,xn−1)

qn(x1,x2,...,xn−1)
+ fn(x1,x2,...,xn−1)

gn(x1,x2,...,xn−1)


=



y1
y2
...
yj
...

yn


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Proof (continued)

First, we get x1 = r−1
1 (y1) from the first equation. Suppose we

know x1, . . . , xj−1. Substitute x1, . . . , xj−1 into the j-th equation.

rj(xj) ·
pj(x1, x2, . . . , xj−1)

qj(x1, x2, . . . , xj−1)
+

fj(x1, x2, . . . , xj−1)

gj(x1, x2, . . . , xj−1)
= yj

Then we obtain

xj = r−1
j (

qj(x1, x2, . . . , xj−1)

pj(x1, x2, . . . , xj−1)
· (yj −

fj(x1, x2, . . . , xj−1)

gj(x1, x2, . . . , xj−1)
)).

Corollary
If we assume gj , pj and qj in the above form be non-vanishing
polynomials, then S = Ln and φ is a bĳection of Ln.
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TRMS and its Implementation

We show an implement scheme of TRMS.

It can be seen that there are a variety of schemes of TRMS which
are all based on tractable rational maps.

Let K = GF (28). We will construct 3 maps ϕ1 : K28 → K28,
ϕ2 : K28 → K20, ϕ3 : K20 → K20 where ϕ1, ϕ3 are invertible affine
transformations, ϕ2 = π ◦ ϕ̃2 ◦ i with π a projection, i an
imbedding, and ϕ̃2 identified as a tractable rational map over some
extension field over K.

Public key: ϕ3 ◦ ϕ2 ◦ ϕ1
Private key: (ϕ−1

1 , ϕ2, ϕ
−1
3 )
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Sign and Verify

To sign a message M, first find its hash z = H(M) ∈ K20 by a
publicly agreed hash function. Then do y = ϕ−1

3 (z), where the
indices of y is starting at 9. Then choose 8 nonzero random
numbers r1, r2, . . . , r8. Then get x by identifying it with
(ϕ̃2 ◦ i)−1(r1, r2, . . . , r8, y) which is computed by a sequence of
substitutions. Then get the signature w = ϕ−1

1 (x).

To verify a signature w, simply check if
V (w) = (ϕ3 ◦ ϕ2 ◦ ϕ1)(w) = (ϕ3 ◦ π ◦ ϕ̃2 ◦ i)(x) =
(ϕ3 ◦ π)(r1, r2, . . . , r8, y) = ϕ3(y) = z = H(M).

Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, Bo-Yin YangTractable Rational Map Signature



Sign and Verify

To sign a message M, first find its hash z = H(M) ∈ K20 by a
publicly agreed hash function. Then do y = ϕ−1

3 (z), where the
indices of y is starting at 9. Then choose 8 nonzero random
numbers r1, r2, . . . , r8. Then get x by identifying it with
(ϕ̃2 ◦ i)−1(r1, r2, . . . , r8, y) which is computed by a sequence of
substitutions. Then get the signature w = ϕ−1

1 (x).

To verify a signature w, simply check if
V (w) = (ϕ3 ◦ ϕ2 ◦ ϕ1)(w) = (ϕ3 ◦ π ◦ ϕ̃2 ◦ i)(x) =
(ϕ3 ◦ π)(r1, r2, . . . , r8, y) = ϕ3(y) = z = H(M).

Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, Bo-Yin YangTractable Rational Map Signature



Details of ϕ2

Decompose (x1, x2, . . . , x28) ∈ K28 into five groups: X1 = (x1, x2,
. . . , x8), X2 = (x9, x10, x11, x12, x13, x14), X3 = (x15, x16),
X4 = (x17, x18, x19) and X5 = (x20, x21, . . . , x28).
Let ϕ̃2 : L5 → L5 be a tractable rational map of the following
form.

R1 = X1
Y2 = X2 p2(X1) + f2(X1)
Y3 = r3(X3) + f3(X1, X2)
Y4 = X4 p4(X1, X2, X3) + f4(X1, X2, X3)
Y5 = X5 p5(X1, X2, X3, X4) + f5(X1, X2, X3, X4)
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Details of ϕ2 (continued)

R1 = X1 induces (r1, r2, . . . , r8) = (x1, x2, . . . , x8).

Y2 = X2 p2(X1) + f2(X1) induces
y9
y10
...

y14

 =


x9
x10
...

x14

 ∗6


x1
x2
...

x6

 +


c1x3x4
c2x4x5

...
c6x8x1

 +


c7x3
c8x4

...
c12x8


where ci ’s are constant parameters of user’s choice and u ∗n v
denotes first identifying u, v ∈ Kn in the extension field with
degree n then carrying out the multiplication there.
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Details of ϕ2 (continued)

Y3 = r3(X3) + f3(X1, X2) induces(
y15
y16

)
=

(
x15
x16

)2

+

(
c13x1x2 + c14x3x4 + · · ·+ c19x13x14 + c27x1
c20x14x1 + c21x2x3 + · · ·+ c26x12x13 + c28x2

)

where
(

x15
x16

)2

=

(
x15
x16

)
∗2

(
x15
x16

)
and ci ’s are constant

parameters of user’s choice.
Y4 = X4 p4(X1, X2, X3) + f4(X1, X2, X3) induces y17

y18
y19

 =

 x17
x18
x19

 ∗3

 x7
x8
x9

 +

 c29x4x16 + c32x9
c30x5x10 + c33x10
c31x15x16 + c34x11


where ci ’s are constant parameters of user’s choice.
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Details of ϕ2 (continued)

Y5 = p5(X1, X2, X3, X4) X5 + f5(X1, X2, X3, X4) induces


y20
y21
...

y28

 =



 x19
x18
x17

  x16
x15
x14

  x13
x12
x11


 x10

x9
x8

  x7
x6
x5

  x4
x3
x2


 x1

x19
x18

  x17
x16
x15

  x14
x13
x12




∗3


x20
x21
...

x28

 +
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Details of ϕ2 (continued)



c35x18x19 + c44x1
c36x17x13 + c45x2
c37x16x14 + c46x3
c38x12x13 + c47x4
c39x15x14 + c48x5
c40x19x12 + c49x6
c41x18x10 + c50x7
c42x12x6 + c51x8
c43x13x5 + c52x9


where ci ’s are constant parameters of user’s choice.

Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, Bo-Yin YangTractable Rational Map Signature



Performance of TRMC
Test Platform: CPU: P4 2.4GHz; RAM: 1024MB; OS: Linux + gcc 3.3;
ARG: gcc -O3 -march=pentium4 -fomit-frame-pointer

Signature Public Private Key

Scheme Name size Key Size Key Size Sign Verify Generation

(byte) (byte) (byte) (µs) (µs) (ms)
TTS(20,28) 28 8680 1399 7 20 2.2

TRMS(20,28) 28 8680 396 4.8 20 1.2

Table: NESSIE signature report, TTS and TRMS tested as above

Unit:
{

Signature/key size:Bytes,
Sign/Verify/Key Generation: cycles/invocation

Scheme Name Signature Public Private Sign Verify Key
size Key Size Key Size Generation

ECDSA 48 48 24 1971K 5415K 1758K
ESgin 144 145 96 4434K 936K 269M

RSA-PSS 128 128 320 82M 1587K 3206M
SFLASHv2 37 ≈ 15K ≈ 28K 5106K 765K 2929M
SQARTZ 16 ≈ 71K ≈ 4K 6261M 144K 3167M
ACESign 425 620 748 26M 20M 9645M

TTS(20,28) 28 ≈ 8.7K ≈ 1.4K 16.8K 48K 5.28M
TRMS(20,28) 28 ≈ 8.7K 396 11.4K 48K 2.67M
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Security Analysis

For brevity, we fix the following notations for our TRMS example:
m = 20 denotes the dimension of the hash space.
n = 28 denotes the dimension of the signature space.
q = 28 denotes the size of the base field GF (256).
r = 12 denotes the minimal rank.
k1 = 6 denotes the number of the linear combinations of the
components of ϕ2 which reach the minimal rank.
u = 9 denotes the minimal number of appearances in ϕ2 for
any variable xi .
k2 = 9 denotes the maximum size of the set of oil variables.
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Security Analysis (continued)

There are several known attacks for multivariate cryptosystems.

Attack Complexity Note

Rank Attack 2101 3DES units qr ·
(m2( n

2 −
m
6 ) + mn2)

k1

Dual Rank Attack 280 3DES units qu(un2 +
n3

6
)

UOV Attack 280 3DES units k4
2 qn−2k2−1

Patarin Relation Attack Not Applicable no Patarin relation
Affine Parts Distillation Not Applicable not homogeneous

XL Family &
Gröbner Basis 274 3DES units FF5 if O(n2+ε) timing

can be achieved
Finding Minus and
Vinegar Variables Not Applicable with non-constant

central parts

Patarin’s IP Approach Not Applicable variable parameters
in the middle map

Search Methods 2120 3DES units not small finite fields
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END

Thank you for your attention!
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Rank Attack

Goubin and Courtois shows that the MinRank attack for
Triangular-Plus-Minus systems. Yang and Chen generalized the
idea to Rank attack for multivariate systems in [37]. The

complexity of the Rank attack is about qr ·
(m2(n

2 −
m
6 ) + mn2)

k
multiplications, where k is the number of linear combinations of
the components of ϕ2 which reach the minimal rank r . The
minimal rank for our example is at least 12, and k is 6. Therefore
the complexity is about 2107 multiplications or 2101 3DES units (1
unit of 3DES ≈ 26 multiplications).

Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, Bo-Yin YangTractable Rational Map Signature



Dual Rank Attack

Yang and Chen proposed the Dual Rank attack for multivariate
systems in [37]. The complexity of the Dual Rank attack is about

qu(un2 +
n3

6
) multiplications where u is the minimal number of

appearances in ϕ2 for any variable xi . When u = 9 for our sample
scheme, the complexity is about 286 multiplications or 280 3DES
units.
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Unbalanced Oil and Vinegar Attack

As in [37], Let an “oil-set” be any set of independent variables xi ,
such that any of their cross-products never appears in any equation
in ϕ2. Suppose the maximum size of an oil set is k, then then we
may determine in time k4qn−2k−1 the “vinegar” and the “oil”
subspaces. After that, several possible techniques may be used to
find a solution. If case k = 9, so the time taken to identify the
vinegar and oil subspaces is about 280 3DES units.
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Patarin Relations Attack for C ∗ family

In ϕ2 of our TRMS example, there is no Patarin relation, which
means the attack for C ∗ family is not feasible for our system.
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Affine Parts Distillation

Geiselmann et al. in [18, 19] pointed out the possibility that if the
middle portion of any multivariate system is homogeneous of
degree two, then it is possible to find the constant parts of both
affine mappings easily. The ϕ2 in our TRMS example is not
homogeneous.
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XL Family and Gröbner Bases

Courtois et al proposed the XL method for solving overdetermined
quadratic system (which can be viewed as a refinement of the
relinearization method by Kipnis-Shamir, [23]) and its variant FXL
in [10]. Faugère ([14, 15]) have been improving algorithms for
computing Gröbner Bases, and the current state-of-the art variant
is F5, which was used as the critical equation solver in breaking the
HFE challenge 1 ([16]).
The consensus of current research ([1, 2, 3, 12, 38, 39]) is that
Gröbner/XL-like equation solvers on generic equations are
exponential in the number of variables. The best variant will be
FF5 if O(n2+ε) timing can be achieved, and FXL otherwise. The
time complexity for the two methods on a system with m = 20
equations will be respectively 274 and 276 3DES units, still better
than RSA-1024 (see [28]). If m = 24, then we would get 280 and
281 respectively.
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Remark

The speed estimates on nongeneric equations are still being
debated, but the converse to Moh’s lemma was proved in [38],
which shows that it is likely that all Gröbner/XL-like equation
solvers will run into trouble if the dimension of the projective
solution set at infinity (denoted dim H∞) is non-zero. It is not very
easy to benefit from this, however, because the UOV attack means
that the last stage of our sample TRMS scheme or something
similar cannot be too large, and the dual rank attack dictates that
it cannot be too small! Thus for m = 20, we cannot benefit
dim H∞ > 0, because the last stage is forced to be 9 variables. For
larger TRMS schemes, say m = 28 upwards, we can start to do
better with optimal selection of parameters.
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Finding Minus and Vinegar Variables

These are very specialized methods designed against what is
generally called “Big-Field” multivariate schemes such as C ∗−−.
They do not work against tame-like multivariates with
non-constant central parts.
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Patarin’s IP approach

Patarin et al proposed an attack method for fixed middle map
schemes in [30, 31]. Since there are variable parameters in the
middle map, the IP attack is not applicable.
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Search Methods

Courtois et al proposed some search methods at PKC 2002 in [6].
However, they are mainly designed for small finite fields, and we
may follow the computations of [4] to find a complexity of 2120

3DES units.
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Time line

1996/8 TTM (patent application)
2002/6 TTS (IWAP 2002)
2002/10 TRMC and TRMS (patent application)
2003/8 TTS/2 and TTS/4 (eprint)
2004/2/18 TRMC and TRMS with field extensions (eprint)
2004/2/22 Enhanced TTS (eprint)
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