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Abstract

This work investigates a class of neural networks with cycle-symmetric connection strength. We shall show that, by changing
the coordinates, the convergence of dynamics by Fiedler and Gedeon [Physica D 111 (1998) 288] is equivalent to the classical
results. This presentation also addresses the extension of the convergence theorem to other classes of signal functions with
saturations. In particular, the result of Cohen and Grossberg [IEEE Trans. Syst. Man Cybernet. SMC-13 (1983) 815] is recast
and extended with a more concise verification. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of neural network, in addition to biological modeling, has been applied to various scientific areas such
as circuit architecture and numerical computations. In designing a neural network, it is usually of prime importance
to guarantee the convergence of the corresponding dynamical system, cf. [1-4,6,7,9]. The convergence of dynamics
refers to every solution tending to a stationary solution as time goes to positive infinity. Such a convergence is often
concluded by constructing a Lyapunov function and then applying LaSalle’s invariance principle. Classical results
on the construction of the Lyapunov function require the symmetry for the matrix of connection strength between
neurons. For example, the works by Cohen and Grossberg [4] and by Chua and Yang [1] made this assumption. A
significant progress has been made by Fiedler and Gedeon [5]. They successfully extended the Lyapunov function,
hence the convergence of dynamics, to more general matrices of connection strength. The following preparation is
needed to define such matrices.

For an undirected grapfi without loops or multiple edges, a path is defined as a sequence of veitiges- vy,

k > 1, wherev;v; 41 is an edge o6 for eachi € {1, ...,k — 1} and there are no repeated vertices except possibly
the first and the last. By a cycle, we mean a closed path of length greater than or equal to three;thabjsand
k > 3. Let B denote am x n matrix with entriesgjj € R, i, j € {1, 2,... , n}. If Bj # 0 wheneve; # 0, then a
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graph withn vertices can be defined froB. Indeed, fori # j, an unordered paiti, j) with gj # 0 is an edge of
this graph. Consider the class of matrices with entfigsatisfying

(H1) BijBii > Oif gjj # 0,

(H2) TlePik = [1cBxi along every cycle,
where[ ] denotes the product. Notably, conditioH1) means that the entries 8fare sign-symmetric. Such class
of matrices, calledycle-symmetriberein, has been investigated in [11,12]. In fact, these matrices are characterized
as matrices which are similar to symmetric matrices by real diagonal matrices. Rest#exitisfies(H;) and
(H»), then there exists an invertible diagonal matfixsuch thatPBP~1 is a symmetric matrix. Notably, this
characterization theorem was first obtained by Parter and Youngs [12]. Maybee [11] then considered a class of
so-called combinatorially symmetric matrices £ [8ij] with gji # 0 if gjj # 0) and weakened the conditigAy).
A matrix is called pseudosymmetric therein if it is similar to a symmetric matrix by a real diagonal matrix. However,
(H1) and(H>) are the basic conditions for a matrix to be pseudosymmetric.

Fiedler and Gedeon [5] generalized the Lyapunov function for the neural network proposed in [4] to accommodate
the network with the connection strength satisfyif ) and(H>). The condition H1) was further weakened in [6].

The studies in [5,6] thus concluded the convergence of dynamics for the system with a larger class of connection
strength.

The first goal of this paper is to show that, with the characterization of the cycle-symmetric matrices, a change
of coordinates can transform the system to a similar system, but with symmetric connection strength. Therefore,
the convergence results in [5] are equivalent to the classical ones. This approach answers the question raised in [6]
(also mentioned in [5]), which is whether the characterization theorems in [11,12] can be applied directly to prove
the convergence theorem. The new treatment in this presentation is considered a more natural generalization of the
classical results, since, for example, symmetric matrices are easier to handle in various related computations.

Our second objective in this investigation is to extend the convergence theory to other signal functions, in
particular, the signal functions with saturations. Such functions have been used as output functions in the cellular
neural networks [1-3]. Similar signal functions have also been considered in [4], where the transition of zero slope
to positive slope in the signal functions relates to the notion of inhibitory signal threshold. Based on our previous
technique of changing coordinates, we shall extend the convergence of dynamics to the system with more general
saturated signal functions. This work not only provides an explicit formulation of these signal functions but also
develops a new concise treatment for the proof of convergence. Our first step is to partition the phase space as the
configurations of the signal functions are respected. The convergence of dynamics is then established by constructing
a global Lyapunov function as well as certain regional Lyapunov functions. The latter ones are naturally incorporated
with the existence for the equilibrium of the system and the partitioning of phase space. This approach is more
straightforward than the one in [4] and is more general than the one in [10]. This investigation further explores
the intrinsic structures of the model equations discussed in this presentation. Indeed, for example, for an arbitrary
dynamical system with a global Lyapunov function, the existence of a regional Lyapunov function on the set where
the global Lyapunov function is constant is not automatically valid.

We shall present our results for strictly increasing and two-sided saturated signal functions in Section 2. Extension
of the convergence theorem to more general saturated signal functions will be discussed in Section 3.

2. Main results
We consider the following system proposed by Cohen and Grossberg [4], and later investigated in [5,6],

dx; - .
d—t=ai<x) yi(xn—zlﬁuf,-(xj) L i=12....n (2.1)
/:
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wherex = (x1, x2, ... , x,). Denote byF; (x) the right-hand side of (2.1) afl = (F1, Fo, ... , F). The following
assumptions have been made in [5,6] in additiotHg), (H2):

(H3) a;(xX)>0forallx e R"andevery =1,2,...,n,

(Hs) f/(§)>0forallé eRandeveryi =12 ... n.
There are extra conditions which guarantee the dissipativeness, hence the existence of the global attractor, for the
system (2.1).

(Hs) All f; are boundedy; (x) > O for all sufficiently largeX|; y; (x;)x; — —oo as|x;| — oc.
Let B = [Bjj] be a cycle-symmetric matrix, that iB,satisfieg H1) and(H>). By the theorem in[11,12], there exists
an invertible diagonal matri® such thaPBP~1 = A with A = [«jj], @ symmetric matrix. Denote the diagonal
entries of P by p1, p2, ..., pn, Where everyp; is nonzero. Sey = PXx, thatis,y; = p;x; for eachi. Eq. (2.1) in
new variables is given by the following form:

dy; _ _ - _
d_); = pia;(P1y) {yi (P v — Y _Bii fi(p; 1y,>}
j=1

n n
=a;(P7ly) {pi vi(p; ') = Y pifi Pj_lpjfj(l’j_lyj):| =Gi(y) {m;) - e fj (y,,)} :

j=1 j=1
whered;(y) = a;(P~Yy), 7:(v) = pivi(p; tvi), and fi(v) = pi fi(p; tyi). Notice thata; satisfies(Hs), f;
satisfieq Hs), anda;, f;, andy; satisfy(Hs). Therefore, the Lyapunov function

n

Vi B 1< 5 B
vy ==Y {/ 7€) F (&) de — EZaijﬁ(yi)fj(y,»)} ,
j=1

i=1

which was proposed in [4] for symmetric connection strength, still holds here. We thus obtain the main theorem in

[5]-
Theorem 2.1. Assumé H1)—(Hs). The dynamics gf2.1) are convergent if every equilibrium is isolated

The second goal of this presentation is to extend the convergence of dynamics for (2.1) to other signal ffinctions
In particular, we consider sigmoid#l with some saturations. In this case, the slopg dfecomes only nonnegative
(compare with( Hy)). These functions are described as follows.

(Hp Let{b}], {c;}], {u;}], {vi}] be sequences of real numbers with< ¢;, u; < v; for eachi. Fori =

1,2,...,n,let f; = fi(&) be a function which is continuous d®, increasing on#;, ¢;1, fi(&) = v; for all

& > ci,andf; (&) = u; forall & < b;.
A typical function f; satisfying (H,) is depicted in Fig. 1. The phase sp&efor the dynamical system generated
by (2.1) can be decomposed intbr&gions, corresponding to the partitioning of the domains in definition of these
sigmoidal functionsf;. The following labeling and notations are used to describe these regions. Dend}etmey
set of positive integers from 1 to, and by.AN» the set of all functions : N, — A, whereA := {—1,0, 1}. It
follows that

U 2. =R".

oeANn

where

25 ::{X:{x,-}eR”|xizciifaizl; xi <bjif o =-1; bi<xi<CiifO'i=0}.
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Fig. 1. Graph of signal functiorf; in (Hy).

An illustration of the decomposition for = 2 is provided in Fig. 2. Letde = {{o;} € AN |o; = —1or1},
Am = {{oi} € AN*|6; = Oforsome € N, and|o;| = 1forsomej € N, }. These 3 regions can then be classified
into three categories?,, is called arexterior regionif o € Ae, amixed regionf o € A, and aninterior regionif

o; = 0foralli € N,. Accordingly, there is only one interior region and it will be denotedly

As a consequence, the equilibria for (2.1) can be classified into three types, according to their locations. An
equilibriumx = {x;}] is calledexteriorif X lies in an exterior regiormixedif X lies in a mixed region, anithterior
if X lies in the interior region.

With this classification, we elaborate on the existence for each type of the equilibria in the following. If substituting
{x;}] by {x;}] into the right-hand side of (2.1) yields zero and< X; < ¢; for eachi € N, then{x;}] is aninterior
equilibrium.

(2.1) restricted to an exterior regigR,, o € Ae takes the following form:

dxi "
5 =G0 i) = Zﬁqw,- : (2.2)
j=1
where

a)jzvj iij:l, a)j:uj ifO'j:—l. (23)

SR 20,1 Qy;

Xp=c)
Q40 Qq Q19
xp=bp
Qg Q. Q14
X1=bj X1=¢]

Fig. 2. Decomposition of phase spaceifoe 2.
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Thus,X = {x;}] is an exterior equilibrium of (2.1) i, if it satisfies (2.2) as well ag > c; for i with o; = 1 and
x; < b; fori with o; = —1.

Consider a mixed regio®,, c € Am. LetJo = {i € N, : 0; = 0} andJ1 = N, \ Jo. Fori € Jp, theith
component of the vector fiel@(x) in (2.1) restricted ta2, becomes

FOOi =ai() | vixi) — D Bifix)— > Bjw; |, (2.4)
Jj€Jo JEN
where
wj =Vj if 0j = 1, wj =1Uj if 0 = -1 (2.5)

Assume that; (x) > 0 for allx € R". Suppose there exist real numbgfg} with X = {;}] such that substituting
{xi}] by {x;}] into (2.4) yields zero. Then, (2.4) also vanishes{et {x;}] with x; = x; if i € Jo, and anyx; < b;

if o; = —1, as well as any; > ¢; if o; = 1. Therefore, we have the following subsets of the phase space, which
possesses certain invariant property. Namely,

I, ={XeR"|x;=x;ifi € Jo, x; <bjifo; =—1,x; >c¢;if o; =1}. (2.6)

An orbit starting o/, remains orf, before it enters the other regiof¥s neighboring2, . Note that an equilibrium
in 25,0 € Am, must lie on such a subsgt. IndeedX = {x;}} is a mixed equilibrium in2, if the vector field in
(2.1) vanishes at (theith component of the vector field is as (2.4) fog Jg), moreoverp; < x; < ¢; fori € Jo,
andx; > ¢; fori € Jywitho; = 1 andx; < b; fori € Jy witho; = —1.

Now we consider (2.1) with symmetric connection strengtand signal functiong; satisfying(H,). First, let
us construct a global Lyapunov function:

n

Si(xi) 1
V) =-) {/ vi(gi(§)) d& — EZ,Bijfi(xi)fj(xj)} : (2.7)
j=1

i=1

whereg; : [u;, vi] — [b;, ;] is defined byg; (&) = (fi|[p.c;]) "1 (&), and(f; |p.c;1) "1 is the inverse function of;
restricted to ;, ¢;]. If each f; is differentiable orR, then the derivative oV along an orbit of (2.1) is

V(X)) = =D % fl ) | vie) = ) Bi £i(x)) (2.8)
i=1

j=1

2
==Y fl(x)ai(x) {y,- (i) = Y _PBi f,»(x,»} : (2.9)

i=1 j=1

The equality in (2.8) follows from the symmetry &f = [8;] and the following observation. In the computation,
(2.8) should only hold for the term (x;) with x; € [b;, ¢;] according to the definition of;. However, forx; > ¢;
orx; < b;, f/(x;) = 0. Thus, forx; in these ranges, theterm in the summatiod_;_; vanishes no matter what the
terms in the bracket are. Singg(x;) > 0 for anyux;, V(x) in (2.9) is less than or equal to zero.

If some f; is not differentiable, an alternative computation yields the same result. Namely, consider

V(X) = lim sup}—ll[V(x + hF(x) — V(X)],
h—0t
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whereF(x) is the vector field in (2.1), cf. [8]. The detailed computation is similar to the one in [10}SLtet the
set on whichV remains constant along an orbit of (2.1), that is,

S={xeR":V(x) =0}
Then, the closure af can be represented by
S = (Usene2:) U (UI;) U &o. (2.10)

Herein,Usc 4,825 is the union of all exterior regiongy is the set of equilibria in the interior region, abd, is
the union of the subsets in mixed regions, as discussed in (2.6), whenever they exist. We shall call each point (an
equilibrium) of &y, each of the exterior region3,, and each of thesk, acomponenbf S.
Next, we introduce the regional Lyapunov functign for (2.1) restricted to each exterior regitty or eachl,,
in a mixed region. Consider an exterior regi@y, o € Ae. Let

n

Vo) ==>_ / i yi(6)dE —xi ) Bjw ¢, (2.11)

i=1 j=1
wherew; is as defined in (2.3). The derivative of this function along a solution of (2.1) lyingins

2

Vo) = =) %i [ vilxi) = > _Bijwj | ==Y ai(X) | yixi) = > _pjw; | <0.
i=1 j=1 i=1 j=1

The equality holds if and only &; (X)[y; (x;) — Z’}zlﬁij w;] = 0 for everyi € N,. That is, V5 (X) only vanishes at
an exterior equilibriunx in £2,.

Supposd,, lies in a mixed region2,, o € An. Recallthat/p = {i € N,, : 6; = 0} andJ; = N, \ Jo and the
notations in (2.6). Let

Vo) ==Y f'yi@)ds—x,-Zﬂuwj—xl-Zﬂuf,-@j) : (2.12)

iep jen J€Jo

wherew; is as described in (2.5). It can be verified tai(x), the derivative ofV, along a solution of (2.1) lying
in I, vanishes only at a mixed equilibrium ip.

With the global Lyapunov functio’ and these regional Lyapunov functiovis, we can then derive the following
result. It extends Theorem 2.1 to the class of signal functiorssitisfying(Hy).

Theorem 2.2. Assume(Hy), (Hz), (Hy), (Hs) and thatz; (x) > O for all x € R". (2.1)is convergent if every
equilibrium is isolated

Proof. By changing the coordinates, it suffices to consider (2.1) with symmatri€ [8;]. Notably, if there is
an equilibrium in a mixed regio®2,, then a subsef, described in (2.6) exists and this equilibrium lies n
With the assumption that every equilibrium is isolated, the componenfsak pairwise disjoint. Indeed, any
two distinct exterior regions are disjoint. In addition, any two components belonging to two different r&jions
24,0 # o', are disjoint, since there is A€ N, such thatx; # x; for anyx = (x1,...,x,) € £, and any
X = (x1,...,X%,) € £2,. Furthermore, the same argument justifies that any two componeS&tbalbnging to the
sames2,, are disjoint. Consider an orhii(z, Xg) and itsw-limit set, w (¢ (¢, Xp)). It follows from the existence of
global Lyapunov functiorV thatw (¢ (¢, Xo)) € S. Moreover, by the connectedness of thdimit set, w (¢ (¢, Xo))
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lies in one component &. Letx* € w(¢ (¢, Xp)). If X* € &, thenx™* is already an equilibrium. Suppozé € £2,,

o € Ae. Theng(z, x*) € 2, for all r sinceV (¢ (¢, x*)) = V(x*) for all t andV (¢ (¢, X*)) decreases ap(t, x*)
leavess2,. By the existence of regional Lyapunov functiovis(x), (2.11), it follows thatx* has to be an exterior
equilibrium. The same argument holds for C £2,, 0 € An. Thatis, ifx* € I,, thenx* has to be a mixed
equilibrium in£2, . Itis also obvious that the-limit set of ¢ (¢, Xg) consists of a single equilibrium. This completes
the proof. O

Remark. It can be shown by Sard’s theorem that the equilibrium points of (2.1) are isolated for almost every matrix
of connection strengt®, with a mild assumption on the values of the signal functions at the inhibitory thresholds.
The verification is similar to the one in [4].

3. More generalizations

Theorem 2.2 is valid for other signal functions with saturations. For example, similar arguments as the proof of
Theorem 2.2 confirm the convergence of (2.1) with one-sided signal funcfidas in Fig. 3). This class of signal
functions fits the setting of suprathreshold and subthreshold variables in [4].

Our result can further be extended to stairway-like multi-saturated signal functions. ketl be an integer.

Fori € 1,2,...,n, let each of{by, ¢}, by, b, ... , by, c;,} and {ug, uy, uj, ..., uj,} be a partition ofR with
by <cj <by<cy<--<by, <c,anduy <uj <up, <--- <u, Foreach =1,2,... ,n,letf; bea
continuous function defined by

ufJ if —oo <& <bi,
u' ifcel <e<b ., j=1...,m—-1
—= —= +17 ] k] ]
&=y 7 !
increasing lfb’j <&< c‘j, j=1...,m,
ul, if ¢/ <& < oo.
Such a signal function is demonstrated in Fig. 4. For gaetL, 2, ..., n, letg; : [ug, u},] — U7y (b, ') U{c),}

be a function defined by; (§) = (fily,: C,;))‘l(*;‘) if & € [u’j u;+1) forj =1,2,...,m —landg @) = c ,
A T
where(f,-|[b,-_ C,-_))—1 is the inverse function of; restricted to A[z’j, c’j). Then the functionV in (2.7) is a global
7

Lyapunov function for (2.1). The computations in (2.8) and (2.9) remain valid by similar arguments following (2.9).
Thus, the convergence theorem for (2.1) with such signal functions can be analogously concluded by establishing
the associated regional Lyapunov functions.

fi€)

/_/ >

L

SEE——
(bj.uj)

Fig. 3. One-sided saturated signal function.
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1

(bl y.ulp)

Fig. 4. Multi-saturated signal function.

Finally, we note that it is not necessary for signal functigni (2.1) to have the same number of saturations to
conclude the convergence of dynamics. Restated, the number of saturations can range from 0 to any positive integer
m + 1 andm can vary withi.
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