Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra Paul Terwilliger Chih-wen Weng June 13, 2002 #### Abstract Let Γ denote a distance-regular graph with diameter $D \geq 3$, intersection numbers a_i, b_i, c_i and Bose-Mesner algebra M. For $\theta \in \mathbb{C} \cup \infty$ we define a 1 dimensional subspace of M which we call $\mathbf{M}(\theta)$. If $\theta \in \mathbb{C}$ then $\mathbf{M}(\theta)$ consists of those Y in M such that $(A-\theta I)Y \in \mathbb{C}A_D$, where A (resp. A_D) is the adjacency matrix (resp. Dth distance matrix) of Γ . If $\theta = \infty$ then $\mathbf{M}(\theta) = \mathbb{C}A_D$. By a pseudo primitive idempotent for θ we mean a nonzero element of $\mathbf{M}(\theta)$. We use these as follows. Let X denote the vertex set of Γ and fix $x \in X$. Let T denote the subalgebra of $\mathrm{Mat}_X(\mathbb{C})$ generated by $A, E_0^*, E_1^*, \cdots, E_D^*$, where E_i^* denotes the projection onto the ith subconstituent of Γ with respect to x. T is called the Terwilliger algebra. Let W denote an irreducible **T**-module. By the *endpoint* of W we mean $\min\{i|E_i^*W\neq 0\}$. W is called thin whenever $\dim(E_i^*W) \leq 1$ for $0 \leq i \leq D$. Let $V = \mathbb{C}^X$ denote the standard T-module. Fix $0 \neq v \in E_1^*V$ with v orthogonal to the all 1's vector. We define $(\mathbf{M}; v) := \{P \in \mathbf{M} | Pv \in E_D^*V\}$. We show the following are equivalent: (i) $\dim(\mathbf{M}; v) \geq 2$; (ii) v is contained in a thin irreducible T-module with endpoint 1. Suppose (i), (ii) hold. We show $(\mathbf{M}; v)$ has a basis J, E where J has all entries 1 and E is defined as follows. Let W denote the \mathbf{T} -module which satisfies (ii). Observe E_1^*W is an eigenspace for $E_1^*AE_1^*$; let η denote the corresponding eigenvalue. Define $\tilde{\eta} = -1 - b_1(1+\eta)^{-1}$ if $\eta \neq -1$ and $\widetilde{\eta} = \infty$ if $\eta = -1$. Then E is a pseudo primitive idempotent for $\widetilde{\eta}$. Keywords: distance-regular graph, pseudo primitive idempotent, sub-constituent algebra, Terwilliger algebra. AMS Subject Classification: 05E30. #### 1 Introduction Let Γ denote a distance-regular graph with diameter $D \geq 3$, intersection numbers a_i, b_i, c_i , Bose-Mesner algebra \mathbf{M} and path-length distance function ∂ (see section 2 for formal definitions). In order to state our main theorems we make a few comments. Let X denote the vertex set of Γ . Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C} . We endow V with the Hermitean inner product $\langle \ , \ \rangle$ satisfying $\langle u, v \rangle = u^t \overline{v}$ for all $u, v \in V$. For each $y \in X$ let \hat{y} denote the vector in V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y}|y\in X\}$ is an orthonormal basis for V. Fix $x\in X$. For $0 \leq i \leq D$ let E_i^* denote the diagonal matrix in $\mathrm{Mat}_X(\mathbb{C})$ which has yy entry 1 (resp. 0) whenever $\partial(x,y) = i$ (resp. $\partial(x,y) \neq i$). We observe E_i^* acts on V as the projection onto the ith subconstituent of Γ with respect to x. For $0 \leq i \leq D$ define $s_i = \sum \hat{y}$, where the sum is over all vertices $y \in X$ such that $\partial(x,y) = i$. We observe $s_i \in E_i^*V$. Let v denote a nonzero vector in E_1^*V which is orthogonal to s_1 . We define $$(\mathbf{M}; v) := \{ P \in \mathbf{M} \mid Pv \in E_D^* V \}.$$ We observe $(\mathbf{M}; v)$ is a subspace of \mathbf{M} . We consider the dimension of $(\mathbf{M}; v)$. We first observe $(\mathbf{M}; v) \neq 0$. To see this, let J denote the matrix in $\mathrm{Mat}_X(\mathbb{C})$ which has all entries 1. It is known J is contained in \mathbf{M} [2, p. 64]. In fact $J \in (\mathbf{M}; v)$; the reason is Jv = 0 since v is orthogonal to s_1 . Apparently $(\mathbf{M}; v)$ is nonzero so it has dimension at least 1. We now consider when does $(\mathbf{M}; v)$ have dimension at least 2? To answer this question we recall the Terwilliger algebra. Let \mathbf{T} denote the subalgebra of $\mathrm{Mat}_X(\mathbb{C})$ generated by $A, E_0^*, E_1^*, \ldots, E_D^*$, where A denotes the adjacency matrix of Γ . The algebra \mathbf{T} is known as the Terwilliger algebra (or subconstituent algebra) of Γ with respect to x [19, 20, 21]. By a \mathbf{T} -module we mean a subspace $W \subseteq V$ such that $\mathbf{T}W \subseteq W$. Let W denote a \mathbf{T} -module. We say W is irreducible whenever $W \neq 0$ and W does not contain a \mathbf{T} -module other than 0 and W. Let W denote an irreducible \mathbf{T} -module. By the endpoint of W we mean the minimal integer i ($0 \leq i \leq D$) such that $E_i^*W \neq 0$. We say W is thin whenever E_i^*W **Theorem 1.1.** Let v denote a nonzero vector in E_1^*V which is orthogonal to s_1 . Then the following (i), (ii) are equivalent. has dimension at most 1 for $0 \le i \le D$. We now state our main theorem. - (i) $(\mathbf{M}; v)$ has dimension at least 2. - (ii) v is contained in a thin irreducible T-module with endpoint 1. Suppose (i),(ii) hold above. Then $(\mathbf{M};v)$ has dimension exactly 2. With reference to Theorem 1.1, suppose for the moment that (i), (ii) hold. We find a basis for $(\mathbf{M}; v)$. To describe our basis we need some notation. Let $\theta_0 > \theta_1 > \cdots > \theta_D$ denote the distinct eigenvalues of A, and for $0 \le i \le D$ let E_i denote the primitive idempotent of \mathbf{M} associated with θ_i . We recall E_i satisfies $(A - \theta_i I)E_i = 0$. We introduce a type of element in \mathbf{M} which generalizes the E_0, E_1, \ldots, E_D . We call this type of element a pseudo primitive idempotent for Γ . In order to define the pseudo primitive idempotents, we first define for each $\theta \in \mathbb{C} \cup \infty$ a subspace of \mathbf{M} which we call $\mathbf{M}(\theta)$. For $\theta \in \mathbb{C}$, $\mathbf{M}(\theta)$ consists of those elements Y of \mathbf{M} such that $(A - \theta I)Y \in \mathbb{C}A_D$, where A_D is the Dth distance matrix of Γ . We define $\mathbf{M}(\infty) = \mathbb{C}A_D$. We show $\mathbf{M}(\theta)$ has dimension 1 for all $\theta \in \mathbb{C} \cup \infty$. Given distinct θ, θ' in $\mathbb{C} \cup \infty$, we show $\mathbf{M}(\theta) \cap \mathbf{M}(\theta') = 0$. For $0 \le i \le D$ we show $\mathbf{M}(\theta_i) = \mathbb{C}E_i$. Let $\theta \in \mathbb{C} \cup \infty$. By a pseudo primitive idempotent for θ , we mean a nonzero element of $\mathbf{M}(\theta)$. Before proceeding we define an involution on $\mathbb{C} \cup \infty$. For $\eta \in \mathbb{C} \cup \infty$ we define $$\widetilde{\eta} = \begin{cases} \infty & \text{if } \eta = -1, \\ -1 & \text{if } \eta = \infty, \\ -1 - \frac{b_1}{1+\eta} & \text{if } \eta \neq -1, \eta \neq \infty. \end{cases}$$ We observe $\widetilde{\widetilde{\eta}} = \eta$ for $\eta \in \mathbb{C} \cup \infty$. Let W denote a thin irreducible **T**-module with endpoint 1. Observe E_1^*W is a one dimensional eigenspace for $E_1^*AE_1^*$; let η denote the corresponding eigenvalue. We call η the *local eigenvalue* of W. **Theorem 1.2.** Let v denote a nonzero vector in E_1^*V which is orthogonal to s_1 . Suppose v satisfies the equivalent conditions (i), (ii) in Theorem 1.1. Let W denote the \mathbf{T} -module from part (ii) of that theorem and let η denote the local eigenvalue for W. Let E denote a pseudo primitive idempotent for $\widetilde{\eta}$. Then J, E form a basis for $(\mathbf{M}; v)$. We comment on when the scalar $\tilde{\eta}$ from Theorem 1.2 is an eigenvalue of Γ . Let W denote a thin irreducible **T**-module with endpoint 1 and local eigenvalue η . It is known $\widetilde{\theta}_1 \leq \eta \leq \widetilde{\theta}_D$ [18, Theorem 1]. If $\eta = \widetilde{\theta}_1$ then $\widetilde{\eta} = \theta_1$. If $\eta = \widetilde{\theta}_D$ then $\widetilde{\eta} = \theta_D$. We show that if $\widetilde{\theta}_1 < \eta < \widetilde{\theta}_D$ then $\widetilde{\eta}$ is not an eigenvalue of Γ . The paper is organized as follows. In section 2 we give some preliminaries on distance-regular graphs. In section 3 and section 4 we review some basic results on the Terwilliger algebra and its modules. We prove Theorem 1.1 in section 5. In section 6 we discuss pseudo primitive idempotents. In section 7 we discuss local eigenvalues. We prove Theorem 1.2 in section 8. #### 2 Preliminaries In this section we review some definitions and basic concepts. See the books by Bannai and Ito [2] or Brouwer, Cohen, and Neumaier [4] for more background information. Let X denote a nonempty finite set. Let $\operatorname{Mat}_X(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C} . Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C} . We observe $\operatorname{Mat}_X(\mathbb{C})$ acts on V by left multiplication. We endow V with the Hermitean inner product $\langle \ , \ \rangle$ which satisfies $\langle u,v \rangle = u^t\overline{v}$ for all $u,v \in V$, where t denotes transpose and - denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V. Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph without loops or multiple edges, with vertex set X, edge set R, path-length distance function ∂ and diameter $D := \max\{\partial(x,y)|x,y\in X\}$. We say Γ is distance-regular whenever for all integers h,i,j $(0 \leq h,i,j\leq D)$ and for all $x,y\in X$ with $\partial(x,y)=h$, the number $$p_{ij}^{h} = |\{z \in X | \partial(x, z) = i, \partial(z, y) = j\}|$$ (2.1) is independent of x and y. The integers p_{ij}^h are called the intersection numbers for Γ . Observe $p_{ij}^h = p_{ji}^h$ $(0 \le h, i, j \le D)$. We abbreviate $c_i := p_{1i-1}^i$ $(1 \le i \le D)$, $a_i := p_{1i}^i$ $(0 \le i \le D)$, $b_i := p_{1i+1}^i$ $(0 \le i \le D - 1)$, $k_i := p_{ii}^0$ $(0 \le i \le D)$, and for convenience we set $c_0 := 0$ and $b_D := 0$. Note that $b_{i-1}c_i \neq 0 \ (1 \leq i \leq D).$ For the rest of this paper we assume $\Gamma = (X, R)$ is distance-regular with diameter $D \geq 3$. By (2.1) and the triangle inequality, $$p_{i1}^{h} = 0$$ if $|h - i| > 1$ $(0 \le h, i \le D)$, (2.2) $p_{ij}^{1} = 0$ if $|i - j| > 1$ $(0 \le i, j \le D)$. (2.3) $$p_{ij}^1 = 0 \quad \text{if } |i-j| > 1 \quad (0 \le i, j \le D).$$ (2.3) Observe Γ is regular with valency $k = k_1 = b_0$, and that $k = c_i + a_i + b_i$ for $0 \le i \le D$. By [4, p. 127] we have $$k_{i-1}b_{i-1} = k_i c_i (1 \le i \le D).$$ (2.4) We recall the Bose-Mesner algebra of Γ . For $0 \leq i \leq D$ let A_i denote the matrix in $\mathrm{Mat}_X(\mathbb{C})$ which has yz entry $$(A_i)_{yz} = \begin{cases} 1 & \text{if } \partial(y, z) = i \\ 0 & \text{if } \partial(y, z) \neq i \end{cases} \quad (y, z \in X).$$ We call A_i the *ith distance matrix* of Γ . For notational convenience we define $A_i = 0$ for i < 0 and i > D. Observe (ai) $A_0 = I$; (aii) $\sum_{i=0}^{D} A_i = J$; (aiii) $\overline{A_i} = A_i \ (0 \le i \le D); \ (\text{aiv}) \ A_i^t = A_i \ (0 \le i \le D), \ (\text{av}) \ \overline{A_i A_j} = \sum_{h=0}^{D} p_{ij}^h A_h$ $(0 \le i, j \le D)$, where I denotes the identity matrix and J denotes the all ones matrix. We abbreviate $A := A_1$ and call this the adjacency matrix of Γ . Let **M** denote the subalgebra of $\operatorname{Mat}_X(\mathbb{C})$ generated by A. Using (ai)-(av) we find A_0, A_1, \dots, A_D form a basis of M. We call M the Bose-Mesner algebra of Γ . By [2, p. 59, p. 64], \mathbf{M} has a second basis E_0, E_1, \dots, E_D such that (ei) $E_0 = |X|^{-1}J$; (eii) $\sum_{i=0}^{D} E_i = I$; (eiii) $\overline{E_i} = E_i$ ($0 \le i \le D$); (eiv) $E_i^t = E_i \ (0 \le i \le D); \ (\text{ev}) \ \overline{E_i} E_j = \delta_{ij} E_i \ (0 \le i, j \le D).$ We call E_0, E_1, E_2 \cdots , E_D the primitive idempotents for Γ . Since E_0, E_1, \cdots, E_D form a basis for **M** there exists complex scalars $\theta_0, \theta_1, \dots, \theta_D$ such that $A = \sum_{i=0}^D \theta_i E_i$. By this and (ev) we find $AE_i = \theta_i E_i$ for $0 \le i \le D$. Using (aiii) and (eiii) we find each of $\theta_0, \theta_1, \dots, \theta_D$ is a real number. Observe $\theta_0, \theta_1, \dots, \theta_D$ are mutually distinct since A generates M. By [2, p.197] we have $\theta_0 = k$ and $-k \leq \theta_i \leq k$ for $0 \leq i \leq D$. Throughout this paper, we assume E_0, E_1, \dots, E_n E_D are indexed so that $\theta_0 > \theta_1 > \cdots > \theta_D$. We call θ_i the *ith eigenvalue* of Γ. We recall some polynomials. To motivate these we make a comment. Setting i = 1 in (av) and using (2.2), $$AA_j = b_{j-1}A_{j-1} + a_jA_j + c_{j+1}A_{j+1} \qquad (0 \le j \le D - 1), \tag{2.5}$$ where $b_{-1} = 0$. Let λ denote an indeterminate and let $\mathbb{C}[\lambda]$ denote the \mathbb{C} -algebra consisting of all polynomials in λ which have coefficients in \mathbb{C} . Let f_0, f_1, \dots, f_D denote the polynomials in $\mathbb{C}[\lambda]$ which satisfy $f_0 = 1$ and $$\lambda f_j = b_{j-1} f_{j-1} + a_j f_j + c_{j+1} f_{j+1} \qquad (0 \le j \le D - 1), \tag{2.6}$$ where $f_{-1} = 0$. For $0 \le j \le D$ the degree of f_j is exactly j. Comparing (2.5) and (2.6) we find $A_j = f_j(A)$. #### 3 The Terwilliger algebra For the remainder of this paper we fix $x \in X$. For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ which has yy entry $$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} \quad (y \in X). \tag{3.1}$$ We call E_i^* the *ith dual idempotent of* Γ *with respect to* x. For convenience we define $E_i^* = 0$ for i < 0 and i > D. We observe (i) $\sum_{i=0}^{D} E_i^* = I$; (ii) $\overline{E_i^*} = E_i^*$ $(0 \le i \le D)$, (iii) $E_i^{*t} = E_i^*$ $(0 \le i \le D)$, (iv) $E_i^* E_j^* = \delta_{ij} E_i^*$ $(0 \le i, j \le D)$. The E_i^* have the following interpretation. Using (3.1) we find $$E_i^*V = \operatorname{span}\{\hat{y}|y \in X, \ \partial(x,y) = i\} \ (0 \le i \le D).$$ By this and since $\{\hat{y}|y\in X\}$ is an orthonormal basis for V, $$V = E_0^* V + E_1^* V + \dots + E_D^* V \qquad \text{(orthogonal direct sum)}.$$ For $0 \leq i \leq D$, E_i^* acts on V as the projection onto E_i^*V . We call E_i^*V the *ith subconstituent of* Γ with respect to x. For $0 \leq i \leq D$ we define $s_i = \sum \hat{y}$, where the sum is over all vertices $y \in X$ such that $\partial(x, y) = i$. We observe $s_i \in E_i^*V$. Let $\mathbf{T} = \mathbf{T}(x)$ denote the subalgebra of $\mathrm{Mat}_X(\mathbb{C})$ generated by $A, E_0^*, E_1^*, \dots, E_D^*$. The algebra \mathbf{T} is semisimple but not commutative in general [19, Lemma 3.4]. We call \mathbf{T} the Terwilliger algebra (or subconstituent algebra) of Γ with respect to x. We refer the reader to [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24] for more information on the Terwilliger algebra. We will use the following facts. Pick any integers <math>h, i, j ($0 \le h, i, j \le D$). By [19, Lemma 3.2] we have $E_i^* A_h E_j^* = 0$ if and only if $p_{ij}^h = 0$. By this and (2.2), (2.3) we find $$E_i^* A_h E_1^* = 0 \quad \text{if} \quad |h - i| > 1 \quad (0 \le h, i \le D),$$ (3.2) $$E_i^* A E_i^* = 0 \quad \text{if} \quad |i - j| > 1 \quad (0 \le i, j \le D).$$ (3.3) **Lemma 3.1.** The following (i), (ii) hold for $0 \le i \le D$. (i) $$E_i^* J E_1^* = E_i^* A_{i-1} E_1^* + E_i^* A_i E_1^* + E_i^* A_{i+1} E_1^*$$. (ii) $$A_i E_1^* = E_{i-1}^* A_i E_1^* + E_i^* A_i E_1^* + E_{i+1}^* A_i E_1^*$$. *Proof.* (i) Recall $J = \sum_{h=0}^{D} A_h$ so $E_i^* J E_1^* = \sum_{h=0}^{D} E_i^* A_h E_1^*$. Evaluating this using (3.2) we obtain the result. (ii) Recall $I = \sum_{h=0}^{D} E_h^*$ so $A_i E_1^* = \sum_{h=0}^{D} E_h^* A_i E_1^*$. Evaluating this using (3.2) we obtain the result. **Lemma 3.2.** For $0 \le i \le D-1$ we have $$E_{i+1}^* A_i E_1^* - E_i^* A_{i+1} E_1^* = \sum_{h=0}^i A_h E_1^* - \sum_{h=0}^i E_h^* J E_1^*.$$ (3.4) *Proof.* Evaluate each term in the right-hand side of (3.4) using Lemma 3.1 and simplify the result. **Corollary 3.3.** Let v denote a vector in E_1^*V which is orthogonal to s_1 . Then for $0 \le i \le D-1$ we have $$E_{i+1}^* A_i v - E_i^* A_{i+1} v = \sum_{h=0}^i A_h v.$$ (3.5) Moreover $E_0^* A v = 0$. *Proof.* To obtain (3.5) apply all terms of (3.4) to v and evaluate the result using $E_1^*v = v$ and Jv = 0. Setting i = 0 in (3.5) we find $v - E_0^*Av = v$ so $E_0^*Av = 0$. **Lemma 3.4.** The following (i), (ii) hold for $1 \le i \le D - 1$. - (i) $E_{i+1}^* A E_i^* A_{i-1} E_1^* = c_i E_{i+1}^* A_i E_1^*$ - (ii) $E_{i-1}^* A E_i^* A_{i+1} E_1^* = b_i E_{i-1}^* A_i E_1^*$. *Proof.* (i) For all $y, z \in X$, on either side the yz entry is equal to c_i if $\partial(x,y) = i + 1$, $\partial(x,z) = 1$, $\partial(y,z) = i$, and zero otherwise. (ii) For all $y, z \in X$, on either side the yz entry is equal to b_i if $\partial(x, y) = i - 1$, $\partial(x, z) = 1$, $\partial(y, z) = i$, and zero otherwise. Corollary 3.5. Let v denote a vector in E_1^*V . Then the following (i), (ii) hold for 1 < i < D - 1. - (i) Suppose $E_i^* A_{i-1} v = 0$. Then $E_{i+1}^* A_i v = 0$. - (ii) Suppose $E_i^* A_{i+1} v = 0$. Then $E_{i-1}^* A_i v = 0$. *Proof.* In Lemma 3.4(i),(ii) apply both sides to v and use $E_1^*v = v$. # 4 The modules of the Terwilliger algebra Let \mathbf{T} denote the Terwilliger algebra of Γ with respect to x. By a \mathbf{T} -module we mean a subspace $W \subseteq V$ such that $BW \subseteq W$ for all $B \in \mathbf{T}$. Let W denote a \mathbf{T} -module. Then W is said to be irreducible whenever W is nonzero and W contains no \mathbf{T} -modules other than 0 and W. Let W denote an irreducible \mathbf{T} -module. Then W is the orthogonal direct sum of the nonzero spaces among $E_0^*W, E_1^*W, \ldots, E_D^*W$ [19, Lemma 3.4]. By the endpoint of W we mean $\min\{i|0 \le i \le D, E_i^*W \ne 0\}$. By the diameter of W we mean $|\{i|0 \le i \le D, E_i^*W \ne 0\}| - 1$. We say W is thin whenever E_i^*W has dimension at most 1 for $0 \le i \le D$. There exists a unique irreducible \mathbf{T} -module which has endpoint 0 [10, Prop. 8.4]. This module is called V_0 . For $0 \le i \le D$ the vector s_i is a basis for $E_i^*V_0$ [19, Lemma 3.6]. Therefore V_0 is thin with diameter D. The module V_0 is orthogonal to each irreducible \mathbf{T} -module other than V_0 [6, Lem. 3.3]. For more information on V_0 see [6, 10]. We will use the following facts. **Lemma 4.1.** [19, Lemma 3.9] Let W denote an irreducible \mathbf{T} -module with endpoint r and diameter d. Then $$E_i^*W \neq 0 \qquad (r \le i \le r+d). \tag{4.1}$$ Moreover $$E_i^* A E_j^* W \neq 0$$ if $|i - j| = 1$, $(r \le i, j \le r + d)$. (4.2) **Lemma 4.2.** [6, Lemma 3.4] Let W denote a \mathbf{T} -module. Suppose there exists an integer i $(0 \le i \le D)$ such that $\dim(E_i^*W) = 1$ and $W = \mathbf{T}E_i^*W$. Then W is irreducible. **Theorem 4.3.** [12, Lemma 10.1], [22, Theorem 11.1] Let W denote a thin irreducible **T**-module with endpoint one, and let v denote a nonzero vector in E_1^*W . Then $W = \mathbf{M}v$. Moreover the diameter of W is D-2 or D-1. **Theorem 4.4.** [12, Corollary 8.6, Theorem 9.8] Let v denote a nonzero vector in E_1^*V which is orthogonal to s_1 . Then the dimension of $\mathbf{M}v$ is D-1 or D. Suppose the dimension of $\mathbf{M}v$ is D-1. Then $\mathbf{M}v$ is a thin irreducible \mathbf{T} -module with endpoint 1 and diameter D-2. # 5 The proof of Theorem 1.1 We now give a proof of Theorem 1.1. Proof. ((i) \Longrightarrow (ii)) We show $\mathbf{M}v$ is a thin irreducible \mathbf{T} -module with endpoint 1. By Theorem 4.4 the dimension of $\mathbf{M}v$ is either D-1 or D. First assume the dimension of $\mathbf{M}v$ is equal to D-1. Then by Theorem 4.4, $\mathbf{M}v$ is a thin irreducible \mathbf{T} -module with endpoint 1. Next assume the dimension of $\mathbf{M}v$ is equal to D. The space $(\mathbf{M};v)$ contains J and has dimension at least 2, so there exists $P \in (\mathbf{M};v)$ such that J,P are linearly independent. From the construction $Pv \in E_D^*V$. Observe $Pv \neq 0$; otherwise the dimension of $\mathbf{M}v$ is not D. The elements A_0, A_1, \ldots, A_D form a basis for \mathbf{M} . Therefore the elements $A_0 + A_1 + \cdots + A_i$ ($0 \leq i \leq D$) form a basis for \mathbf{M} . Apparently there exist complex scalars ρ_i ($0 \leq i \leq D$) such that $P = \sum_{i=0}^{D} \rho_i (A_0 + A_1 + \cdots + A_i)$. Recall $J = \sum_{h=0}^{D} A_h$. Subtracting a scalar multiple of J from P if necessary, we may assume $\rho_D = 0$. We consider Pv from two points of view. On one hand we have $Pv \in E_D^*V$. Therefore $E_D^*Pv = Pv$ and $E_i^*Pv = 0$ for $0 \leq i \leq D - 1$. On the other hand using (3.5), $$Pv = \sum_{i=0}^{D-1} \rho_i (E_{i+1}^* A_i v - E_i^* A_{i+1} v).$$ Combining these two points of view we find $Pv = \rho_{D-1}E_D^*A_{D-1}v$, $\rho_0E_0^*Av = 0$, and $$\rho_{i-1}E_i^*A_{i-1}v = \rho_i E_i^*A_{i+1}v \qquad (1 \le i \le D-1). \tag{5.1}$$ We mentioned $Pv \neq 0$; therefore $\rho_{D-1} \neq 0$ and $E_D^*A_{D-1}v \neq 0$. Applying Corollary 3.5(i) we find $E_i^*A_{i-1}v \neq 0$ for $1 \leq i \leq D$. We claim $E_i^*A_{i+1}v$ and $E_i^*A_{i-1}v$ are linearly dependent for $1 \leq i \leq D-1$. Suppose there exists an integer i $(1 \leq i \leq D-1)$ such that $E_i^*A_{i+1}v$ and $E_i^*A_{i-1}v$ are linearly independent. Then $E_i^*A_{i+1}v \neq 0$. Applying Corollary 3.5(ii) we find $E_j^*A_{j+1}v \neq 0$ for $i \leq j \leq D-1$. Using these facts and (5.1) we routinely find $\rho_j = 0$ for $i \leq j \leq D-1$. In particular $\rho_{D-1} = 0$ for a contradiction. We have now shown $E_i^*A_{i+1}v$ and $E_i^*A_{i-1}v$ are linearly dependent for $1 \leq i \leq D-1$. Observe $\mathbf{M}v$ is spanned by the vectors $$(A_0 + A_1 + \dots + A_i)v$$ $(0 \le i \le D - 1).$ By Corollary 3.3 and our above comments we find $\mathbf{M}v$ is contained in the span of $$E_{i+1}^* A_i v \qquad (0 \le i \le D - 1). \tag{5.2}$$ Since $\mathbf{M}v$ has dimension D we find $\mathbf{M}v$ is equal to the span of (5.2). Apparently $\mathbf{M}v$ is a \mathbf{T} -module. Moreover $\mathbf{M}v$ is irreducible by Lemma 4.2. Apparently $\mathbf{M}v$ is thin with endpoint 1. $((ii) \Longrightarrow (i))$ We show $(\mathbf{M}; v)$ has dimension at least 2. Since $J \in (\mathbf{M}; v)$ it suffices to exhibit an element $P \in (\mathbf{M}; v)$ such that J, P are linearly independent. Let W denote a thin irreducible \mathbf{T} -module which has endpoint 1 and contains v. By Theorem 4.3 we have $W = \mathbf{M}v$; also by Theorem 4.3 the diameter of W is D-2 or D-1. First suppose W has diameter D-2. Then W has dimension D-1. Consider the map $\sigma: \mathbf{M} \to V$ which sends each element P to Pv. The image of \mathbf{M} under σ is $\mathbf{M}v$ and the kernel of σ is contained in $(\mathbf{M}; v)$. The image has dimension D-1 and \mathbf{M} has dimension D+1 so the kernel has dimension 2. It follows $(\mathbf{M}; v)$ has dimension at least 2. Next assume W has diameter D-1. In this case $E_D^*W \neq 0$ by (4.1). Since $W = \mathbf{M}v$ there exists $P \in \mathbf{M}$ such that Pv is a nonzero element in E_D^*W . Now $P \in (\mathbf{M}; v)$. Observe P, J are linearly independent since $Pv \neq 0$ and Jv = 0. Apparently the dimension of $(\mathbf{M}; v)$ is at least 2. Now assume (i), (ii) hold. We show the dimension of $(\mathbf{M}; v)$ is 2. To do this, we show the dimension of $(\mathbf{M}; v)$ is at most 2. Let H denote the subspace of \mathbf{M} spanned by $A_0, A_1, \ldots, A_{D-2}$. We show H has 0 intersection with $(\mathbf{M}; v)$. By Theorem 4.4 the dimension of $\mathbf{M}v$ is at least D-1. Recall \mathbf{M} is generated by A so the vectors A^iv ($0 \le i \le D-2$) are linearly independent. Apparently the vectors A_iv ($0 \le i \le D-2$) are linearly independent. For $0 \le i \le D-2$ the vector A_iv is contained in $\sum_{h=0}^{D-1} E_h^*V$ by Lemma 3.1(ii); therefore A_iv is orthogonal to E_D^*V . We now see the vectors A_iv ($0 \le i \le D-2$) are linearly independent and orthogonal to E_D^*V . It follows H has 0 intersection with $(\mathbf{M}; v)$. Observe H is codimension 2 in \mathbf{M} so the dimension of $(\mathbf{M}; v)$ is at most 2. We conclude the dimension of $(\mathbf{M}; v)$ is 2. #### 6 Pseudo primitive idempotents In this section we introduce the notion of a pseudo primitive idempotent. **Definition 6.1.** For each $\theta \in \mathbb{C} \cup \infty$ we define a subspace of \mathbf{M} which we call $\mathbf{M}(\theta)$. For $\theta \in \mathbb{C}$, $\mathbf{M}(\theta)$ consists of those elements Y of \mathbf{M} such that $(A - \theta I)Y \in \mathbb{C}A_D$. We define $\mathbf{M}(\infty) = \mathbb{C}A_D$. With reference to Definition 6.1, we will show each $\mathbf{M}(\theta)$ has dimension 1. To establish this we display a basis for $\mathbf{M}(\theta)$. We will use the following result. **Lemma 6.2.** Let Y denote an element of M and write $Y = \sum_{i=0}^{D} \rho_i A_i$. Let θ denote a complex number. Then the following (i), (ii) are equivalent. (i) $$(A - \theta I)Y \in \mathbb{C}A_D$$. (ii) $$\rho_i = \rho_0 f_i(\theta) k_i^{-1} \text{ for } 0 \le i \le D.$$ *Proof.* Evaluating $(A - \theta I)Y$ using $Y = \sum_{i=0}^{D} \rho_i A_i$ and simplifying the result using (2.5) we obtain $$(A - \theta I)Y = \sum_{i=0}^{D} A_i (c_i \rho_{i-1} + a_i \rho_i + b_i \rho_{i+1} - \theta \rho_i),$$ where $\rho_{-1} = 0$ and $\rho_{D+1} = 0$. Observe by (2.4), (2.6) that $\rho_i = \rho_0 f_i(\theta) k_i^{-1}$ for $0 \le i \le D$ if and only if $c_i \rho_{i-1} + a_i \rho_i + b_i \rho_{i+1} = \theta \rho_i$ for $0 \le i \le D - 1$. The result follows. Corollary 6.3. For $\theta \in \mathbb{C}$ the following is a basis for $\mathbf{M}(\theta)$. $$\sum_{i=0}^{D} f_i(\theta) k_i^{-1} A_i. \tag{6.1}$$ *Proof.* Immediate from Lemma 6.2. Corollary 6.4. The space $\mathbf{M}(\theta)$ has dimension 1 for all $\theta \in \mathbb{C} \cup \infty$. *Proof.* Suppose $\theta = \infty$. Then $\mathbf{M}(\theta)$ has basis A_D and therefore has dimension 1. Suppose $\theta \in \mathbb{C}$. Then $\mathbf{M}(\theta)$ has dimension 1 by Corollary 6.3. \square **Lemma 6.5.** Let θ and θ' denote distinct elements of $\mathbb{C} \cup \infty$. Then $\mathbf{M}(\theta) \cap \mathbf{M}(\theta') = 0$. *Proof.* This is a routine consequence of Corollary 6.3 and the fact that $\mathbf{M}(\infty) = \mathbb{C}A_D$. Corollary 6.6. For $0 \le i \le D$ we have $\mathbf{M}(\theta_i) = \mathbb{C}E_i$. *Proof.* Observe $(A - \theta_i I)E_i = 0$ so $E_i \in \mathbf{M}(\theta_i)$. The space $\mathbf{M}(\theta_i)$ has dimension 1 by Corollary 6.4 and E_i is nonzero so E_i is a basis for $\mathbf{M}(\theta_i)$. **Remark 6.7.** [2, p. 63] For $0 \le j \le D$ we have $$E_j = m_j |X|^{-1} \sum_{i=0}^{D} f_i(\theta_j) k_i^{-1} A_i,$$ where m_i denotes the rank of E_i . **Definition 6.8.** Let $\theta \in \mathbb{C} \cup \infty$. By a pseudo primitive idempotent for θ we mean a nonzero element of $\mathbf{M}(\theta)$, where $\mathbf{M}(\theta)$ is from Definition 6.1. #### 7 The local eigenvalues **Definition 7.1.** Define a function $\tilde{}: \mathbb{C} \cup \infty \longrightarrow \mathbb{C} \cup \infty$ by $$\widetilde{\eta} = \begin{cases} \infty & \text{if } \eta = -1, \\ -1 & \text{if } \eta = \infty, \\ -1 - \frac{b_1}{1+\eta} & \text{if } \eta \neq -1, \eta \neq \infty. \end{cases}$$ Observe $\widetilde{\widetilde{\eta}} = \eta$ for all $\eta \in \mathbb{C} \cup \infty$. Let v denote a nonzero vector in E_1^*V which is orthogonal to s_1 . Assume v is an eigenvector for $E_1^*AE_1^*$ and let η denote the corresponding eigenvalue. We recall a few facts concerning η and $\widetilde{\eta}$. We have $\widetilde{\theta}_1 \leq \eta \leq \widetilde{\theta}_D$ [18, Theorem 1]. If $\eta = \widetilde{\theta}_1$ then $\widetilde{\eta} = \theta_1$. If $\eta = \widetilde{\theta}_D$ then $\widetilde{\eta} = \theta_D$. We have $\theta_D < -1 < \theta_1$ by [18, Lemma 3] so $\widetilde{\theta}_1 < -1 < \widetilde{\theta}_D$. If $\widetilde{\theta}_1 < \eta < -1$ then $\theta_1 < \widetilde{\eta}$. If $-1 < \eta < \widetilde{\theta}_D$ then $\widetilde{\eta} < \theta_D$. We will show that if $\widetilde{\theta}_1 < \eta < \widetilde{\theta}_D$ then $\widetilde{\eta}$ is not an eigenvalue of Γ . Given the above inequalities, to prove this it suffices to prove the following result. **Proposition 7.2.** Let v denote a nonzero vector in E_1^*V . Assume v is an eigenvector for $E_1^*AE_1^*$ and let η denote the corresponding eigenvalue. Then $\widetilde{\eta} \neq k$. *Proof.* Suppose $\widetilde{\eta} = k$. Then $\eta = \widetilde{k}$ so by Definition 7.1, $$\eta = -1 - \frac{b_1}{k+1}.$$ By this and since $b_1 < k$ we see η is a rational number such that $-2 < \eta < -1$. In particular η is not an integer. Observe η is an eigenvalue of the subgraph of Γ induced on the set of vertices adjacent x; therefore η is an algebraic integer. A rational algebraic integer is an integer so we have a contradiction. We conclude $\tilde{\eta} \neq k$. Corollary 7.3. Let v denote a nonzero vector in E_1^*V which is orthogonal to s_1 . Assume v is an eigenvector for $E_1^*AE_1^*$ and let η denote the corresponding eigenvalue. Suppose $\widetilde{\theta}_1 < \eta < \widetilde{\theta}_D$. Then $\widetilde{\eta}$ is not an eigenvalue of Γ . # 8 The proof of Theorem 1.2 We now give a proof of Theorem 1.2. *Proof.* We first show E is contained in $(\mathbf{M}; v)$. To do this we show $Ev \in E_D^*V$. First suppose $\eta \neq -1$. Then $\widetilde{\eta} \in \mathbb{C}$ by Definition 7.1. By Definition 6.1 there exists $\epsilon \in \mathbb{C}$ such that $(A - \widetilde{\eta}I)E = \epsilon A_D$. By this and Lemma 3.1(ii), $$AEv = \widetilde{\eta}Ev + \epsilon A_D v$$ $$\in \mathbb{C}Ev + E_{D-1}^*W + E_D^*W. \tag{8.1}$$ In order to show $Ev \in E_D^*V$ we show $E_i^*Ev = 0$ for $0 \le i \le D-1$. Observe $E_0^*Ev = 0$ since $E_0^*Ev \in E_0^*W$ and W has endpoint 1. We show $E_1^*Ev = 0$. By Corollary 6.3 there exists a nonzero $m \in \mathbb{C}$ such that $$E = m \sum_{h=0}^{D} f_h(\widetilde{\eta}) k_h^{-1} A_h.$$ Let us abbreviate $$\rho_h = m f_h(\widetilde{\eta}) k_h^{-1} \qquad (0 \le h \le D), \tag{8.2}$$ so that $E = \sum_{h=0}^{D} \rho_h A_h$. By this and (3.2) we find $E_1^* E E_1^* = \sum_{h=0}^{2} \rho_h E_1^* A_h E_1^*$. Applying this to v we find $$E_1^* E v = \sum_{h=0}^2 \rho_h E_1^* A_h v. \tag{8.3}$$ Setting i=1 in Lemma 3.1(i), applying each term to v, and using Jv=0 we find $$0 = \sum_{h=0}^{2} E_1^* A_h v. \tag{8.4}$$ By (8.3), (8.4), and since $E_1^*Av = \eta v$ we find $E_1^*Ev = \gamma v$ where $\gamma = \rho_0 - \rho_2 + \eta(\rho_1 - \rho_2)$. Evaluating γ using (2.6), (8.2), and Definition 7.1 we routinely find $\gamma = 0$. Apparently $E_1^*Ev = 0$. We now show $E_i^*Ev = 0$ for $2 \le i \le D - 1$. Suppose there exists an integer j ($2 \le j \le D - 1$) such that $E_j^*Ev \ne 0$. We choose j minimal so that $$E_i^* E v = 0 \quad (0 \le i \le j - 1).$$ (8.5) Combining this with (8.1) we find $$E_i^* A E v = 0 \quad (0 \le i \le j - 1). \tag{8.6}$$ Since W is thin and since $E_j^*Ev \neq 0$ we find E_j^*Ev is a basis for E_j^*W . Apparently $E_{j-1}^*AE_j^*Ev$ spans $E_{j-1}^*AE_j^*W$. The space $E_{j-1}^*AE_j^*W$ is nonzero by (4.2) and since the diameter of W is at least D-2. Therefore $E_{j-1}^*AE_j^*Ev \neq 0$. We may now argue $$E_{j-1}^* A E v = \sum_{i=0}^D E_{j-1}^* A E_i^* E v$$ = $E_{j-1}^* A E_j^* E v$ by (3.3), (8.5) $\neq 0$ which contradicts (8.6). We conclude $E_i^*Ev = 0$ for $2 \le i \le D-1$. We have now shown $E_i^*Ev = 0$ for $0 \le i \le D-1$ so $Ev \in E_D^*V$ in the case $\eta \neq -1$. Next suppose $\eta = -1$, so that $\tilde{\eta} = \infty$. By Definition 6.1 there exists a nonzero $t \in \mathbb{C}$ such that $E = tA_D$. In order to show $Ev \in E_D^*V$ we show $A_D v \in E_D^* V$. Since $A_D v$ is contained in $E_{D-1}^* V + E_D^* V$ by Lemma 3.1(ii), it suffices to show $E_{D-1}^*A_Dv=0$. To do this it is convenient to prove a bit more, that $E_i^* A_{i+1} v = 0$ for $1 \le i \le D-1$. We prove this by induction on i. First assume i = 1. Setting i = 1 in Lemma 3.1(i), applying each term to v and using Jv = 0, $E_1^*Av = -v$, we obtain $E_1^*A_2v = 0$. Next suppose $2 \le i \le D-1$ and assume by induction that $E_{i-1}^*A_iv=0$. We show $E_i^*A_{i+1}v=0$. To do this we assume $E_i^*A_{i+1}v\neq 0$ and get a contradiction. Note that $E_i^*A_{i+1}v$ spans E_i^*W since W is thin. Then $E_{i-1}^*AE_i^*A_{i+1}v \neq 0$ by (4.2). But $E_{i-1}^*AE_i^*A_{i+1}v = b_iE_{i-1}^*A_iv$ by Lemma 3.4(ii). Of course $b_i \neq 0$ so $E_{i-1}^*A_iv\neq 0$, a contradiction. Therefore $E_i^*A_{i+1}v=0$. We have now shown $E_i^* A_{i+1} v = 0$ for $1 \leq i \leq D-1$ and in particular $E_{D-1}^* A_D v = 0$. It follows $Ev \in E_D^*V$ for the case $\eta = -1$. We have now shown $Ev \in E_D^*V$ for all cases so $E \in (\mathbf{M}; v)$. We now prove E, J form a basis for $(\mathbf{M}; v)$. By Theorem 1.1 (M; v) has dimension 2. We mentioned earlier $J \in (M; v)$. We show E, J are linearly independent. Recall E, J are pseudo primitive idempotents for $\widetilde{\eta}, k$ respectively. We have $\widetilde{\eta} \neq k$ by Proposition 7.2 so E, J are linearly independent in view of Lemma 6.5. **Acknowledgements** The initial work for this paper was done when the second author was an Honorary Fellow at the University of Wisconsin-Madison (July-December 2000) supported by the National Science Council, Taiwan ROC. #### References - [1] J. M. Balmaceda and M. Oura. The Terwilliger algebras of the group association schemes of S_5 and A_5 . Kyushu J. Math., 48(2):221-231, 1994. - [2] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Ben-jamin/Cummings, London, 1984. - [3] E. Bannai and A. Munemasa. The Terwilliger algebras of group association schemes. Kyushu J. Math., 49(1):93–102, 1995. - [4] A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-Regular Graphs*. Springer-Verlag, Berlin, 1989. - [5] J. Caughman. The Terwilliger algebras of bipartite P- and Q- polynomial association schemes. Discrete Math., 196:65–95, 1999. - [6] B. Curtin. Bipartite distance-regular graphs I. Graphs Combin., 15(2):143-158, 1999. - [7] B. Curtin. Bipartite distance-regular graphs II. *Graphs Combin.*, 15(4):377-391, 1999. - [8] B. Curtin. Distance-regular graphs which support a spin model are thin. 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198:205-216, 1999. - [9] B. Curtin and K. Nomura. Spin models and strongly hyper-self-dual Bose-Mesner algebras. J. Algebraic Combin., 13(2):173-186, 2001. - [10] E. Egge. A generalization of the Terwilliger algebra. J. Algebra, 233:213–252, 2000. - [11] E. Egge. The generalized Terwilliger algebra and its finite dimensional modules when d=2. J. Algebra, 250:178–216, 2002. - [12] J. T. Go and P. Terwilliger. Tight distance-regular graphs and the subconstituent algebra. *European J. Combin.*, to appear. - [13] S. A. Hobart and T. Ito. The structure of nonthin irreducible *T*-modules: ladder bases and classical parameters. *J. Algebraic Combin.*, 7:53–75, 1998. - [14] H. Ishibashi, T. Ito, and M. Yamada. Terwilliger algebras of cyclotomic schemes and Jacobi sums. *European J. Combin.*, 20(5):397–410, 1999. - [15] H. Ishibashi. The Terwilliger algebras of certain association schemes over the Galois rings of characteristic 4. *Graphs Combin.*, 12(1):39–54, 1996. - [16] B. Sagan and J. S. Caughman. The multiplicities of a dual-thin Q-polynomial association scheme, Electron. J. Combin., 8(1):(electronic) 2001. - [17] K. Tanabe. The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebraic Combin., 6:173–195, 1997. - [18] P. Terwilliger. A new feasibility condition for distance-regular graphs. *Discrete Math.*, 61:311-315, 1986. - [19] P. Terwilliger. The subconstituent algebra of an association scheme I. J. Algebraic Combin., 1(4):363-388, 1992. - [20] P. Terwilliger. The subconstituent algebra of an association scheme II. J. Algebraic Combin., 2(1):73-103, 1993. - [21] P. Terwilliger. The subconstituent algebra of an association scheme III. J. Algebraic Combin., 2(2):177-210, 1993. - [22] P. Terwilliger. The subconstituent algebra of a distance-regular graph; thin modules with endpoint one. *Linear Alg. Appl.*, to appear. - [23] P. Terwilliger. An inequality involving the local eigenvalues of a distance-regular graph. J. Algebraic Combin., submitted. - [24] M. Tomiyama and N. Yamazaki. The subconstituent algebra of a strongly regular graph. *Kyushu J. Math.*, 48(2):323–334, 1994. Paul Terwilliger Department of Mathematics University of Wisconsin 480 Lincoln Drive Madison Wisconsin USA 53706 Email: terwilli@math.wisc.edu Chih-wen Weng Department of Applied Mathematics National Chiao Tung University 1001 Ta Hsueh Road Hsinchu 30050 Taiwan ROC