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Abstract

Let T denote a tree with at least three vertices. Observe that T
contains a vertex which has at least two neighbors of degree one or two.
A class of algorithms on trees related to the observation are discussed
and characterized. One of the example is an algorithm to compute the
minimum rank m(T ) of the symmetric matrices with prescribed graph
T, which is easier to process than the algorithm previous found by P.
Nylen[Linear Algebra Appl. 248:303-316(1996)]. Two interpretations
of the number m(T ) in terms of some combinatorial properties on
trees are given.
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1 Introduction and results.

Let T denote a tree with n(T ) vertices. We also use T as its vertex set.
We refer the reader to [3, p376-p388] for the definition and the properties of
trees. For a vertex subset U ⊆ T, let T \ U denote the subgraph induced
on the vertex subset T \ U of T. Let p be a vertex of T, and let T 1

p , · · · , T t
p
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denote the connected components of T \ {p}. Note that each T i
p is a tree.

Observe
n(T ) = n(T 1

p ) + · · ·+ n(T t
p) + 1. (1)

Let Pn denote the simple path with n vertices. Line (1) can be viewed as
a trivial algorithm on trees to compute n(T ) provided the initial condition
n(P1) = 1. The choice of a vertex p does not affect the value n(T ).

We shall give another algorithm on trees. We need a few definitions first.
For an n×n symmetric matrix A = [aij], we associate with it the graph Γ(A)
having n vertices labeled 1, 2, . . . , n. For i 6= j, the unordered pair (i, j) will
be an edge in Γ(A) if and only if aij 6= 0. Given a graph G on n vertices, we
define the number m(G) by

m(G) := min{rank A | Γ(A) = G}. (2)

The study of m(G) can be found in [1], [2], [4]. Observe

m(P1) = 0,m(P2) = 1. (3)

A vertex p of T is called appropriate if at least two of the connected com-
ponents in T \ {p} are the simple paths (one or more vertices) which were
connected to p through an endpoint. It is not difficult to see that every tree
T with at least 3 vertices has an appropriate vertex. See [1, Lemma 3.1] for
details. Provided the initial conditions in (3), P. Nylen[1] gives the algorithm

m(T ) = m(T 1
p ) + · · ·+ m(T t

p) + 2 (4)

to compute m(T ), where n(T ) ≥ 3 and p is an appropriate vertex of T. The
choice of p among the appropriate vertices of T does not affect the number
m(T ) also.

Motivated by the above definition, we define a vertex p of T to be typical
if p has at least two neighbors of degrees 1 or 2 in T. It is immediate from
the definition that an appropriate vertex is a typical vertex. In Figure 1, the
vertices labeled 2, 4, 6, 11 are typical and only the vertices labeled 2, 11 are
appropriate.
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We shall prove in Theorem 1.7 that the condition p being appropriate
in line (4) can be replaced by p being typical. We study a general class of
algorithms on trees first. Fix three reals a, b, c. We assign a tree T with the
real numbers f(T ) recursively by the following rules:

f(P1) = a, f(P2) = b, (5)

f(T ) = f(T 1
p ) + · · ·+ f(T t

p) + c, (6)

where p is a typical vertex of T. Note that f(T ) may not have a unique
solution, since the choice of a typical vertex p may be different. For a = 1,
b = 2, c = 1, f = n, (5)-(6) is the case of (1) with p typical. We list our
results in this section and the proofs shall be in next section.

Lemma 1.1. Suppose the algorithm in (5)-(6) generates a unique solution
f(T ) for each tree T. Then 3a− 2b + c = 0.

We shall prove the converse of Lemma 1.1 in Theorem 1.4. In fact, if
3a− 2b + c = 0 then we can express f(T ) into a linear combination of n(T )
and the number s(T ) defined below. For a vertex subset U ⊆ T, let cT (U)
denote the number of connected components in the subgraph T \ U. The
separating number of a tree T is the number

s(T ) := max{cT (U)− |U | | U ⊆ T}. (7)

U is a separating set of T if cT (U)−|U | = s(T ). Note that if U is a separating
set of T, T \ U is a union of simple paths. Observe

s(P1) = 1, s(P2) = 1. (8)

Theorem 1.2 gives an algorithm to construct a separating set, and to deter-
mine the separating number of a tree.
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Theorem 1.2. Let T be a tree with at least 3 vertices and p be a typical
vertex of T. Let T 1

p , . . . , T t
p be the connected components of T \{p}. Let U be

a subset of vertices of T containing p. Then U is a separating set of T if and
only if for each i (1 ≤ i ≤ t), U ∩T i

p is a separating set of T i
p. Furthermore,

s(T ) = s(T 1
p ) + · · ·+ s(T t

p)− 1. (9)

Note that (8)-(9) is the case a = 1, b = 1, c = −1 and f = s of (5)-(6).
It follows from (8)-(9) that s(Pn) = 1. Corollary 1.3 improves the algorithm
in Theorem 1.2.

Corollary 1.3. Let U be a subset of the typical vertices of T satisfying the
following (*) condition of T :

(*) Each vertex of U with degree 2 in T is not adjacent to other vertices in
U.

Let T 1
U , · · · , T l

U be the connected components of T \U. Suppose Sj is a sepa-
rating set of T j

U (1 ≤ j ≤ l). Then

U ∪ (
⋃

1≤j≤l

Sj)

is a separating set of T. Furthermore,

s(T ) = s(T 1
U) + · · ·+ s(T l

U)− |U |. (10)

The following theorem shows that n(T ) and s(T ) span all the functions
defined on trees satisfying (5)-(6).

Theorem 1.4. Suppose 3a−2b+ c = 0. Then f(T ) are numbers generated
from (5)-(6) for trees T if and only if

f(T ) =
a + c

2
n(T ) +

a− c

2
s(T ) (11)

for trees T. In particular, f(T ) has a unique solution for each tree T.
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For graph theoretical interest, we give another interpretation of s(T ) in
Corollary 1.6. Let e(T ) denote the number of edges in T. Note that e(T ) =
n(T ) − 1. A subset F of the edge set E(T ) of T dissolves the tree T if the
subgraph T \F obtained from T by deleting all edges in F is a disjoint union
of simple paths. Set

s∗(T ) := min{|F | | F ⊆ E(T ) dissolves T}. (12)

An edge subset F is a separating edge set of T if F dissolves T and |F | =
s∗(T ). Observe s∗(Pn) = 0.

Theorem 1.5. Let T be a tree with at least 3 vertices and p be a typ-
ical vertex of degree t. Let e1, · · · , et denote the edges incident on p, and
T 1

p , . . . , T t
p the connected components of T \ {p}. Assume each of et−1, et is

incident on a vertex different from p of degree at most 2 in T. Suppose Fi is
a separating edge set of T i

p (1 ≤ i ≤ t). Then

{e1, · · · , et−2} ∪
⋃

1≤i≤t

Fi

is a separating edge set of T. Furthermore,

s∗(T ) = s∗(T 1
p ) + · · ·+ s∗(T t

p) + t− 2. (13)

Equivalently, g(T ) := e(T )− s∗(T ) satisfies

g(T ) = g(T 1
p ) + · · ·+ g(T t

p) + 2. (14)

Corollary 1.6.
s(T ) = s∗(T ) + 1. (15)

Theorem 1.7. Let T be a tree with at least 3 vertices and p be a typical
vertex of degree t. Let T 1

p , . . . , T t
p be the connected components of T \ {p}.

Then
m(T ) = m(T 1

p ) + · · ·+ m(T t
p) + 2, (16)

where m(T ) is defined in (2).
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Following the above lines, we reprove the following Corollary which was
proved by C. R. Johnson and A.L. Duarte[5].

Corollary 1.8. m(T ) = e(T )− s∗(T ) = n(T )− s(T ).

To end this section, we show how to compute m(T ) for the tree T in
Figure 1. The best algorithm is corollary 1.3. We set U = {2, 4, 6, 11}
which of course satisfies (*) condition of Corollary 1.3. Since T \ U contains
8 simple paths, the separating number s(T ) = 8 − 4 = 4 by (10). Now
m(T ) = 13− 4 = 9 by Corollary 1.8.

2 Proofs of results.

Proof of Lemma 1.1. Suppose the algorithm in (5)-(6) generates a unique
solution f(T ) for each tree T. Considering the simple path P3 of three vertices,
the middle vertex is typical, so f(P3) = 2a + c by (5)-(6). For the simple
path P5 of five vertices, there are essentially two different ways to choose a
typical vertex. According to these two ways,

f(P5) = f(P2) + f(P2) + c

= 2b + c,

and

f(P5) = f(P1) + f(P3) + c

= a + (2a + c) + c.

Hence 3a− 2b + c = 0.

Proof of Theorem 1.2. We find an upper bound of s(T ) first. Let V
denote a vertex subset of T. We shall prove

cT (V )− |V | ≤ s(T 1
p ) + · · ·+ s(T t

p)− 1. (17)
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Set Vi = V ∩ T i
p (1 ≤ i ≤ t). Suppose p ∈ V. Then

|V | = 1 +
t∑

i=1

|Vi|, (18)

and the components in T \V are exactly those in T i
p \Vi (1 ≤ i ≤ t). Hence

cT (V )− |V | =
t∑

i=1

cT i
p
(Vi)− (1 +

t∑

i=1

|Vi|)

=
t∑

i=1

(cT i
p
(Vi)− |Vi|)− 1

≤ s(T 1
p ) + · · ·+ s(T t

p)− 1. (19)

Suppose p 6∈ V. Then

|V | =
t∑

i=1

|Vi|. (20)

Let u denote the number of neighbors of p in T \ V. Each of the u vertices is
in a connected component of T i

p \ Vi which contains it, and p merges these u
components into a single connected component of T \ V. Then

cT (V ) = 1− u +
t∑

i=1

cT i
p
(Vi). (21)

Let v denote the number of neighbors of p in V which have degrees 1 or 2 in
T. Since each of these v vertices has degree 0 or 1 in the subgraph T i

p which
contains it, and by the fact, a separating set contains no endpoints, we have
the corresponding Vi is not a separating set of T i

p. Hence there are at least v
indices i such that

cT i
p
(Vi)− |Vi|+ 1 ≤ s(T i

p).

Then

v +
t∑

i=1

(cT i
p
(Vi)− |Vi|) ≤

t∑

i=1

s(T i
p). (22)

Note that
u + v ≥ 2, (23)
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since p is typical. Then by (20)-(23),

cT (V )− |V | = 1− u +
t∑

i=1

cT i
p
(Vi)−

t∑

i=1

|Vi|

= 1− u +
t∑

i=1

(cT i
p
(Vi)− |Vi|)

≤ s(T 1
p ) + · · ·+ s(T t

p) + 1− u− v

≤ s(T 1
p ) + · · ·+ s(T t

p)− 1. (24)

This proves (17). To prove Theorem 1.2, set V = U in (17). Then p ∈ V.
Suppose Vi = V ∩ T i

p is a separating set of T i
p for all i. Then equality holds

in (19). Hence for the vertex set V, cT (V )−|V | attains its maximum in (17).
We conclude V is separating set of T, and (9) holds. To prove the other
direction, suppose V is a separating set of T. Then equality holds in (17) and
(19). This forces

cT i
p
(Vi)− |Vi| = s(T i

p) (1 ≤ i ≤ t),

where Vi = V ∩ T i
p. Hence for each i (1 ≤ i ≤ t), V ∩ T i

p is a separating set
of T i

p. This proves the theorem.

Proof of Corollary 1.3. We prove the corollary by induction on the
cardinality of U. This is clear if U is empty. Assume U is not empty. Pick
p ∈ U. Let T 1

p , · · · , T t
p denote the connected components of T \ {p}. Fix an

integer i (1 ≤ i ≤ t). Observe that T i
p contains those T j

U it intersects. First
we prove that

(U ∩ T i
p) ∪ (

⋃

Sj⊆T i
p

Sj) (25)

is a separating set of T i
p, and

s(T i
p) =

∑

T j
U⊆T i

p

s(T j
U)− |U ∩ T i

p|. (26)

(25)-(26) follow from induction, if we prove U ∩ T i
p contains typical vertices

of T i
p satisfying (*) condition of T i

p. Let x denote the neighbor of p in T i
p.

Note that for vertices in T i
p, the degrees in T and the degrees in T i

p are the
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same except the vertex x whose degrees are decreased by 1. Hence we only
need to show that if x ∈ U then x is also typical in T i

p, and furthermore, if x
has degree 2 in T i

p then x is not adjacent to other vertices in U ∩T i
p. Suppose

x ∈ U. Then p has degree at least 3, since U satisfies the (*) condition of
T. Hence x is also typical in T i

p by the definition of typical. Furthermore,
suppose x has degree 2 in T i

p. By the definition of typical again, the two
neighbors of x in T i

p have degrees 1 or 2 in T, and then are not contained in
U since U satisfies the (*) condition of T. This proves (25)-(26). By applying
Theorem 1.2 to (25)-(26),

{p} ∪ ⋃

1≤i≤t

((U ∩ T i
p) ∪ (

⋃

Sj⊆T i
p

Sj))

= U ∪ (
⋃

1≤j≤l

Sj)

is a separating set of T, and

s(T ) = s(T 1
p ) + · · ·+ s(T t

p)− 1

=
∑

1≤i≤t

(
∑

T j
U⊆T i

p

s(T j
U)− |U ∩ T i

p|)− 1

= s(T 1
U) + · · ·+ s(T l

U)− |U |.
This proves the corollary.

Proof of Theorem 1.4. First assume f(T ) are numbers generated from
(5)-(6). We prove by induction on the number n(T ). Note that n(P1) = 1,
n(P2) = 2, s(P1) = s(P2) = 1, f(P1) = a, f(P2) = b. Hence (11) can be
checked directly if n(T ) ≤ 2. Assume n(T ) ≥ 3. Pick a typical vertex p in T.
By (6), induction, (1) and (9), we obtain

f(T ) = f(T 1
p ) + · · ·+ f(T t

p) + c

=
a + c

2

t∑

i=1

n(T i
p) +

a− c

2

t∑

i=1

s(T i
p) + c

=
a + c

2
(

t∑

i=1

n(T i
p) + 1) +

a− c

2
(

t∑

i=1

s(T i
p)− 1)

=
a + c

2
n(T ) +

a− c

2
s(T ). (27)
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This proves the necessary condition (11). f(T ) has a unique solution, since
n(T ), s(T ) in (11) are well-defined functions. For the other direction, we
assume (11) holds. (5) can be check directly. Reversing above four equalities
in (27), we obtain f(T ) satisfies (6). This proves the theorem.

Proof of Theorem 1.5. We give a lower bound of s∗(T ) first. Suppose
F ′ ⊆ E(T ) dissolves T. We shall prove

|F ′| ≥ s∗(T 1
p ) + · · ·+ s∗(T t

p) + t− 2. (28)

Set F ′
i = F ′ ∩ E(T i

p) (1 ≤ i ≤ t). Since the vertex p has degree t in T, and
T \F ′ are simple paths, F ′ contains at least t− 2 edges incident on p. Hence

|F ′| ≥ |F ′
1|+ · · ·+ |F ′

t |+ t− 2. (29)

Observe that F ′
i dissolves T i

p. Hence

|F ′
i | ≥ s∗(T i

p) (1 ≤ i ≤ t). (30)

(28) follows from (29)-(30). To prove the theorem, set

F ′ = {e1, · · · , et−2} ∪ (
⋃

1≤i≤t

Fi).

Hence F ′
i = Fi. Observe F ′ dissolves T, and equalities hold in (29)-(30).

Hence equality holds in (28). This proves that (13) holds and F ′ is a sepa-
rating edge set of T. To prove (14), observe

g(T ) = e(T )− s∗(T )

= e(T )− s∗(T 1
p )− · · · − s∗(T t

p)− t + 2

=
∑

1≤i≤t

(e(T i
p)− s∗(T i

p)) + 2

=
∑

1≤i≤t

g(T i
p) + 2.

Proof of Corollary 1.6. With the notation of Theorem 1.5, observe
g(Pn) = e(Pn)− s∗(Pn) = n− 1, especially g(P1) = 0 g(P2) = 1. Hence (14)
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is the case f = g, a = 0, b = 1, and c = 2 in (5)-(6). We obtain e(T )−s∗(T ) =
n(T )− s(T ) by (11). Then s(T ) = s∗(T ) + 1, since n(T )− e(T ) = 1.

Proof of Theorem 1.7. m(T ) is the unique solution of the algorithm in
(3)-(4). However (3)-(4) is a special case of (5)-(6) with p appropriate, a = 0,
b = 1 and c = 2. Since 3a−2b+ c = 0, the algorithm in (5)-(6) with p typical
has the unique solution m(T ) by Theorem 1.4.

Proof of Corollary 1.8. The result follows by applying (3), (16) to (11)
using (15).
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