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Abstract

Let I" denote a distance-regular graph with diameter D > 3, inter-
section numbers a;, b;, ¢; and Bose-Mesner algebra M. For § € CU oo
we define a 1 dimensional subspace of M which we call M(0). If § € C
then M(0) consists of those Y in M such that (A—61)Y € CAp, where
A (resp. Ap) is the adjacency matrix (resp. Dth distance matrix) of
. If 6 = oo then M(0) = CAp. By a pseudo primitive idempotent
for @ we mean a nonzero element of M(#). We use these as follows.
Let X denote the vertex set of I' and fix x € X. Let T denote the
subalgebra of Maty(C) generated by A, Ej, E},---,E},, where EY
denotes the projection onto the ith subconstituent of I' with respect
to . T is called the Terwilliger algebra. Let W denote an irreducible
T-module. By the endpoint of W we mean min{i|E;W # 0}. W is
called thin whenever dim(E;W) < 1for 0 <i < D. Let V = cX
denote the standard T-module. Fix 0 # v € EJV with v orthogonal
to the all 1’s vector. We define (M;v) := {P € M|Pv € E;,V}. We
show the following are equivalent: (i) dim(M;v) > 2; (ii) v is con-
tained in a thin irreducible T-module with endpoint 1. Suppose (i),
(ii) hold. We show (M;v) has a basis J, £ where J has all entries 1
and E is defined as follows. Let W denote the T-module which satis-
fies (ii). Observe EfW is an eigenspace for EfAET; let ) denote the
corresponding eigenvalue. Define 77 = —1 — b1(1+1n) ' if n # —1 and
71 =o00 if n = —1. Then F is a pseudo primitive idempotent for ;.

Keywords: distance-regular graph, pseudo primitive idempotent, sub-
counstituent algebra, Terwilliger algebra.
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1 Introduction

Let I' denote a distance-regular graph with diameter D > 3, intersection
numbers a;, b;, ¢;, Bose-Mesner algebra M and path-length distance function
0 (see section 2 for formal definitions). In order to state our main theorems we
make a few comments. Let X denote the vertex set of I'. Let V = CX denote
the vector space over C consisting of column vectors whose coordinates are
indexed by X and whose entries are in C. We endow V' with the Hermitean
inner product (, ) satisfying (u,v) = u'v for all u,v € V. For each y € X
let y denote the vector in V' with a 1 in the y coordinate and 0 in all other
coordinates. We observe {g|y € X} is an orthonormal basis for V. Fix € X.
For 0 <i < D let E denote the diagonal matrix in Matx (C) which has yy
entry 1 (resp. 0) whenever d(z,y) = i (resp. d(x,y) # i). We observe E
acts on V' as the projection onto the ith subconstituent of I' with respect to
x. For 0 < i < D define s; = >_ 7, where the sum is over all vertices y € X
such that d(z,y) = i. We observe s; € EXV. Let v denote a nonzero vector
in £}V which is orthogonal to s;. We define

(M;v) = {PeM | Pve E,V).

We observe (M;v) is a subspace of M. We consider the dimension of (M;v).

We first observe (M;v) # 0. To see this, let .J denote the matrix in Matx (C)
which has all entries 1. It is known .J is contained in M [2, p. 64]. In fact
J € (M;v); the reason is Jv = 0 since v is orthogonal to s;. Apparently
(M;v) is nonzero so it has dimension at least 1. We now consider when
does (M;v) have dimension at least 27 To answer this question we recall the
Terwilliger algebra. Let T denote the subalgebra of Matx(C) generated by
A Ej, EY, ..., E}, where A denotes the adjacency matrix of I'. The algebra
T is known as the Terwilliger algebra (or subconstituent algebra) of T" with
respect to x [19, 20, 21]. By a T-module we mean a subspace W C V such
that TW C W. Let W denote a T-module. We say W is #rreducible whenever
W # 0 and W does not contain a T-module other than 0 and W. Let W
denote an irreducible T-module. By the endpoint of W we mean the minimal
integer 7 (0 < i < D) such that EfW # 0. We say W is thin whenever EfW
has dimension at most 1 for 0 < i < D. We now state our main theorem.

Theorem 1.1. Let v denote a nonzero vector in EYV which is orthogonal to
s1. Then the following (i), (ii) are equivalent.
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(i) (M;v) has dimension at least 2.

(ii) v is contained in a thin irreducible T-module with endpoint 1.
Suppose (i), (ii) hold above. Then (M;v) has dimension exactly 2.

With reference to Theorem 1.1, suppose for the moment that (i), (ii) hold.
We find a basis for (M;v). To describe our basis we need some notation.
Let 6y > 0, > --- > 0p denote the distinct eigenvalues of A, and for 0 <
t < D let E; denote the primitive idempotent of M associated with 6;.
We recall E; satisfies (A — 6;1)E; = 0. We introduce a type of element
in M which generalizes the Ey, E1,...,Ep. We call this type of element a
pseudo primitive idempotent for I'. In order to define the pseudo primitive
idempotents, we first define for each § € C U oo a subspace of M which we
call M(0). For 8 € C, M(6) consists of those elements Y of M such that
(A—01)Y € CAp, where A is the Dth distance matrix of I'. We define
M(oo) = CAp. We show M(6) has dimension 1 for all # € C U oc. Given
distinct 6,6" in C U oo, we show M(0) N M(#') = 0. For 0 < i < D we show
M(6;) = CE;. Let # € CU occ. By a pseudo primitive idempotent for 6, we
mean a nonzero element of M(6). Before proceeding we define an involution
on CUoo. For n € CU oo we define

00 ifn=-1,
n=1<—1 if n = oo,
—1- 5 ifn#—ln#oc

We observe %: n for n € CUoco. Let W denote a thin irreducible T-module

with endpoint 1. Observe EfW is a one dimensional eigenspace for EfAET;

let 17 denote the corresponding eigenvalue. We call n the local eigenvalue of
wW.

Theorem 1.2. Let v denote a nonzero vector in ETV which is orthogonal
to s1. Suppose v satisfies the equivalent conditions (i), (ii) in Theorem 1.1.
Let W denote the T-module from part (ii) of that theorem and let n denote
the local eigenvalue for W. Let E denote a pseudo primitive idempotent for
7. Then J, E form a basis for (M;v).

We comment on when the scalar 77 from Theorem 1.2 is an eigenvalue of
. Let W denote a thin irreducible T-module with endpoint 1 and local
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eigenvalue 7. IE is known 51 <n< gp [18, Thgorem 1]. ~If n = 51 then
1 =~0y. It n=20p then 17 = 60p. We show that if §; < 1 < 8 then 1 is not
an eigenvalue of I'.

The paper is organized as follows. In section 2 we give some preliminaries
on distance-regular graphs. In section 3 and section 4 we review some basic
results on the Terwilliger algebra and its modules. We prove Theorem 1.1 in
section 5. In section 6 we discuss pseudo primitive idempotents. In section 7
we discuss local eigenvalues. We prove Theorem 1.2 in section 8.

2 Preliminaries

In this section we review some definitions and basic concepts. See the books
by Bannai and Ito [2] or Brouwer, Cohen, and Neumaier [4] for more back-
ground information.

Let X denote a nonempty finite set. Let Matx(C) denote the C-algebra
consisting of all matrices whose rows and columns are indexed by X and
whose entries are in C. Let V = C¥ denote the vector space over C consisting
of column vectors whose coordinates are indexed by X and whose entries are
in C. We observe Maty (C) acts on V' by left multiplication. We endow
V' with the Hermitean inner product (, ) which satisfies (u,v) = u'v for all
u,v € V, where t denotes transpose and — denotes complex conjugation. For
all y € X, let ¢ denote the element of V' with a 1 in the y coordinate and 0
in all other coordinates. We observe {7 | y € X'} is an orthonormal basis for
V.

Let I' = (X, R) denote a finite, undirected, connected graph without loops or
multiple edges, with vertex set X, edge set R, path-length distance function
0 and diameter D := max{0d(x,y)|lz,y € X}. We say I' is distance-regular
whenever for all integers h,i,j (0 < h,i,j < D) and for all 2,y € X with
d(x,y) = h, the number

vy =z € X[0(x, 2) = 1,0(2,y) = j}| (2.1)
is independent of - and y. The integers pfj are called the intersection numbers

for I'.  Observe pi; = p (0 < h,i,j < D). We abbreviate ¢; := pi,;_,
(1<i<D),a:=py; (0<i< D), by:=ply, (0<1<D—=1), k=p



(0 < i < D), and for convenience we set ¢y := 0 and bp := 0. Note that

For the rest of this paper we assume I' = (X, R) is distance-regular with
diameter D > 3. By (2.1) and the triangle inequality,

pho= 0 if [h—il>1 (0<hi<D), (2.2)
pyo= 0 if i—j|>1 (0<ij<D) (2.3)

Observe T is regular with valency k& = k; = by, and that £ = ¢; + a; + b; for
0 <i<D. By [4, p. 127] we have

We recall the Bose-Mesner algebra of I'. For 0 < ¢ < D let A; denote the
matrix in Maty (C) which has yz entry

)1 ifa(y,z) =1
(Ai)ye = {o if (y, 2) # i y. 2 € X).

We call A; the ith distance matriz of I'. For notational convenience we define
A; =0 fori <0andi> D. Observe (ai) Ay = I; (aii) Y7, A; = J; (aiii)
A=A (0<i< D) (aiv) AL = 4; (0 < i < D), (av) AA; = Y0 Pl A,
(0 < i,7 < D), where I denotes the identity matrix and .J denotes the all
ones matrix. We abbreviate A := A; and call this the adjacency matriz of
['. Let M denote the subalgebra of Matx(C) generated by A. Using (ai)-
(av) we find Ay, Ay, -+, Ap form a basis of M. We call M the Bose-Mesner
algebra of T'. By [2, p. 59, p. 64], M has a second basis Ey, Ey, - -+, Ep such
that (ei) Fy = |X|1J; (eii) Zio E; = I; (eiii) B; = E; (0 < i < D); (eiv)
-+, Fp the primitive idempotents for I'. Since Ey, E1, ---, Ep form a basis
for M there exists complex scalars g, 61,---,0p such that A = Zio 0, E;.
By this and (ev) we find AE; = 6;E; for 0 < i < D. Using (aiii) and (eiii)
we find each of 0y, 6, ---, 6p is a real number. Observe 6y, 6, ---, 0 are
mutually distinct since A generates M. By [2, p.197] we have 6, = k and
—k < 0; <k for 0<i<D. Throughout this paper, we assume Fy, Eq, ---,
Ep are indexed so that 6y > 6, > --- > 0p. We call 6; the ith eigenvalue of
I.



We recall some polynomials. To motivate these we make a comment. Setting
i =11in (av) and using (2.2),

AA] = bj—lAj—l -+ CL]A] + Cj+1Aj_|_1 (0 S j S D — 1)7 (25)

where b_; = 0. Let A\ denote an indeterminate and let C[\] denote the C-
algebra consisting of all polynomials in A which have coefficients in C. Let
fo, f1, --+, fp denote the polynomials in C[A] which satisfy fy =1 and

Aj=bjafiataifj+ciafin (0<7<D-1), (2:6)

where f_; = 0. For 0 < j < D the degree of f; is exactly j. Comparing (2.5)

3 The Terwilliger algebra

For the remainder of this paper we fix x € X. For 0 <i < D let Ef = Ef(x)
denote the diagonal matrix in Mat x (C) which has yy entry

o)1 i 0(a,y) =
(£ )yy = {0 if 9, y) # i (y € X). (3.1)

We call E} the ith dual idempotent of I with respect to x. For convenience we
define Ef = 0 fori < 0 and i > D. We observe (i) 2 Ef = I; (i) Ef = B}
(0 <i < D), (iii) E' = B (0 < i < D), (iv) E}E: = 0yE; (0 <i,j < D).
The E} have the following interpretation. Using (3.1) we find

E'V =span{gly € X, O(z,y) =1} (0<i< D).
By this and since {g]y € X'} is an orthonormal basis for V,
V=EV+EV+---+FEL,V  (orthogonal direct sum).

For 0 < ¢ < D, E} acts on V' as the projection onto E;V. We call EfV
the ith subconstituent of T' with respect to x. For 0 < ¢ < D we define
s; = Y_ 19, where the sum is over all vertices y € X such that d(x,y) = i.
We observe s; € EfV. Let T = T(x) denote the subalgebra of Maty (C)

generated by A, Ej, EY, ---, E}. The algebra T is semisimple but not
commutative in general [19, Lemma 3.4]. We call T the Terwilliger algebra
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(or subconstituent algebra) of I' with respect to x. We refer the reader to
1, 3, 5,6, 7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24] for
more information on the Terwilliger algebra. We will use the following facts.
Pick any integers h,i,j (0 < h,i,7 < D). By [19, Lemma 3.2] we have
* * : . h _ .
EfAyEF = 0 if and only if pi; = 0. By this and (2.2), (2.3) we find
EAE; = 0 if |h—i]>1 (0 < h,i < D), (3.2)
EJAE; = 0 if  |i—j|>1 (0<1i,5 <D). (3.3)

Lemma 3.1. The following (i), (ii) hold for 0 <i < D.
(i) B}JE: = B} A, \E} + B A,E: + Ef A B

Proof. (i) Recall J =1 A, so EfJEf =3P FrA,Ef. Evaluating this
using (3.2) we obtain the result.

(ii) Recall I = S0 B} so A;F: = S0 EiA;Ef. Evaluating this using
(3.2) we obtain the result. O

Lemma 3.2. For 0 <:< D — 1 we have
B AE; — EfAinEf = AyEf =Y EjJET. (3.4)
h=0 h=0

Proof. Evaluate each term in the right-hand side of (3.4) using Lemma 3.1
and simplify the result. O

Corollary 3.3. Let v denote a vector in EJV which is orthogonal to s;.
Then for 0 <i < D —1 we have

B Aw — Ej v =) Ay, (3.5)
h=0
Moreover EjAv = 0.

Proof. To obtain (3.5) apply all terms of (3.4) to v and evaluate the result
using Efv = v and Jv = 0. Setting i = 0 in (3.5) we find v — EfAv = v so
EjAv = 0. O

Lemma 3.4. The following (i), (ii) hold for 1 <i < D — 1.
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(1) EfpAETA L ET = ¢iB] ) A E]
(’L’L) E'Z(_lAE:Ai—I—lET = biE?_lAiEik.

Proof. (i) For all y,z € X, on either side the yz entry is equal to ¢; if
d(x,y)=1i+1, 0(x,z) =1, Iy, z) = i, and zero otherwise.

(ii) For all y, 2 € X, on either side the yz entry is equal to b; if d(z,y) = i—1,
d(z,z) =1, d(y, z) = i, and zero otherwise. O

Corollary 3.5. Let v denote a vector in EYV. Then the following (i), (ii)
hold for 1 <i< D — 1.

(1) Suppose E;A;_yv =0. Then E} A =0,
(ii) Suppose EfA; v =0. Then Ef ;A v =0.

Proof. In Lemma 3.4(i),(ii) apply both sides to v and use Efv = v. O

4 The modules of the Terwilliger algebra

Let T denote the Terwilliger algebra of I' with respect to x. By a T-module
we mean a subspace W C V such that BW C W for all B € T. Let W
denote a T-module. Then W is said to be #rreducible whenever W is nonzero
and W contains no T-modules other than 0 and W. Let W denote an
irreducible T-module. Then W is the orthogonal direct sum of the nonzero
spaces among E;W, EYW, ..., E5W [19, Lemma 3.4]. By the endpoint of W
we mean min{i|0 < i < D, EfW # 0}. By the diameter of W we mean
{il0 < i < D,EfW # 0} — 1. We say W is thin whenever EfW has
dimension at most 1 for 0 < ¢ < D. There exists a unique irreducible T-
module which has endpoint 0 [10, Prop. 8.4]. This module is called V;. For
0 < i < D the vector s; is a basis for EfVj [19, Lemma 3.6]. Therefore 1}
is thin with diameter D. The module V; is orthogonal to each irreducible
T-module other than V; [6, Lem. 3.3]. For more information on V; see [6, 10].
We will use the following facts.

Lemma 4.1. [19, Lemma 3.9] Let W denote an irreducible T-module with
endpoint r and diameter d. Then

EW£0 (r<i<r+d). (4.1)



Moreover
E;‘AE;‘W;AO if i—j]l=1, (r<i,j<r+d). (4.2)

Lemma 4.2. [6, Lemma 3.4] Let W denote a T-module. Suppose there ezists
an integer i (0 < i < D) such that dim(EW) =1 and W = TE!W. Then
W s wrreducible.

Theorem 4.3. [12, Lemma 10.1], [22, Theorem 11.1] Let W denote a thin
wrreductble T-module with endpoint one, and let v denote a nonzero vector in
EiW. Then W = Muv. Moreover the diameter of W 1s D —2 or D — 1.

Theorem 4.4. [12, Corollary 8.6, Theorem 9.8] Let v denote a nonzero
vector in BTV which 1s orthogonal to s,. Then the dimension of Mv is D —1
or D. Suppose the dimension of Mv s D —1. Then Muv is a thin irreducible
T-module with endpoint 1 and diameter D — 2.

5 The proof of Theorem 1.1

We now give a proof of Theorem 1.1.

Proof. ((i) = (ii)) We show Muv is a thin irreducible T-module with end-
point 1. By Theorem 4.4 the dimension of Muv is either D — 1 or D. First
assume the dimension of Mwv is equal to D — 1. Then by Theorem 4.4, Muv
is a thin irreducible T-module with endpoint 1. Next assume the dimen-
sion of Mu is equal to D. The space (M;v) contains .J and has dimension
at least 2, so there exists P € (M;v) such that J, P are linearly indepen-
dent. From the construction Pv € E},V. Observe Pv # 0; otherwise the
dimension of Muv is not D. The elements Ag, A1,..., Ap form a basis for
M. Therefore the elements A9+ A; +---+ A; (0 < i < D) form a basis
for M. Apparently there exist complex scalars p; (0 < ¢ < D) such that
P = Zio pi(Ag+ Ap +---+ A;). Recall J = ZhD:O Ap. Subtracting a scalar
multiple of J from P if necessary, we may assume pp = 0. We consider
Pv from two points of view. On one hand we have Pv € E},V. Therefore
EpPv = Pv and EfPv = 0 for 0 < i < D — 1. On the other hand using
(3.5),

D1
Pv = Z pi( B Aiv — B Ajyv).
i=0



Combining these two points of view we find Pv = pp_1E},Ap_1v, poEjAv =
0, and

p,;lE;(Aifll) == piE:Ai—HU (]_ S 1 S D — 1) (51)

We mentioned Pv # 0; therefore pp_; # 0 and E},Ap_1v # 0. Applying
Corollary 3.5(1) we find EfA;_yv # 0 for 1 < i < D. We claim EfA; v
and EFA,_ v are linearly dependent for 1 < ¢ < D — 1. Suppose there
exists an integer i (1 < i < D — 1) such that EfA; v and EfA;,_ v are
linearly independent. Then EfA; v # 0. Applying Corollary 3.5(ii) we find
ErAjv#0fori < j < D-—1. Using these facts and (5.1) we routinely find
pj = 0fori < j < D-—1. In particular pp_; = 0 for a contradiction. We have
now shown EFA; v and EfA;_ ;v are linearly dependent for 1 <i < D — 1.
Observe Mu is spanned by the vectors

(A0+A1+"'—|—Ai)1} (OSZSD—l)

By Corollary 3.3 and our above comments we find Mv is contained in the
span of

Ef A (0<i<D-1). (5.2)

Since Mwv has dimension D we find Mwv is equal to the span of (5.2). Ap-
parently Mv is a T-module. Moreover Muv is irreducible by Lemma 4.2.
Apparently Muv is thin with endpoint 1.

((ii) = (i)) We show (M;v) has dimension at least 2. Since J € (M;v) it
suffices to exhibit an element P € (M;v) such that .J, P are linearly inde-
pendent. Let W denote a thin irreducible T-module which has endpoint 1
and contains v. By Theorem 4.3 we have W = Muw; also by Theorem 4.3
the diameter of W is D — 2 or D — 1. First suppose W has diameter D — 2.
Then W has dimension D — 1. Consider the map ¢ : M — V which sends
each element P to Pv. The image of M under ¢ is Mv and the kernel of ¢ is
contained in (M;v). The image has dimension D — 1 and M has dimension
D +1 so the kernel has dimension 2. It follows (M;v) has dimension at least
2. Next assume W has diameter D — 1. In this case E;,W # 0 by (4.1).
Since W = Mu there exists P € M such that Pv is a nonzero element in
EyW. Now P € (M;v). Observe P, .J are linearly independent since Pv # 0
and Jv = 0. Apparently the dimension of (M;v) is at least 2.

10



Now assume (i), (ii) hold. We show the dimension of (M;v) is 2. To do this,
we show the dimension of (M;v) is at most 2. Let H denote the subspace of
M spanned by Ag, Ay, ..., Ap_o. We show H has 0 intersection with (M;v).
By Theorem 4.4 the dimension of Muw is at least D —1. Recall M is generated
by A so the vectors A'v (0 < i < D—2) are linearly independent. Apparently
the vectors A;v (0 < i < D — 2) are linearly independent. For 0 <i < D —2
the vector A is contained in S0~ EXV by Lemma 3.1(ii); therefore A is
orthogonal to E},V. We now see the vectors A;v (0 <i < D —2) are linearly
independent and orthogonal to E},V. It follows H has 0 intersection with
(M;v). Observe H is codimension 2 in M so the dimension of (M;v) is at
most 2. We conclude the dimension of (M;v) is 2. O

6 Pseudo primitive idempotents

In this section we introduce the notion of a pseudo primitive idempotent.

Definition 6.1. For each 8 € C U o we define a subspace of M which we
call M(0). For 8 € C, M(6) consists of those elements Y of M such that
(A—01)Y € CAp. We define M(oc0) = CAp.

With reference to Definition 6.1, we will show each M(6) has dimension 1. To
establish this we display a basis for M(6). We will use the following result.

D
Lemma 6.2. Let Y denote an element of M and write Y = > p;A;. Let 6
i=0
denote a complex number. Then the following (i), (ii) are equivalent.

(i) (A—01)Y € CAp.
(ii) p; = pofi(0)k; for 0 <i < D.

D
Proof. Evaluating (A — 01)Y using Y = > p;A; and simplifying the result
i=0
using (2.5) we obtain

D
(A=-01)Y = Z Ai(Cipim1 + aipy + bipiyr — 0p;),

1=0

where p_; = 0 and pp,; = 0. Observe by (2.4), (2.6) that p; = pof;(0)k;
for 0 < i < D if and only if ¢;p; 1 + a;p; + bipiys = 0p; for 0 <1 < D — 1.
The result follows. U
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Corollary 6.3. For 6 € C the following is a basis for M(0).

> Ok A (6.1)

Proof. Immediate from Lemma 6.2. O
Corollary 6.4. The space M(0) has dimension 1 for all § € CU oo.

Proof. Suppose § = oo. Then M(#) has basis Ap and therefore has dimen-
sion 1. Suppose 6 € C. Then M(6) has dimension 1 by Corollary 6.3. O

Lemma 6.5. Let 6 and 0" denote distinct elements of CUoo. Then M(6) N
M(¢') = 0

Proof. This is a routine consequence of Corollary 6.3 and the fact that

Corollary 6.6. For 0 < i< D we have M(0;) = CE;.

Proof. Observe (A—6,1)E; = 0so E; € M(6;). The space M(6;) has dimen-
sion 1 by Corollary 6.4 and E; is nonzero so E; is a basis for M(6;). O

Remark 6.7. [2, p. 63] For 0 < j < D we have
D
Ej =my| X7 filly)k A
=0

where m; denotes the rank of Ej.

Definition 6.8. Let § € CU oo. By a pseudo primitive idempotent for 6 we
mean a nonzero element of M(6), where M(6) is from Definition 6.1.

7 The local eigenvalues

Definition 7.1. Define a function ~: CU oo — CU o by

00 it n=—1,
n=4 -1 it n = oo,
b .
-1-35 if n=£ —1,1n# oo.

Observe %: n for all n € CU oo.
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Let v denote a nonzero vector in £}V which is orthogonal to s;. Assume v is
an eigenvector for Ef AET and let i) denote the corresponding eigenvalue. We
recall a few facts concerning n and 7. We have 51 <n< §D [18, Theorem 1].
If = 6, then 77 = 6,. If y = 6 then 7 = 0. We have 6, < —1 < 6 by [18,
Lemma 3] s0 8 < —1 < 0p. If; < < —1then 6; < 7. If =1 < 5 < fp then
n < 0p. We will show that if 51 <n< §D then 77 is not an eigenvalue of T.
Given the above inequalities, to prove this it suffices to prove the following
result.

Proposition 7.2. Let v denote a nonzero vector in EYV. Assume v is an
ergenvector for EYAET and let n denote the corresponding eigenvalue. Then

n# k.
Proof. Suppose 1 = k. Then n = k so by Definition 7.1,

E+1

n=-1

By this and since b; < k we see 1 is a rational number such that -2 < n < —1.
In particular n is not an integer. Observe 7 is an eigenvalue of the subgraph
of T' induced on the set of vertices adjacent x; therefore n is an algebraic
integer. A rational algebraic integer is an integer so we have a contradiction.
We conclude 77 # k. O

Corollary 7.3. Let v denote a nonzero vector in EYV which is orthogonal to
s1. Assume v is an eigenvector for EYAET and let ) denote the corresponding

eigenvalue. Suppose 0y < n < 0p. Then 1 is not an eigenvalue of T.

8 The proof of Theorem 1.2

We now give a proof of Theorem 1.2.

Proof. We first show E is contained in (M;v). To do this we show Fv €
E3V. First suppose  # —1. Then 7 € C by Definition 7.1. By Definition 6.1
there exists € € C such that (A — 1)E = eAp. By this and Lemma 3.1(ii),

AEv = nEv+eApv
€ CEv+E,_ W+ ELW. (8.1)
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In order to show Ev € E},V we show EfEv =0 for 0 <i < D — 1. Observe
EjEv = 0 since EjEv € EgW and W has endpoint 1. We show E7Ev = 0.
By Corollary 6.3 there exists a nonzero m € C such that

D
E=m>_ fu(i)k;" Ap.
h=0

Let us abbreviate
pn = mfa()k; ! (0< h< D), (8.2)

sothat B = Y7 ppAp. By this and (3.2) we find B EEF = Y7 ppn B AL BT
Applying this to v we find

2
E{Ev =Y pyEjApv. (8.3)
h=0

Setting ¢ = 1 in Lemma 3.1(i), applying each term to v, and using Jv = 0
we find

2
0="> EjAuw. (8.4)
h=0

By (8.3), (8.4), and since EfAv = nv we find Ef Ev = yv where v = pg— pa+
n(p1—p2). Evaluating v using (2.6), (8.2), and Definition 7.1 we routinely find
v = 0. Apparently EfEv = 0. We now show EfEv =0for2<:< D — 1.
Suppose there exists an integer j (2 < j < D — 1) such that EfEv # 0. We
choose j minimal so that

EfEv=0 (0<i<j—1). (8.5)
Combining this with (8.1) we find
EfAEuv=0 (0<i<j—1). (8.6)

Since W' is thin and since E7 Ev # 0 we find E7 Ev is a basis for EYW. Appar-
ently E5 JAE;Ev spans E7 (AETW. The space E; | AEYW is nonzero by
(4.2) and since the diameter of IV is at least D —2. Therefore Ef | AESEv #
0. We may now argue

E:_,AEv S B AEEv
= Ei_AEEv by (3.3), (8.5)
#+ 0
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which contradicts (8.6). We conclude EfEv = 0 for 2 < i < D —1. We
have now shown E/Ev = 0 for 0 <7 < D —1so0o Ev € ELV in the case
1 # —1. Next suppose 17 = —1, so that 7 = co. By Definition 6.1 there exists
a nonzero t € C such that £ = tAp. In order to show Ev € E},V we show
Apv € E}V. Since Apv is contained in Ej, |V + E5LV by Lemma 3.1(ii),
it suffices to show E},_;Apv = 0. To do this it is convenient to prove a bit
more, that £fA;;;v = 0 for 1 <7 < D — 1. We prove this by induction
on i. First assume i = 1. Setting ¢ = 1 in Lemma 3.1(i), applying each
term to v and using Jv = 0, EfAv = —v, we obtain E7Av = 0. Next
suppose 2 < ¢ < D —1 and assume by induction that £ ; A;uo = 0. We show
ErA;1v = 0. To do this we assume ESA;1v # 0 and get a contradiction.
Note that £ A, v spans EW since W is thin. Then Ef JAE'A;1v # 0 by
(4.2). But Ef |AE'A;1v = b;E | Ajv by Lemma 3.4(ii). Of course b; # 0 so
Ef (Ajv # 0, a contradiction. Therefore £ A; ;v = 0. We have now shown
EfA;yiv=01for1 <i¢< D —1 and in particular £},_; Apv = 0. It follows
Ev € E}LV for the case n = —1. We have now shown Ev € E}V for all cases
so E € (M;v). We now prove E,.J form a basis for (M;v). By Theorem
1.1 (M;v) has dimension 2. We mentioned earlier J € (M;v). We show
£, J are linearly independent. Recall E, .J are pseudo primitive idempotents
for n, k respectively. We have 17 # k by Proposition 7.2 so F,.J are linearly
independent in view of Lemma 6.5. O
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