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Setting

Let R(z) = 1 + a1z + a2z
2 + · · · ∈ 1 + zC[[z]].

Define
H(z) = 1 + h1z + h2z

2 + · · · ∈ 1 + zC[[z]],
E(z) = 1 + e1z + e2z

2 + · · · ∈ 1 + zC[[z]],
and

P (z) = p1z + p2z
2 + · · · ∈ zC[[z]]

by the equations

H(z) =
1

R(z)
, (1)

E(z) = R(−z), (2)
and

P (z) = −z
R′(z)
R(z)

= z
H ′(z)
H(z)

. (3)
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When R(z) = 1 + a1z
1 + · · ·+ arz

r is a polynomial of degree r in C[z], there is
a connection with symmetric functions. First, define

F (z) = zrR

(
1
z

)
.

That is,
F (z) = zr + a1z

r−1 + · · ·+ ar−1z + ar.
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Symmetric Functions

When R(z) = 1 + a1z
1 + · · ·+ arz

r is a polynomial of degree r in C[z], there is
a connection with symmetric functions. First, define

F (z) = zrR

(
1
z

)
.

That is,
F (z) = zr + a1z

r−1 + · · ·+ ar−1z + ar.

Assume that α1, α2, · · · , αr ∈ C are the roots of F (z). We can write

F (z) =
r∏

i=1

(z − αi),
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i=1

(1− αiz). (4)
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or equivalently

R(z) =
r∏

i=1

(1− αiz). (4)

Now define the following symmetric functions:

The nth complete homogeneous symmetric function in the roots of F (z) is

hn :=
∑

1≤i1≤···≤in≤r

αi1 · · ·αin.

The nth elementary symmetric function in the roots of F (z) is

en :=
∑

1≤i1<···<in≤r

αi1 · · ·αin.
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The nth power sum symmetric function in the roots of F (z) is

pn :=
r∑

i=1

αn
i .
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The nth power sum symmetric function in the roots of F (z) is

pn :=
r∑

i=1

αn
i .

The corresponding generating functions are

H(z) :=
∑
n≥0

hnzn =
k∏

i=1

1
(1− αiz)

,

E(z) :=
∑
n≥0

enzn =
k∏

i=1

(1 + αiz),

P (z) :=
∑
n≥1

pnzn =
k∑

i=1

αiz

(1− αiz)
.
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ordF (z) = the smallest n such that zn has

nonzero coefficient in F (z).
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Infinite Product

Definition . The order of nonzero F (z) ∈ C[[z]] is

ordF (z) = the smallest n such that zn has

nonzero coefficient in F (z).

Proposition . Let Fn(z) ∈ C[[z]] with Fn(0) = 0 for n ≥ 1. Then∏
n≥1

(1 + Fn(z))

converges if and only if
lim

n→∞
ordFn(z) = ∞.
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Factorization

Theorem . If Rn(z), for all n ≥ 1 are formal power series in C[[z]]
with ordRn(z) = n, then there are unique Cn ∈ C, n ≥ 1, with

R(z) =
∏
n≥1

(1 + Rn(z))Cn.
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Möbius Inversion Theorem

Definition . The Möbius function µ(n) is defined by

µ(n) =


1 if n = 1,
(−1)k if n = p1p2 · · · pk,
0 otherwise.
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Möbius Inversion Theorem

Definition . The Möbius function µ(n) is defined by

µ(n) =


1 if n = 1,
(−1)k if n = p1p2 · · · pk,
0 otherwise.

Möbius Inversion Theorem . Let α(n) and β(n) be arithmetic functions. Then

α(n) =
∑
d|n

β(d) =
∑
d|n

β(n/d), for all n ≥ 1.

if and only if
β(n) =

∑
d|n

µ(d)α(n/d), for all n ≥ 1.
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Type I

Theorem . Let R(z) = 1 + a1z + a2z
2 + · · · ∈ 1 + zC[[z]]. There are unique

Mn ∈ C, n ≥ 1, with
R(z) =

∏
n≥1

(1− zn)Mn. (5)

Moreover, we have
pn =

∑
d|n

dMd ∀n ≥ 1 (6)

and
Mn =

1
n

∑
d|n

µ(d)pn/d ∀n ≥ 1. (7)
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Proof of Theorem (Type I)

Proof: The first statement is clear because of Factorization Theorem. Now
taking the logarithmic derivative on both sides of (5), and multiplying by −z
gives

−z
R′(z)
R(z)

=
∑
n≥1

nMn
zn

1− zn
.
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Proof of Theorem (Type I)

Proof: The first statement is clear because of Factorization Theorem. Now
taking the logarithmic derivative on both sides of (5), and multiplying by −z
gives

−z
R′(z)
R(z)

=
∑
n≥1

nMn
zn

1− zn
.

That is,
P (z) =

∑
n≥1

nMn(zn + z2n + · · · ).
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Proof of Theorem (Type I)

Proof: The first statement is clear because of Factorization Theorem. Now
taking the logarithmic derivative on both sides of (5), and multiplying by −z
gives

−z
R′(z)
R(z)

=
∑
n≥1

nMn
zn

1− zn
.

That is,
P (z) =

∑
n≥1

nMn(zn + z2n + · · · ).

Comparing the coefficients on both sides, we get

pn =
∑
d|n

dMd ∀n ≥ 1.

Finally, equation (7) follows by applying the Möbius Inversion Theorem to (6).
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). Hence, by
equation (4) and (6), we have

1− αz =
∏
n≥1

(1− zn)Mn

or equivalently
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). Hence, by
equation (4) and (6), we have

1− αz =
∏
n≥1

(1− zn)Mn

or equivalently

1
1− αz

=
∏
n≥1

(
1

1− zn

)Mn

, where Mn =
1
n

∑
d|n

µ(d)αn/d.

Cyclotomic Identity

Remark: It is worth noting that Mn = 1
n

∑
d|n µ(d)αn/d is the number of

primitive necklaces with n beads and α colors.
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Congruence (Type I)

Theorem . The following three conditions are equivalent

(i) R(z) ∈ 1 + zZ[[z]],

(ii) Mn ∈ Z ∀n ≥ 1,

(iii)
∑
d|n

µ(d)pn/d ≡ 0 (mod n) ∀n ≥ 1.
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). By
Theorem, we have ∑

d|n

µ(d)αn/d ≡ 0 (mod n)
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). By
Theorem, we have ∑

d|n

µ(d)αn/d ≡ 0 (mod n)

Let n = q be a prime, then we have∑
d|q

µ(d)αq/d
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). By
Theorem, we have ∑

d|n

µ(d)αn/d ≡ 0 (mod n)

Let n = q be a prime, then we have∑
d|q

µ(d)αq/d

=µ(1)αq + µ(q)α
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). By
Theorem, we have ∑

d|n

µ(d)αn/d ≡ 0 (mod n)

Let n = q be a prime, then we have∑
d|q

µ(d)αq/d

=µ(1)αq + µ(q)α

=aq − a

≡0 (mod q).
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Let R(z) = 1− αz where α ∈ P. We get pn = αn from equation (3). By
Theorem, we have ∑

d|n

µ(d)αn/d ≡ 0 (mod n)

Let n = q be a prime, then we have∑
d|q

µ(d)αq/d

=µ(1)αq + µ(q)α

=aq − a

≡0 (mod q).

Fermat’s Little Theorem



A FACTORIZATION FOR MULTIVARIATE FORMAL POWER SERIES 13

Characterization (Type I)



A FACTORIZATION FOR MULTIVARIATE FORMAL POWER SERIES 13

Characterization (Type I)

Theorem . The following are equivalent:

(i) exp

∑
n≥1

pn

n
zn

 ∈ 1 + zZ[[z]],

(ii)
∑
d|n

µ(d)pn/d ≡ 0 (mod n) for all n ≥ 1,

(iii)
∑
d|n

α(d)pn/d ≡ 0 (mod n) for all n ≥ 1, where α is an arithmetic function

with α(1) = ±1 and
∑

d|n α(d) ≡ 0 (mod n) for all n ≥ 2,

(iv) pmqs ≡ pmqs−1 (mod qs) for all primes q and m, s ∈ P.
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Let H(z) = 1−
√

1−4z
2z .
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Example 1

Let H(z) = 1−
√

1−4z
2z .

Then

hn = C(n) =
1

n + 1

(
2n

n

)

pn =
(

2n− 1
n− 1

)
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Example 1

Let H(z) = 1−
√

1−4z
2z .

Then

hn = C(n) =
1

n + 1

(
2n

n

)

pn =
(

2n− 1
n− 1

)
and ∑

d|n

µ(d)
(2n

d − 1
n
d − 1

)
≡ 0 (mod n)

where C(n) is the Catalan number.
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Example 2

Let H(z) = 1−z−
√

1−2z−3z2

2z2 .
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Example 2

Let H(z) = 1−z−
√

1−2z−3z2

2z2 .

Then

hn = M(n) =
1

n + 1

∑
i

(
n + 1

i

)(
n + 1− i

i + 1

)
pn = CT (n) =

∑
i

(
n

i

)(
n− i

i

)
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Example 2

Let H(z) = 1−z−
√

1−2z−3z2

2z2 .

Then

hn = M(n) =
1

n + 1

∑
i

(
n + 1

i

)(
n + 1− i

i + 1

)
pn = CT (n) =

∑
i

(
n

i

)(
n− i

i

)
and ∑

d|n

µ(d)CT (n/d) ≡ 0 (mod n)

where M(n) is the Motzkin number and CT (n) is the central trinomial
coefficient.
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Example 3

Let H(z) = 1−z−
√

1−6z+z2

2z .



A FACTORIZATION FOR MULTIVARIATE FORMAL POWER SERIES 16

Example 3

Let H(z) = 1−z−
√

1−6z+z2

2z .

Then

hn = S(n) =
1
n

∑
i

2i

(
n

i

)(
n

i− 1

)
pn =

1
2
[CD(n) + CD(n− 1)]
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Example 3

Let H(z) = 1−z−
√

1−6z+z2

2z .

Then

hn = S(n) =
1
n

∑
i

2i

(
n

i

)(
n

i− 1

)
pn =

1
2
[CD(n) + CD(n− 1)]

and ∑
d|n

µ(d)
1
2
[CD(n/d) + CD(n/d− 1)] ≡ 0 (mod n)

where S(n) is the large Schröder number and CD(n) is the central Delannoy
number.
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Remark: The large Schröder number S(n) is the number of subdiagonal
paths from (0, 0) to (n, n) consisting of steps east (1, 0), north (0, 1), and
northeast (1, 1) (sometimes called royal paths).

The central Delannoy number CD(n) is the number of paths from (0, 0) to
(n, n) consisting of steps east (1, 0), north (0, 1), and northeast (1, 1).
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Multivariate Setting

Let z = {z1, ..., zk} be a set of commutative indeterminates and
F [[z]] = F [[z1, ..., zk]].

Let boldface letters denote vectors

zn = zn1
1 · · · znk

k .

N = {0, 1, 2, · · · }

S = Nk \ {0}.
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Multivariate Setting

Let z = {z1, ..., zk} be a set of commutative indeterminates and
F [[z]] = F [[z1, ..., zk]].

Let boldface letters denote vectors

zn = zn1
1 · · · znk

k .

N = {0, 1, 2, · · · }

S = Nk \ {0}.

Let R(z) =
∑
n≥0

anzn ∈ C[[z]] with R(0) = 1
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Define
H(z) =

∑
n≥0

hnzn ∈ C[[z]],

E(z) =
∑
n≥0

enzn ∈ C[[z]],

and
P (z) =

∑
n∈S

pnzn ∈ C[[z]]

by the equations
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Define
H(z) =

∑
n≥0

hnzn ∈ C[[z]],

E(z) =
∑
n≥0

enzn ∈ C[[z]],

and
P (z) =

∑
n∈S

pnzn ∈ C[[z]]

by the equations

H(z) =
1

R(z)
, (8)

E(z) = R(−z), (9)

and
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Define
H(z) =

∑
n≥0

hnzn ∈ C[[z]],

E(z) =
∑
n≥0

enzn ∈ C[[z]],

and
P (z) =

∑
n∈S

pnzn ∈ C[[z]]

by the equations

H(z) =
1

R(z)
, (8)

E(z) = R(−z), (9)

and

P (z) = −
∑k

i=1 ziDiR(z)
R(z)

=
∑k

i=1 ziDiH(z)
H(z)

. (10)
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Möbius Inversion Theorem (Multivariate Version)

We use the notation d|n to mean that d divides all components ni and write

n
d

=
(n1

d
, · · · ,

nk

d

)
.
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Möbius Inversion Theorem (Multivariate Version)

We use the notation d|n to mean that d divides all components ni and write

n
d

=
(n1

d
, · · · ,

nk

d

)
.

Theorem . Let α(n) and β(n) be functions defined on S. Then

α(n) =
∑
d|n

β(n/d), for all n ∈ S.

if and only if
β(n) =

∑
d|n

µ(d)α(n/d), for all n ∈ S.
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MType I

Let |n| = n1 + n2 + · · ·+ nk.
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MType I

Let |n| = n1 + n2 + · · ·+ nk.

Theorem . Let R(z) ∈ C[[z]] with R(0) = 1. There are unique Mn ∈ C,n ∈ S,
with

R(z) =
∏
n∈S

(1− zn)Mn. (11)

Moreover, we have
pn =

∑
d|n

∣∣∣n
d

∣∣∣ Mn/d ∀n ∈ S (12)

and
Mn =

1
|n|

∑
d|n

µ(d)pn/d ∀n ∈ S. (13)
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Congruence (MType I)



A FACTORIZATION FOR MULTIVARIATE FORMAL POWER SERIES 22

Congruence (MType I)

Theorem . The following three conditions are equivalent

(i) R(z) ∈ Z[[z]] with R(0) = 1,

(ii) Mn ∈ Z ∀n ∈ S

(iii)
∑
d|n

µ(d)pn/d ≡ 0 (mod |n|) ∀n ∈ S.
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Example 1
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Example 1

Let R(z) = 1− z1 − z2 − · · · − zk.

Then
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Example 1

Let R(z) = 1− z1 − z2 − · · · − zk.

Then

hn =
(

|n|
n1, n2, · · · , nk

)
pn =

(
|n|

n1, n2, · · · , nk

)



A FACTORIZATION FOR MULTIVARIATE FORMAL POWER SERIES 23

Example 1

Let R(z) = 1− z1 − z2 − · · · − zk.

Then

hn =
(

|n|
n1, n2, · · · , nk

)
pn =

(
|n|

n1, n2, · · · , nk

)
and ∑

d|n

µ(d)
(

|n|/d

n1/d, n2/d, · · · , nk/d

)
≡ 0 (mod |n|)
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Example 2
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Example 2

Let R(x, y) = 1− x− xy.
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Example 2

Let R(x, y) = 1− x− xy.

Then

hm,n =
(

m

n

)
pm,n =

(
m

n

)
+

(
m− 1
n− 1

)
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Example 2

Let R(x, y) = 1− x− xy.

Then

hm,n =
(

m

n

)
pm,n =

(
m

n

)
+

(
m− 1
n− 1

)
and ∑

d|(m,n)

µ(d)
[(

m/d

n/d

)
+

(
m/d− 1
n/d− 1

)]
≡ 0 (mod m + n)
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)(
m + n− i
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∑
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(
m

i
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n
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pm,n = D(m,n) +D(m− 1, n− 1)
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Let R(x, y) = 1− x− y − xy.

Then

hm,n = D(m,n) =
∑

i

(
n

i

)(
m + n− i

n

)
=

∑
i

2i

(
m

i

)(
n

i

)
pm,n = D(m,n) +D(m− 1, n− 1)

and ∑
d|(m,n)

µ(d) [D(m/d, n/d) +D(m/d− 1, n/d− 1)] ≡ 0 (mod m + n)

where D(m,n) is the Delannoy number.
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Example 3

Let R(x, y) = 1− x− y − xy.

Then

hm,n = D(m,n) =
∑

i

(
n

i

)(
m + n− i

n

)
=

∑
i

2i

(
m

i

)(
n

i

)
pm,n = D(m,n) +D(m− 1, n− 1)

and ∑
d|(m,n)

µ(d) [D(m/d, n/d) +D(m/d− 1, n/d− 1)] ≡ 0 (mod m + n)

where D(m,n) is the Delannoy number.

Remark: The Delannoy number D(m,n) is the number of lattice paths from
(0, 0) to (m,n) consisting of steps east (1, 0), north (0, 1), and northeast (1, 1).
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Thank you :)


