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Abstract

This work investigates a class of neural networks with cycle-symmetric connection strength. We shall show that, by changing
the coordinates, the convergence of dynamics by Fiedler and Gedeon [Physica D 111 (1998) 288] is equivalent to the classical
results. This presentation also addresses the extension of the convergence theorem to other classes of signal functions with
saturations. In particular, the result of Cohen and Grossberg [IEEE Trans. Syst. Man Cybernet. SMC-13 (1983) 815] is recast
and extended with a more concise verification. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of neural network, in addition to biological modeling, has been applied to various scientific areas such
as circuit architecture and numerical computations. In designing a neural network, it is usually of prime importance
to guarantee the convergence of the corresponding dynamical system, cf. [1–4,6,7,9]. The convergence of dynamics
refers to every solution tending to a stationary solution as time goes to positive infinity. Such a convergence is often
concluded by constructing a Lyapunov function and then applying LaSalle’s invariance principle. Classical results
on the construction of the Lyapunov function require the symmetry for the matrix of connection strength between
neurons. For example, the works by Cohen and Grossberg [4] and by Chua and Yang [1] made this assumption. A
significant progress has been made by Fiedler and Gedeon [5]. They successfully extended the Lyapunov function,
hence the convergence of dynamics, to more general matrices of connection strength. The following preparation is
needed to define such matrices.

For an undirected graphG without loops or multiple edges, a path is defined as a sequence of verticesv1v2 · · · vk,
k ≥ 1, wherevivi+1 is an edge ofG for eachi ∈ {1, . . . , k − 1} and there are no repeated vertices except possibly
the first and the last. By a cycle, we mean a closed path of length greater than or equal to three, that is,v1 = vk and
k ≥ 3. LetB denote ann × n matrix with entriesβij ∈ R, i, j ∈ {1, 2, . . . , n}. If βij 6= 0 wheneverβji 6= 0, then a
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graph withn vertices can be defined fromB. Indeed, fori 6= j , an unordered pair(i, j) with βij 6= 0 is an edge of
this graph. Consider the class of matrices with entriesβij satisfying
(H1) βijβji > 0 if βij 6= 0,
(H2)

∏
Cβik = ∏

Cβki, along every cycleC,
where

∏
denotes the product. Notably, condition(H1) means that the entries ofB are sign-symmetric. Such class

of matrices, calledcycle-symmetricherein, has been investigated in [11,12]. In fact, these matrices are characterized
as matrices which are similar to symmetric matrices by real diagonal matrices. Restated, ifB satisfies(H1) and
(H2), then there exists an invertible diagonal matrixP such thatPBP−1 is a symmetric matrix. Notably, this
characterization theorem was first obtained by Parter and Youngs [12]. Maybee [11] then considered a class of
so-called combinatorially symmetric matrices (B = [βij ] with βji 6= 0 if βij 6= 0) and weakened the condition(H1).
A matrix is called pseudosymmetric therein if it is similar to a symmetric matrix by a real diagonal matrix. However,
(H1) and(H2) are the basic conditions for a matrix to be pseudosymmetric.

Fiedler and Gedeon [5] generalized the Lyapunov function for the neural network proposed in [4] to accommodate
the network with the connection strength satisfying(H1) and(H2). The condition(H1) was further weakened in [6].
The studies in [5,6] thus concluded the convergence of dynamics for the system with a larger class of connection
strength.

The first goal of this paper is to show that, with the characterization of the cycle-symmetric matrices, a change
of coordinates can transform the system to a similar system, but with symmetric connection strength. Therefore,
the convergence results in [5] are equivalent to the classical ones. This approach answers the question raised in [6]
(also mentioned in [5]), which is whether the characterization theorems in [11,12] can be applied directly to prove
the convergence theorem. The new treatment in this presentation is considered a more natural generalization of the
classical results, since, for example, symmetric matrices are easier to handle in various related computations.

Our second objective in this investigation is to extend the convergence theory to other signal functions, in
particular, the signal functions with saturations. Such functions have been used as output functions in the cellular
neural networks [1–3]. Similar signal functions have also been considered in [4], where the transition of zero slope
to positive slope in the signal functions relates to the notion of inhibitory signal threshold. Based on our previous
technique of changing coordinates, we shall extend the convergence of dynamics to the system with more general
saturated signal functions. This work not only provides an explicit formulation of these signal functions but also
develops a new concise treatment for the proof of convergence. Our first step is to partition the phase space as the
configurations of the signal functions are respected. The convergence of dynamics is then established by constructing
a global Lyapunov function as well as certain regional Lyapunov functions. The latter ones are naturally incorporated
with the existence for the equilibrium of the system and the partitioning of phase space. This approach is more
straightforward than the one in [4] and is more general than the one in [10]. This investigation further explores
the intrinsic structures of the model equations discussed in this presentation. Indeed, for example, for an arbitrary
dynamical system with a global Lyapunov function, the existence of a regional Lyapunov function on the set where
the global Lyapunov function is constant is not automatically valid.

We shall present our results for strictly increasing and two-sided saturated signal functions in Section 2. Extension
of the convergence theorem to more general saturated signal functions will be discussed in Section 3.

2. Main results

We consider the following system proposed by Cohen and Grossberg [4], and later investigated in [5,6],

dxi

dt
= ai(x)


γi(xi) −

n∑
j=1

βijfj (xj )


 , i = 1, 2, . . . , n, (2.1)
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wherex = (x1, x2, . . . , xn). Denote byFi (x) the right-hand side of (2.1) andF = (F1,F2, . . . ,Fn). The following
assumptions have been made in [5,6] in addition to(H1), (H2):
(H3) ai(x) ≥ 0 for all x ∈ Rn and everyi = 1, 2, . . . , n,
(H4) f ′

i (ξ) > 0 for all ξ ∈ R and everyi = 1, 2, . . . , n.
There are extra conditions which guarantee the dissipativeness, hence the existence of the global attractor, for the
system (2.1).
(H5) All fi are bounded;ai(x) > 0 for all sufficiently large|x|; γi(xi)xi → −∞ as|xi | → ∞.

LetB = [βij ] be a cycle-symmetric matrix, that is,B satisfies(H1) and(H2). By the theorem in [11,12], there exists
an invertible diagonal matrixP such thatPBP−1 = A with A = [αij ], a symmetric matrix. Denote the diagonal
entries ofP by p1, p2, . . . , pn, where everypi is nonzero. Sety = Px, that is,yi = pixi for eachi. Eq. (2.1) in
new variables is given by the following form:

dyi

dt
= piai(P

−1y)


γi(p

−1
i yi) −

n∑
j=1

βijfj (p
−1
j yj )




= ai(P
−1y)


piγi(p

−1
i yi) −

n∑
j=1

piβijp
−1
j pjfj (p

−1
j yj )


 = ãi (y)


γ̃i (yi) −

n∑
j=1

αij f̃j (yj )


 ,

where ãi (y) = ai(P
−1y), γ̃i (yi) = piγi(p

−1
i yi), and f̃i (yi) = pifi(p

−1
i yi). Notice thatãi satisfies(H3), f̃i

satisfies(H4), andãi , f̃i , andγ̃i satisfy(H5). Therefore, the Lyapunov function

V (y) = −
n∑

i=1




∫ yi

γ̃i (ξ)f̃ ′
i (ξ) dξ − 1

2

n∑
j=1

αij f̃i (yi)f̃j (yj )


 ,

which was proposed in [4] for symmetric connection strength, still holds here. We thus obtain the main theorem in
[5].

Theorem 2.1. Assume(H1)–(H5). The dynamics of(2.1)are convergent if every equilibrium is isolated.

The second goal of this presentation is to extend the convergence of dynamics for (2.1) to other signal functionsfi .
In particular, we consider sigmoidalfi with some saturations. In this case, the slope offi becomes only nonnegative
(compare with(H4)). These functions are described as follows.
(H ′

4) Let {bi}n1, {ci}n1, {ui}n1, {vi}n1 be sequences of real numbers withbi < ci , ui < vi for eachi. For i =
1, 2, . . . , n, let fi = fi(ξi) be a function which is continuous onR, increasing on [bi, ci ], fi(ξi) = vi for all
ξi ≥ ci , andfi(ξi) = ui for all ξi ≤ bi .

A typical functionfi satisfying (H ′
4) is depicted in Fig. 1. The phase spaceRn for the dynamical system generated

by (2.1) can be decomposed into 3n regions, corresponding to the partitioning of the domains in definition of these
sigmoidal functionsfi . The following labeling and notations are used to describe these regions. Denote byNn the
set of positive integers from 1 ton, and byANn the set of all functionsσ : Nn → A, whereA := {−1, 0, 1}. It
follows that⋃

σ∈ANn

Ωσ = Rn,

where

Ωσ := {x = {xi} ∈ Rn | xi ≥ ci if σi = 1; xi ≤ bi if σi = −1; bi < xi < ci if σi = 0}.
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Fig. 1. Graph of signal functionfi in (H ′
4).

An illustration of the decomposition forn = 2 is provided in Fig. 2. LetΛe = {{σi} ∈ ANn | σi = −1 or 1},
Λm = {{σi} ∈ ANn | σi = 0 for somei ∈ Nn and|σj | = 1 for somej ∈ Nn}. These 3n regions can then be classified
into three categories:Ωσ is called anexterior regionif σ ∈ Λe, amixed regionif σ ∈ Λm and aninterior region if
σi = 0 for all i ∈ Nn. Accordingly, there is only one interior region and it will be denoted byΩ0.

As a consequence, the equilibria for (2.1) can be classified into three types, according to their locations. An
equilibriumx̄ = {x̄i}n1 is calledexteriorif x̄ lies in an exterior region,mixedif x̄ lies in a mixed region, andinterior
if x̄ lies in the interior region.

With this classification, we elaborate on the existence for each type of the equilibria in the following. If substituting
{xi}n1 by {x̄i}n1 into the right-hand side of (2.1) yields zero andbi < x̄i < ci for eachi ∈ Nn, then{x̄i}n1 is an interior
equilibrium.

(2.1) restricted to an exterior regionΩσ , σ ∈ Λe takes the following form:

dxi

dt
= ai(x)


γi(xi) −

n∑
j=1

βijωj


 , (2.2)

where

ωj = vj if σj = 1, ωj = uj if σj = −1. (2.3)

Fig. 2. Decomposition of phase space forn = 2.
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Thus,x̄ = {x̄i}n1 is an exterior equilibrium of (2.1) inΩσ if it satisfies (2.2) as well as̄xi ≥ ci for i with σi = 1 and
x̄i ≤ bi for i with σi = −1.

Consider a mixed regionΩσ , σ ∈ Λm. Let J0 = {i ∈ Nn : σi = 0} andJ1 = Nn \ J0. For i ∈ J0, the ith
component of the vector fieldF(x) in (2.1) restricted toΩσ becomes

F(x)i = ai(x)


γi(xi) −

∑
j∈J0

βijfj (xj ) −
∑
j∈J1

βijωj


 , (2.4)

where

ωj = vj if σj = 1, ωj = uj if σj = −1. (2.5)

Assume thatai(x) > 0 for all x ∈ Rn. Suppose there exist real numbers{x̄i}n1 with x̄ = {x̄i}n1 such that substituting
{xi}n1 by {x̄i}n1 into (2.4) yields zero. Then, (2.4) also vanishes forx = {xi}n1 with xi = x̄i if i ∈ J0, and anyxi ≤ bi

if σi = −1, as well as anyxi ≥ ci if σi = 1. Therefore, we have the following subsets of the phase space, which
possesses certain invariant property. Namely,

Iσ = {x ∈ Rn | xi = x̄i if i ∈ J0, xi ≤ bi if σi = −1, xi ≥ ci if σi = 1}. (2.6)

An orbit starting onIσ remains onIσ before it enters the other regionsΩσ ′ neighboringΩσ . Note that an equilibrium
in Ωσ , σ ∈ Λm, must lie on such a subsetIσ . Indeed,̄x = {x̄i}n1 is a mixed equilibrium inΩσ if the vector field in
(2.1) vanishes at̄x (theith component of the vector field is as (2.4) fori ∈ J0), moreover,bi < x̄i < ci for i ∈ J0,
andx̄i ≥ ci for i ∈ J1 with σi = 1 andx̄i ≤ bi for i ∈ J1 with σi = −1.

Now we consider (2.1) with symmetric connection strengthB and signal functionsfi satisfying(H ′
4). First, let

us construct a global Lyapunov function:

V (x) = −
n∑

i=1




∫ fi(xi )

γi(gi(ξ)) dξ − 1

2

n∑
j=1

βijfi(xi)fj (xj )


 , (2.7)

wheregi : [ui, vi ] → [bi, ci ] is defined bygi(ξ) = (fi |[bi ,ci ])
−1(ξ), and(fi |[bi ,ci ])

−1 is the inverse function offi

restricted to [bi, ci ]. If eachfi is differentiable onR, then the derivative ofV along an orbit of (2.1) is

V̇ (x) = −
n∑

i=1

ẋif
′
i (xi)


γi(xi) −

n∑
j=1

βijfj (xj )


 (2.8)

= −
n∑

i=1

f ′
i (xi)ai(x)


γi(xi) −

n∑
j=1

βijfj (xj )




2

. (2.9)

The equality in (2.8) follows from the symmetry ofB = [βij ] and the following observation. In the computation,
(2.8) should only hold for the termγi(xi) with xi ∈ [bi, ci ] according to the definition ofgi . However, forxi ≥ ci

or xi ≤ bi , f ′
i (xi) = 0. Thus, forxi in these ranges, thei-term in the summation

∑n
i=1 vanishes no matter what the

terms in the bracket are. Sincef ′
i (xi) ≥ 0 for anyxi , V̇ (x) in (2.9) is less than or equal to zero.

If somefi is not differentiable, an alternative computation yields the same result. Namely, consider

V̇ (x) = lim sup
h→0+

1

h
[V (x + hF(x)) − V (x)],
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whereF(x) is the vector field in (2.1), cf. [8]. The detailed computation is similar to the one in [10]. LetS be the
set on whichV remains constant along an orbit of (2.1), that is,

S = {x ∈ Rn : V̇ (x) = 0}.
Then, the closure ofS can be represented by

S̄ = (∪σ∈ΛeΩσ ) ∪ (∪Iσ ) ∪ E0. (2.10)

Herein,∪σ∈ΛeΩσ is the union of all exterior regions,E0 is the set of equilibria in the interior region, and∪Iσ is
the union of the subsets in mixed regions, as discussed in (2.6), whenever they exist. We shall call each point (an
equilibrium) ofE0, each of the exterior regionsΩσ , and each of theseIσ , acomponentof S.

Next, we introduce the regional Lyapunov functionVσ for (2.1) restricted to each exterior regionΩσ or eachIσ

in a mixed region. Consider an exterior regionΩσ , σ ∈ Λe. Let

Vσ (x) = −
n∑

i=1




∫ xi

γi(ξ) dξ − xi

n∑
j=1

βijωj


 , (2.11)

whereωj is as defined in (2.3). The derivative of this function along a solution of (2.1) lying inΩσ is

V̇σ (x) = −
n∑

i=1

ẋi


γi(xi) −

n∑
j=1

βijωj


 = −

n∑
i=1

ai(x)


γi(xi) −

n∑
j=1

βijωj




2

≤ 0.

The equality holds if and only ifai(x)[γi(xi) − ∑n
j=1βijωj ] = 0 for everyi ∈ Nn. That is,V̇σ (x) only vanishes at

an exterior equilibriumx in Ωσ .
SupposeIσ lies in a mixed regionΩσ , σ ∈ Λm. Recall thatJ0 = {i ∈ Nn : σi = 0} andJ1 = Nn \ J0 and the

notations in (2.6). Let

Vσ (x) = −
∑
i∈J1




∫ xi

γi(ξ) dξ − xi

∑
j∈J1

βijωj − xi

∑
j∈J0

βijfj (x̄j )


 , (2.12)

whereωj is as described in (2.5). It can be verified thatV̇σ (x), the derivative ofVσ along a solution of (2.1) lying
in Iσ , vanishes only at a mixed equilibrium inIσ .

With the global Lyapunov functionV and these regional Lyapunov functionsVσ , we can then derive the following
result. It extends Theorem 2.1 to the class of signal functionsfi satisfying(H ′

4).

Theorem 2.2. Assume(H1), (H2), (H
′
4), (H5) and thatai(x) > 0 for all x ∈ Rn. (2.1) is convergent if every

equilibrium is isolated.

Proof. By changing the coordinates, it suffices to consider (2.1) with symmetricB = [βij ]. Notably, if there is
an equilibrium in a mixed regionΩσ , then a subsetIσ described in (2.6) exists and this equilibrium lies onIσ .
With the assumption that every equilibrium is isolated, the components ofS are pairwise disjoint. Indeed, any
two distinct exterior regions are disjoint. In addition, any two components belonging to two different regionsΩσ ,
Ωσ ′ , σ 6= σ ′, are disjoint, since there is aj ∈ Nn such thatxj 6= x̃j for any x = (x1, . . . , xn) ∈ Ωσ and any
x̃ = (x̃1, . . . , x̃n) ∈ Ωσ ′ . Furthermore, the same argument justifies that any two components ofS belonging to the
sameΩσ are disjoint. Consider an orbitφ(t, x0) and itsω-limit set,ω(φ(t, x0)). It follows from the existence of
global Lyapunov functionV thatω(φ(t, x0)) ∈ S. Moreover, by the connectedness of theω-limit set,ω(φ(t, x0))
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lies in one component ofS. Let x∗ ∈ ω(φ(t, x0)). If x∗ ∈ E0, thenx∗ is already an equilibrium. Supposex∗ ∈ Ωσ ,
σ ∈ Λe. Thenφ(t, x∗) ∈ Ωσ for all t sinceV (φ(t, x∗)) = V (x∗) for all t andV (φ(t, x∗)) decreases asφ(t, x∗)
leavesΩσ . By the existence of regional Lyapunov functionsVσ (x), (2.11), it follows thatx∗ has to be an exterior
equilibrium. The same argument holds forIσ ⊂ Ωσ , σ ∈ Λm. That is, if x∗ ∈ Iσ , thenx∗ has to be a mixed
equilibrium inΩσ . It is also obvious that theω-limit set ofφ(t, x0) consists of a single equilibrium. This completes
the proof. �

Remark. It can be shown by Sard’s theorem that the equilibrium points of (2.1) are isolated for almost every matrix
of connection strengthB, with a mild assumption on the values of the signal functions at the inhibitory thresholds.
The verification is similar to the one in [4].

3. More generalizations

Theorem 2.2 is valid for other signal functions with saturations. For example, similar arguments as the proof of
Theorem 2.2 confirm the convergence of (2.1) with one-sided signal functionsfi (as in Fig. 3). This class of signal
functions fits the setting of suprathreshold and subthreshold variables in [4].

Our result can further be extended to stairway-like multi-saturated signal functions. Letm > 1 be an integer.
For i ∈ 1, 2, . . . , n, let each of{bi

1, c
i
1, b

i
2, c

i
2, . . . , bi

m, ci
m} and {ui

0, u
i
1, u

i
2, . . . , ui

m} be a partition ofR with
bi

1 < ci
1 < bi

2 < ci
2 < · · · < bi

m < ci
m andui

0 < ui
1 < ui

2 < · · · < ui
m. For eachi = 1, 2, . . . , n, let fi be a

continuous function defined by

fi(ξ) =




ui
0 if − ∞ < ξ ≤ bi

1,

ui
j if ci

j ≤ ξ ≤ bi
j+1, j = 1, . . . , m − 1,

increasing ifbi
j ≤ ξ ≤ ci

j , j = 1, . . . , m,

ui
m if ci

m ≤ ξ < ∞.

Such a signal function is demonstrated in Fig. 4. For eachi = 1, 2, . . . , n, letgi : [ui
0, u

i
m] → ∪m

j=1[bi
j , c

i
j )∪ {ci

m}
be a function defined bygi(ξ) = (fi |[bi

j ,ci
j ))

−1(ξ) if ξ ∈ [ui
j , u

i
j+1) for j = 1, 2, . . . , m − 1 andgi(u

i
m) = ci

m,

where(fi |[bi
j ,ci

j ))
−1 is the inverse function offi restricted to [bi

j , c
i
j ). Then the functionV in (2.7) is a global

Lyapunov function for (2.1). The computations in (2.8) and (2.9) remain valid by similar arguments following (2.9).
Thus, the convergence theorem for (2.1) with such signal functions can be analogously concluded by establishing
the associated regional Lyapunov functions.

Fig. 3. One-sided saturated signal function.
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Fig. 4. Multi-saturated signal function.

Finally, we note that it is not necessary for signal functionsfi in (2.1) to have the same number of saturations to
conclude the convergence of dynamics. Restated, the number of saturations can range from 0 to any positive integer
m + 1 andm can vary withi.
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