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An Extending Result on Spectral Radius of Bipartite Graphs

Yen-Jen Cheng*, Feng-lei Fan and Chih-wen Weng

Abstract. In this paper, we study the spectral radius of bipartite graphs. Let G be a

bipartite graph with e edges without isolated vertices. It was known that the spectral

radius of G is at most the square root of e, and the upper bound is attained if and

only if G is a complete bipartite graph. Suppose that G is not a complete bipartite

graph and (e−1, e+1) is not a pair of twin primes. We describe the maximal spectral

radius of G. As a byproduct of our study, we obtain a spectral characterization of a

pair (e− 1, e+ 1) of integers to be a pair of twin primes.

1. Introduction

Let G denote a bipartite graph with e edges without isolated vertices. The spectral radius

of G is the largest eigenvalue of the adjacency matrix of G. It was shown in [1, Propo-

sition 2.1] that the spectral radius ρ(G) of G satisfies ρ(G) ≤
√
e, with equality if and

only if G is a complete bipartite graph. There are several extending results of the above

result, which aim to solve an analog of the Brualdi-Hoffman conjecture for nonbipartite

graphs [3], proposed in [1]. These extending results are scattered in [1,4,11]. To illustrate

another extending result, we need some notations. For 2 ≤ s ≤ t, let K−s,t denote the graph

obtained from the complete bipartite graph Ks,t of bipartition orders s and t by deleting

an edge, and K+
s,t denote the graph obtained from Ks,t by adding a new edge xy, where x

is a new vertex and y is a vertex in the part of order s. Note that K−2,t+1 = K+
2,t, and K−s,t

and K+
s,t are not complete bipartite graphs. For e ≥ 2, let ρ(e) denote the maximal value

ρ(G) of a bipartite graph G with e edges which is not a union of a complete bipartite

graph and some isolated vertices. For the case that (e − 1, e + 1) is not a pair of twin

primes, i.e., a pair of primes with difference two, we will describe the bipartite graph G

with e edges such that ρ(G) = ρ(e). Indeed we will show in Theorem 5.1 that if e ≥ 3

and ρ(G) = ρ(e) then G ∈ {K−s′,t′ ,K
+
s′′,t′′}, where s′ and t′ (resp. s′′ and t′′) are chosen to

minimize s subject to 2 ≤ s ≤ t and e = st−1 (resp. e = st+1). The case that (e−1, e+1)

is a pair of twin primes is not completely solved. Nevertheless, we find that the values of

ρ(e) in this case tend to be smaller than others. Indeed, this property characterizes a pair
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of twin primes. See Theorem 5.2 for the detailed description. Our results are the main

tools in [12] to determine if K−s,t and K+
s,t are determined by their eigenvalues.

2. Preliminaries

Let D = (d1, d2, . . . , dp) be a sequence of nonincreasing positive integers of length p. Let

GD denote the bipartite graph with bipartition X ∪ Y , where X = {x1, x2, . . . , xp} and

Y = {y1, y2, . . . , yq} (q = d1), and xiyj is an edge if and only if j ≤ di. Note that D is the

degree sequence of the part X in the bipartition X ∪Y of GD. As e = d1 +d2 + · · ·+dp, D

is a partition of the number e of edges in GD. The degree sequence D∗ = (d∗1, d
∗
2, . . . , d

∗
q)

of the other part Y forms the conjugate partition of e, where e = d∗1 + d∗2 + · · · + d∗q and

d∗j = |{i | di ≥ j}|. See [2, Section 8.3] for details. The sequence D will define a Ferrers

diagram of 1’s that has p rows with di 1’s in row i for 1 ≤ i ≤ p. For example, the Ferrers

diagram F (D) of the sequence D = (4, 2, 2, 1, 1) is illustrated in Figure 2.1. One can check

that D∗ = (5, 3, 1, 1) in the above example.

F(D) =

1 1 1 1

1 1

1 1

1

1

Figure 2.1: The Ferrers diagram F (D) of D = (4, 2, 2, 1, 1).

The graph GD is important in the study of the spectral radius of bipartite graphs with

prescribed degree sequence of one part of the bipartition.

Lemma 2.1. [1, Theorem 3.1] Let G be a bipartite graph without isolated vertices such that

one part in the bipartition of G has degree sequence D = (d1, . . . , dp). Then ρ(G) ≤ ρ(GD)

with equality if and only if G = GD (up to isomorphism).

The following lemma is used in the proof of Lemma 2.1 which may be traced back

to [13].

Lemma 2.2. Let G be a bipartite graph and (u1, u2, . . . , up; v1, v2, . . . , vq) be a positive

Perron eigenvector of the adjacency matrix of G according to the bipartition X ∪Y , where

vertices in the part Y of G are ordered to ensure v1 ≥ v2 ≥ · · · ≥ vq. For 1 ≤ i < j ≤ q,

if xkyj is an edge and xkyi is not an edge in G for some xk ∈ X, then the new bipartite
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graph G′ with the same vertex set as G obtained by deleting the edge xkyj and adding a

new edge xkyi has spectral radius ρ(G′) ≥ ρ(G).

A bipartite graph G is biregular if the degrees of vertices in the same part of its

bipartition are the same constant. Let H, H ′ be two bipartite graphs with given ordered

bipartitions V H = X ∪ Y and V H ′ = X ′ ∪ Y ′, where V H ∩ V H ′ = φ. The bipartite sum

H+H ′ of H and H ′ (with respect to the given ordered bipartitions) is the graph obtained

from H and H ′ by adding an edge between x and y for each pair (x, y) ∈ X×Y ′∪X ′×Y .

Chia-an Liu and the third author [11] found upper bounds of ρ(G) expressed by degree

sequences of two parts of the bipartition of G.

Lemma 2.3. [11] Let G be a bipartite graph with bipartition X ∪ Y of orders p and q

respectively such that the part X has degree sequence D = (d1, . . . , dp), and the other part

Y has degree sequence D′ = (d′1, d
′
2, . . . , d

′
q), both in nonincreasing order. For 1 ≤ s ≤ p

and 1 ≤ t ≤ q, let Xs,t = dsd
′
t +

∑s−1
i=1 (di − ds) +

∑t−1
j=1(d

′
j − d′t), Ys,t =

∑s−1
i=1 (di − ds) ·∑t−1

j=1(d
′
j − d′t). Then

ρ(G) ≤ φs,t :=

√√√√Xs,t +
√
X2

s,t − 4Ys,t

2
.

Furthermore, if G is connected then the above equality holds if and only if there exist

nonnegative integers s′ < s and t′ < t, and a biregular graph H of bipartition orders p− s′

and q − t′ respectively such that G = Ks′,t′ +H.

The idea of the proof in Lemma 2.3 is to apply Perron-Frobenius Theorem for the

spectral radius to matrices that are similar to the adjacency matrix of G by diagonal

matrices with variables on diagonals. Results using this powerful method are also in

[5–10,14,15].

3. Graphs closed to Kp,q

Applying Lemma 2.3 to the graph G = GD for a given sequence D = (d1, d2, . . . , dp) of

nonincreasing positive integers of length p, one immediately finds that d′j = d∗j and

t−1∑
j=1

(d′j − d′t) =

p∑
i=d′t+1

di.

Moreover, if s is chosen such that ds < ds−1 and t = ds + 1, then d′t = s − 1 and the

corresponding Ferrers diagram F (D) has a blank in the (s, t) position, so

Xs,t = ds(s− 1) +
s−1∑
i=1

(di − ds) +

p∑
i=s

di = e
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and

(3.1) Ys,t =

s−1∑
i=1

(di − ds) ·
p∑

i=s

di,

completely expressed by D. Hence we have the following simpler form of Lemma 2.3.

Lemma 3.1. Assume that s is chosen satisfying ds < ds−1 in the sequence D = (d1, d2,

. . . , dp) of positive integers and e = d1 + d2 + · · ·+ dp. Then

ρ(GD) ≤

√√√√e+
√
e2 − 4

∑s−1
i=1 (di − ds) ·

∑p
i=s di

2
,

with equality if and only if D contains exactly two different values.

The following are a few special cases of GD that satisfy the equality in Lemma 3.1.

Example 3.2. [11] Suppose that 2 ≤ p ≤ q and Ke
p,q (resp. eKp,q) is the graph obtained

from Kp,q by deleting k := pq − e edges incident on a common vertex in the part of order

q (resp. p). Then

ρ(Ke
p,q) =

√
e+

√
e2 − 4k(q − 1)(p− k)

2
, k = pq − e < p,

ρ(eKp,q) =

√
e+

√
e2 − 4k(p− 1)(q − k)

2
, k = pq − e < q.

Applying Example 3.2 to the graph K−p,q = Kpq−1
p,q = pq−1Kp,q, one immediate finds

that

ρ(K−p,q) =

√
e+

√
e2 − 4(e− (p+ q) + 2)

2
,

which obtains maximum (resp. minimum) when p is minimum (resp. p is maximum)

subject to the fixed number e = pq − 1 of edges and 2 ≤ p ≤ q. Note that

e− (p+ q) + 2 ≤ e− 2
√
pq + 2 = e− 2

√
e+ 1 + 2 < e− 1−

√
e− 1, e ≥ 6.

Hence

ρ(K−p,q) >

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
, q ≥ p ≥ 3.

As K−2,2 has 3 edges, one can check that

(3.2) ρ(K−2,2) =

√
3 +
√

5

2
<

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.
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Similarly K+
p,q = Kpq+1

p,q+1 has spectral radius

ρ(K+
p,q) =

√
e+

√
e2 − 4(e− 1− q)

2
,

which obtains maximum (resp. minimum) when p is minimum (resp. p is maximum)

subject to the fixed number e = pq+1 and 2 ≤ p ≤ q. Note that e−1−q ≤ e−1−
√
e− 1

in this case. Hence

ρ(K+
p,q) ≥

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2

with equality if and only if p = q =
√
e− 1. This proves the following lemma.

Lemma 3.3. The following (i)–(iii) hold.

(i) For all positive integers 2 ≤ p′ ≤ q′, (p′, q′) 6= (2, 2), 2 ≤ p′′ ≤ q′′ satisfying e =

p′q′ − 1 = p′′q′′ + 1, we have

ρ(K−p′,q′), ρ(K+
p′′,q′′) ≥

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Moreover the above equality does not hold for ρ(K−p′,q′), and holds for ρ(K+
p′′,q′′) if

and only if p′′ = q′′.

(ii) If e+ 1 is not a prime and p′ ≥ 2 is the least integer such that p′ divides e+ 1 and

q′ := (e + 1)/p′ so that e = p′q′ − 1, then for any positive integers 2 ≤ p ≤ q with

e = pq − 1, we have ρ(K−p,q) ≤ ρ(K−p′,q′), with equality if and only if (p, q) = (p′, q′).

(iii) If e − 1 is not a prime, and p′′ ≥ 2 is the least integer such that p′′ divides e − 1

and q′′ := (e− 1)/p′′ so that e = p′′q′′ + 1, then for positive integers 2 ≤ p ≤ q with

e = pq+1, we have ρ(K+
p,q) ≤ ρ(K+

p′′,q′′), with equality if and only if (p, q) = (p′′, q′′).

Note that the condition 2 ≤ p′ ≤ q′, (p′, q′) 6= (2, 2) in (i) is from the previous condition

3 ≤ p′ ≤ q′ and K−2,q = K+
2,q−1 for q ≥ 3.

4. Graphs with at least two edges different from Kp,q

In this section, we consider bipartite graphs which are not complete bipartite and are not

considered in Lemma 3.3(i). The following lemma is for the special case that the graph

has the form G = GD.
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Lemma 4.1. Let D = (d1, d2, . . . , dp) be a partition of e. Suppose that GD is not a

complete bipartite graph and is not one of the graphs K−p′,q′ or K+
p′′,q′′ for any 2 ≤ p′ ≤ q′,

(p′, q′) 6= (2, 2), 2 ≤ p′′ ≤ q′′ such that e = p′q′ − 1 = p′′q′′ + 1. Then

ρ(GD) <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Proof. When e ≤ 3, GD = K−2,2 is the only graph satisfies the assumption above and the

inequality holds by (3.2). We assume that e ≥ 4. The assumption implies that q = d1 ≥ 2

and 4 ≤ e ≤ pq − 2. Using D∗ to replace D if necessary, we might assume that 2 ≤ p ≤ q
and q ≥ 3. Since GD is not complete, we choose s such that 1 ≤ s ≤ p and ds−1 > ds. Set

t = ds+1. According to the partition (s−1, 1, p−s) of rows and the partition (t−1, 1, q−t)
of columns, the Ferrers diagram F (D) is divided into 9 blocks and the number bij of 1’s

in the block (i, j) for 1 ≤ i, j ≤ 3 is shown as
b11 b12 b13

b21 b22 b23

b31 b32 b33

 =


(s− 1)ds s− 1

∑s−1
i=1 (di − ds − 1)

ds 0 0∑p
i=s+1 di 0 0

 .
Note that b11 = b12b21 and b11 + b12 + b13 + b21 + b31 = e. Referring to Lemma 3.1 and

(3.1), it suffices to show that Ys,t > e− 1−
√
e− 1. Note that

Ys,t =
s−1∑
i=1

(di − ds) ·
p∑

i=s

di =

(
s− 1 +

s−1∑
i=1

(di − ds − 1)

)(
ds +

p∑
i=s+1

di

)
= (b12 + b13)(b21 + b31) = b11 + b12b31 + b21b13 + b13b31.

Note that b12b21 6= 0, and that G 6= K−p′,q′ implies that b13 6= 0 or b31 6= 0. If both parts

b13 and b31 are not zero then b12b31 ≥ b12 + b31 − 1, b21b13 ≥ b21 + b13 − 1, and b13b31 ≥ 1,

so Ys,t ≥ b11 + (b12 + b31 − 1) + (b21 + b13 − 1) + 1 = e − 1 > e − 1 −
√
e− 1. The proof

is completed. The above proof holds for any s with ds−1 < ds. We choose the least one

with such property, and might assume one of the following two cases (i)–(ii).

Case (i): b31 = 0 and b13 6= 0. Then s = p = b12 + 1 ≥ 2, and G = eKp,q, where

e = pq − (q − dp) ≥ (p− 1)q + 1 > (p− 1)2 + 1. Thus

Ys,t = b11 + b21b13 ≥ e− 1− b12 = e− p > e− 1−
√
e− 1.

Case (ii): b13 = 0 and b31 6= 0. The condition b31 6= 0 implies that q ≥ p ≥ 3. The

condition b13 = 0 implies that t = q and b21 = q− 1 ≥ 2. The proof is further divided into

the following two cases (iia) and (iib).
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Case (iia): 1 ≤ b31 < b21. If s < p − 1, let s′ = s + 1 and t′ = ds′ + 1. Then

ds′−1 > ds′ and ds′+1 6= 0. Let b′ij be the bij corresponding to the new choice of s′ and

t′. Then b′13b
′
31 6= 0 and the proof is completed as in the beginning. Note that s 6= p

since b31 6= 0. Then we may assume s = p − 1. This implies that b31 = dp < q − 1 and

e = pq − 1− q + dp ≥ p2 − p > (p− 1)2 + 1. Let s′ = p and t′ = dp + 1, and then

Ys′,t′ = b′21(b
′
12 + b′13) ≥ e− 1− b′12 = e− p > e− 1−

√
e− 1.

Case (iib): b31 ≥ b21. If b12 = 1 then by the assumption G 6= K+
p′′,q′′ , there exists

another s′′ > s such that ds′′ < ds′′−1. Apply the above proof on (s, t) = (s′′, t′′). Since

b′′13 ≥ 1, we might assume b′′31 = 0. Then s′′ = p and e = (p−1)(q−1)+dp+1 > (p−1)2+1.

Hence

Ys′′,t′′ = b′′21(b
′′
12 + b′′13) ≥ e− 1− b′′12 = e− p > e− 1−

√
e− 1.

We now assume in the last situation that b12 > 1. Then

Ys,t = b11 + (b12 − 1)b31 + b31 ≥ b11 + b12 + 2b31 − 2 ≥ e− 2 > e− 1−
√
e− 1.

We now study the general case.

Proposition 4.2. Let G be a bipartite graph without isolated vertices which is neither

a complete bipartite graph nor one of the graphs K−p′,q′, K
+
p′′,q′′ for any 2 ≤ p′ ≤ q′,

(p′, q′) 6= (2, 2), 2 ≤ p′′ ≤ q′′, such that e = p′q′ − 1 = p′′q′′ + 1 is the number of edges in

G. Then

ρ(G) <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Proof. If G is not connected, then

ρ(G) ≤
√
e− 1 <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

We assume G is connected. Let GD be the graph obtained from a degree sequence D of

any part, say X, in the bipartition X ∪ Y of G. Then ρ(G) ≤ ρ(GD) by Lemma 2.1.

The proof is finished if GD satisfies the assumption of Lemma 4.1. Let D′ be the degree

sequence of the other part Y in the bipartition of G. Then we might assume that G 6= GD,

G 6= GD′ , and GD and GD′ are graphs of the forms Kp,q, K
−
p′,q′ , or K+

p′′,q′′ .

For yi ∈ Y , let N(yi) be the set of neighbors of yi in G. Suppose for this moment that

|N(yi)| = |N(yj)| and N(yi) 6= N(yj) for some yi, yj ∈ Y . Assume that yi is before yj

in the order that makes the entries in the latter part of the positive Perron eigenvector

nonincreasing. Let G′′ be the bipartite graph obtained from G by moving an edge incident
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on yj but not on yi to incident on yi, keeping the other endpoint of this edge unchanged.

Let D′′ be the new degree sequence on the part Y of the new bipartite graph G′′. Then

ρ(G) ≤ ρ(G′′) ≤ ρ(GD′′), where the first inequality is obtained from Lemma 2.2. We will

show that GD′′ is not of the form Kp,q, K
−
p′,q′ , or K+

p′′,q′′ . Thus the proof follows from

Lemma 4.1. Suppose GD′′ is of the form Kp,q, K
−
p′,q′ , and K+

p′′,q′′ . Note that the elements

in the degree sequence of any part of Kp,q, K
−
p′,q′ , or K+

p′′,q′′ is of the form k, . . . , k, `, where

` could be 1, k− 1, k, k+ 1, for some positive integer k. Noticing that D′′ is obtained from

D′ by replacing two given equal values a by a − 1 and a + 1. If a − 1 > 1, then the

difference between a+ 1 and a− 1 is two, a contradiction. If a− 1 = 1, then GD′′ must be

K+
3,q−1 and D′ = (3, . . . , 3, 2, 2). So GD′ is not a graph of the form Kp,q, K

−
p′,q′ , or K+

p′′,q′′ ,

a contradiction. Hence we might assume that if |N(yi)| = |N(yj)| then N(yi) = N(yj) for

all yi, yj ∈ Y . Reordering the vertices in Y such that the former has larger degree and

then doing the same thing for X, we find indeed G = GD = GD′ since G is connected, a

contradiction.

We provide two applications of Proposition 4.2.

Corollary 4.3. Let G be a bipartite graph with e edges without isolated vertices. Suppose

that G is not a complete bipartite graph, and (e− 1, e+ 1) is a pair of twin primes. Then

ρ(G) <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Proof. If (e− 1, e+ 1) is a pair of primes then there is no way to express G as a graph of

the forms K−p′,q′ or K+
p′′,q′′ . The proof follows from Proposition 4.2.

Corollary 4.4. Let G be a bipartite graph without isolated vertices which is not one of

the graphs Kp,q, K−p′,q′, K
+
p′′,q′′ for any 1 ≤ p ≤ q, 2 ≤ p′ ≤ q′, 2 ≤ p′′ ≤ q′′ such that

e = pq = p′q′ − 1 = p′′q′′ + 1 is the number of edges in G. Assume that e = st + 1

(resp. e = st− 1) for 2 ≤ s ≤ t. Then

ρ(G) < ρ(K+
s,t) (resp. ρ(G) < ρ(K−s,t)).

Proof. If s = t = 2 and e = st − 1 = 3 then either G = 3K2 the disjoint union of three

edges or G = K1,2∪K2 the disjoint of a path of order 3 and an edge. One can easily check

that ρ(G) < ρ(K−2,2). The remaining cases are from Proposition 4.2 and Lemma 3.3(i) and

noticing that K−2,t+1 = K+
2,t for t ≥ 2.

It is worth mentioning that the result ρ(G) < ρ(K−s,t) in Corollary 4.4 had also been

proven in [1, Theorem 8.1] under more assumptions.
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5. Main theorems

For e ≥ 2, recall that ρ(e) is the maximal value ρ(G) of a bipartite graph G with e edges

which is not a union of a complete bipartite graph and some isolated vertices. Note that

ρ(2) = ρ(2K2) = 1 and ρ(3) = ρ(K−2,2) =

√
3 +
√

5

2
.

Two theorems about ρ(e) are given in this section.

Theorem 5.1. Let G be a bipartite graph with e ≥ 3 edges without isolated vertices such

that ρ(G) = ρ(e). Then the following (i)–(iv) hold.

(i) If e is odd then G = K−2,q, where q = (e+ 1)/2.

(ii) If e is even, e− 1 is a prime and e+ 1 is not a prime, then G = K−p′,q′, where p′ ≥ 3

is the least integer that divides e+ 1 and q′ = (e+ 1)/p′.

(iii) If e is even, e−1 is not a prime and e+1 is a prime, then G = K+
p′′,q′′, where p′′ ≥ 3

is the least integer that divides e− 1 and q′′ = (e− 1)/p′′.

(iv) If e is even and neither e− 1 nor e+ 1 is a prime, then G ∈ {K−p′,q′ ,K
+
p′′,q′′}, where

p′, q′ are as in (ii) and p′′, q′′ are as in (iii).

Proof. By the definition of ρ(e), G is not a complete graph. From Lemma 3.3(i) and

Proposition 4.2, we only need to compare the spectral radii ρ(K−p,q) and ρ(K+
p,q) for all

possible positive integers 2 ≤ p ≤ q that keep the graphs having e edges. This has been

done in Lemma 3.3(ii)–(iii).

Theorem 5.2. Let e ≥ 4 be an integer. Then (e− 1, e+ 1) is a pair of twin primes if and

only if

ρ(e) <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Proof. The necessity is by Corollary 4.3. The sufficiency is from Theorem 5.1 and

Lemma 3.3(i).

Due to Yitang Zhang’s recent result [16], the conjecture if there are infinite pairs of

twin primes obtains much attention. Theorem 5.2 provides a spectral description of the

pairs of twin primes.
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6. Numerical comparisons

In the case (iv) of Theorem 5.1, the two graphs K−p′,q′ and K+
p′′,q′′ are candidates to be

extremal graph. For even e ≤ 100 and neither e−1 nor e+1 is a prime, we shall determine

which graph has larger spectral radius. The symbol − in the last column of the following

table means that K−p′,q′ wins, i.e., ρ(K−p′,q′) > ρ(K+
p′′,q′′) and + otherwise.

e ρ(K−p′,q′) ρ(K+
p′′,q′′) winner

26
√

13 + 3
√

17
√

13 +
√

149 −

34
√

17 +
√

265
√

17 +
√

267 +

50
√

25 +
√

593
√

25 +
√

583 −

56
√

28 +
√

748
√

28 +
√

740 −

64
√

32 +
√

976
√

32 +
√

982 +

76
√

38 +
√

1384
√

38 +
√

1394 +

86
√

43 +
√

1813
√

43 +
√

1781 −

92
√

46 +
√

2096
√

46 +
√

2078 −

94
√

47 +
√

2137
√

47 +
√

2147 +

Table 6.1: Comparisons of ρ(K−p′,q′) and ρ(K+
p′′,q′′) in case (iv) of Theorem 5.1 for e ≤ 100.
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