A Typical Vertex of a Tree

Wei, Ping-hong* Weng, Chih-wen ${ }^{\dagger}$

August 6, 2002

Abstract

Let T denote a tree with at least three vertices. Observe that T contains a vertex which has at least two neighbors of degree one or two. A class of algorithms on trees related to the observation are discussed and characterized. One of the example is an algorithm to compute the minimum rank $m(T)$ of the symmetric matrices with prescribed graph T, which is easier to process than the algorithm previous found by P . Nylen[Linear Algebra Appl. 248:303-316(1996)]. Two interpretations of the number $m(T)$ in terms of some combinatorial properties on trees are given.

Keywords: Rank;
AMS Subject Classification:05C05

1 Introduction and results.

Let T denote a tree with $n(T)$ vertices. We also use T as its vertex set. We refer the reader to [3, p376-p388] for the definition and the properties of trees. For a vertex subset $U \subseteq T$, let $T \backslash U$ denote the subgraph induced on the vertex subset $T \backslash U$ of T. Let p be a vertex of T, and let $T_{p}^{1}, \cdots, T_{p}^{t}$

[^0]denote the connected components of $T \backslash\{p\}$. Note that each T_{p}^{i} is a tree. Observe
\[

$$
\begin{equation*}
n(T)=n\left(T_{p}^{1}\right)+\cdots+n\left(T_{p}^{t}\right)+1 . \tag{1}
\end{equation*}
$$

\]

Let P_{n} denote the simple path with n vertices. Line (1) can be viewed as a trivial algorithm on trees to compute $n(T)$ provided the initial condition $n\left(P_{1}\right)=1$. The choice of a vertex p does not affect the value $n(T)$.

We shall give another algorithm on trees. We need a few definitions first. For an $n \times n$ symmetric matrix $A=\left[a_{i j}\right]$, we associate with it the graph $\Gamma(A)$ having n vertices labeled $1,2, \ldots, n$. For $i \neq j$, the unordered pair (i, j) will be an edge in $\Gamma(A)$ if and only if $a_{i j} \neq 0$. Given a graph G on n vertices, we define the number $m(G)$ by

$$
\begin{equation*}
m(G):=\min \{\operatorname{rank} A \mid \Gamma(A)=G\} \tag{2}
\end{equation*}
$$

The study of $m(G)$ can be found in [1], [2], [4]. Observe

$$
\begin{equation*}
m\left(P_{1}\right)=0, m\left(P_{2}\right)=1 \tag{3}
\end{equation*}
$$

A vertex p of T is called appropriate if at least two of the connected components in $T \backslash\{p\}$ are the simple paths (one or more vertices) which were connected to p through an endpoint. It is not difficult to see that every tree T with at least 3 vertices has an appropriate vertex. See [1, Lemma 3.1] for details. Provided the initial conditions in (3), P. Nylen[1] gives the algorithm

$$
\begin{equation*}
m(T)=m\left(T_{p}^{1}\right)+\cdots+m\left(T_{p}^{t}\right)+2 \tag{4}
\end{equation*}
$$

to compute $m(T)$, where $n(T) \geq 3$ and p is an appropriate vertex of T. The choice of p among the appropriate vertices of T does not affect the number $m(T)$ also.

Motivated by the above definition, we define a vertex p of T to be typical if p has at least two neighbors of degrees 1 or 2 in T. It is immediate from the definition that an appropriate vertex is a typical vertex. In Figure 1, the vertices labeled $2,4,6,11$ are typical and only the vertices labeled 2,11 are appropriate.

We shall prove in Theorem 1.7 that the condition p being appropriate in line (4) can be replaced by p being typical. We study a general class of algorithms on trees first. Fix three reals a, b, c. We assign a tree T with the real numbers $f(T)$ recursively by the following rules:

$$
\begin{gather*}
f\left(P_{1}\right)=a, f\left(P_{2}\right)=b, \tag{5}\\
f(T)=f\left(T_{p}^{1}\right)+\cdots+f\left(T_{p}^{t}\right)+c \tag{6}
\end{gather*}
$$

where p is a typical vertex of T. Note that $f(T)$ may not have a unique solution, since the choice of a typical vertex p may be different. For $a=1$, $b=2, c=1, f=n,(5)-(6)$ is the case of (1) with p typical. We list our results in this section and the proofs shall be in next section.

Lemma 1.1. Suppose the algorithm in (5)-(6) generates a unique solution $f(T)$ for each tree T. Then $3 a-2 b+c=0$.

We shall prove the converse of Lemma 1.1 in Theorem 1.4. In fact, if $3 a-2 b+c=0$ then we can express $f(T)$ into a linear combination of $n(T)$ and the number $s(T)$ defined below. For a vertex subset $U \subseteq T$, let $c_{T}(U)$ denote the number of connected components in the subgraph $T \backslash U$. The separating number of a tree T is the number

$$
\begin{equation*}
s(T):=\max \left\{c_{T}(U)-|U| \mid U \subseteq T\right\} \tag{7}
\end{equation*}
$$

U is a separating set of T if $c_{T}(U)-|U|=s(T)$. Note that if U is a separating set of $T, T \backslash U$ is a union of simple paths. Observe

$$
\begin{equation*}
s\left(P_{1}\right)=1, s\left(P_{2}\right)=1 \tag{8}
\end{equation*}
$$

Theorem 1.2 gives an algorithm to construct a separating set, and to determine the separating number of a tree.

Theorem 1.2. Let T be a tree with at least 3 vertices and p be a typical vertex of T. Let $T_{p}^{1}, \ldots, T_{p}^{t}$ be the connected components of $T \backslash\{p\}$. Let U be a subset of vertices of T containing p. Then U is a separating set of T if and only if for each $i \quad(1 \leq i \leq t), U \cap T_{p}^{i}$ is a separating set of T_{p}^{i}. Furthermore,

$$
\begin{equation*}
s(T)=s\left(T_{p}^{1}\right)+\cdots+s\left(T_{p}^{t}\right)-1 \tag{9}
\end{equation*}
$$

Note that (8)-(9) is the case $a=1, b=1, c=-1$ and $f=s$ of (5)-(6). It follows from (8)-(9) that $s\left(P_{n}\right)=1$. Corollary 1.3 improves the algorithm in Theorem 1.2.

Corollary 1.3. Let U be a subset of the typical vertices of T satisfying the following $\left({ }^{*}\right)$ condition of T :
$\left.{ }^{*}\right)$ Each vertex of U with degree 2 in T is not adjacent to other vertices in U.

Let $T_{U}^{1}, \cdots, T_{U}^{l}$ be the connected components of $T \backslash U$. Suppose S_{j} is a separating set of $T_{U}^{j} \quad(1 \leq j \leq l)$. Then

$$
U \cup\left(\bigcup_{1 \leq j \leq l} S_{j}\right)
$$

is a separating set of T. Furthermore,

$$
\begin{equation*}
s(T)=s\left(T_{U}^{1}\right)+\cdots+s\left(T_{U}^{l}\right)-|U| . \tag{10}
\end{equation*}
$$

The following theorem shows that $n(T)$ and $s(T)$ span all the functions defined on trees satisfying (5)-(6).

Theorem 1.4. Suppose $3 a-2 b+c=0$. Then $f(T)$ are numbers generated from (5)-(6) for trees T if and only if

$$
\begin{equation*}
f(T)=\frac{a+c}{2} n(T)+\frac{a-c}{2} s(T) \tag{11}
\end{equation*}
$$

for trees T. In particular, $f(T)$ has a unique solution for each tree T.

For graph theoretical interest, we give another interpretation of $s(T)$ in Corollary 1.6. Let $e(T)$ denote the number of edges in T. Note that $e(T)=$ $n(T)-1$. A subset F of the edge set $E(T)$ of T dissolves the tree T if the subgraph $T \backslash F$ obtained from T by deleting all edges in F is a disjoint union of simple paths. Set

$$
\begin{equation*}
s^{*}(T):=\min \{|F| \mid F \subseteq E(T) \text { dissolves } T\} \tag{12}
\end{equation*}
$$

An edge subset F is a separating edge set of T if F dissolves T and $|F|=$ $s^{*}(T)$. Observe $s^{*}\left(P_{n}\right)=0$.

Theorem 1.5. Let T be a tree with at least 3 vertices and p be a typical vertex of degree t. Let e_{1}, \cdots, e_{t} denote the edges incident on p, and $T_{p}^{1}, \ldots, T_{p}^{t}$ the connected components of $T \backslash\{p\}$. Assume each of e_{t-1}, e_{t} is incident on a vertex different from p of degree at most 2 in T. Suppose F_{i} is a separating edge set of $T_{p}^{i} \quad(1 \leq i \leq t)$. Then

$$
\left\{e_{1}, \cdots, e_{t-2}\right\} \cup \bigcup_{1 \leq i \leq t} F_{i}
$$

is a separating edge set of T. Furthermore,

$$
\begin{equation*}
s^{*}(T)=s^{*}\left(T_{p}^{1}\right)+\cdots+s^{*}\left(T_{p}^{t}\right)+t-2 . \tag{13}
\end{equation*}
$$

Equivalently, $g(T):=e(T)-s^{*}(T)$ satisfies

$$
\begin{equation*}
g(T)=g\left(T_{p}^{1}\right)+\cdots+g\left(T_{p}^{t}\right)+2 \tag{14}
\end{equation*}
$$

Corollary 1.6.

$$
\begin{equation*}
s(T)=s^{*}(T)+1 \tag{15}
\end{equation*}
$$

Theorem 1.7. Let T be a tree with at least 3 vertices and p be a typical vertex of degree t. Let $T_{p}^{1}, \ldots, T_{p}^{t}$ be the connected components of $T \backslash\{p\}$. Then

$$
\begin{equation*}
m(T)=m\left(T_{p}^{1}\right)+\cdots+m\left(T_{p}^{t}\right)+2, \tag{16}
\end{equation*}
$$

where $m(T)$ is defined in (2).

Following the above lines, we reprove the following Corollary which was proved by C. R. Johnson and A.L. Duarte[5].

Corollary 1.8. $m(T)=e(T)-s^{*}(T)=n(T)-s(T)$.
To end this section, we show how to compute $m(T)$ for the tree T in Figure 1. The best algorithm is corollary 1.3. We set $U=\{2,4,6,11\}$ which of course satisfies $\left(^{*}\right)$ condition of Corollary 1.3. Since $T \backslash U$ contains 8 simple paths, the separating number $s(T)=8-4=4$ by (10). Now $m(T)=13-4=9$ by Corollary 1.8.

2 Proofs of results.

Proof of Lemma 1.1. Suppose the algorithm in (5)-(6) generates a unique solution $f(T)$ for each tree T. Considering the simple path P_{3} of three vertices, the middle vertex is typical, so $f\left(P_{3}\right)=2 a+c$ by (5)-(6). For the simple path P_{5} of five vertices, there are essentially two different ways to choose a typical vertex. According to these two ways,

$$
\begin{aligned}
f\left(P_{5}\right) & =f\left(P_{2}\right)+f\left(P_{2}\right)+c \\
& =2 b+c,
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(P_{5}\right) & =f\left(P_{1}\right)+f\left(P_{3}\right)+c \\
& =a+(2 a+c)+c .
\end{aligned}
$$

Hence $3 a-2 b+c=0$.

Proof of Theorem 1.2. We find an upper bound of $s(T)$ first. Let V denote a vertex subset of T. We shall prove

$$
\begin{equation*}
c_{T}(V)-|V| \leq s\left(T_{p}^{1}\right)+\cdots+s\left(T_{p}^{t}\right)-1 . \tag{17}
\end{equation*}
$$

Set $V_{i}=V \cap T_{p}^{i} \quad(1 \leq i \leq t)$. Suppose $p \in V$. Then

$$
\begin{equation*}
|V|=1+\sum_{i=1}^{t}\left|V_{i}\right| \tag{18}
\end{equation*}
$$

and the components in $T \backslash V$ are exactly those in $T_{p}^{i} \backslash V_{i} \quad(1 \leq i \leq t)$. Hence

$$
\begin{align*}
c_{T}(V)-|V| & =\sum_{i=1}^{t} c_{T_{p}^{i}}\left(V_{i}\right)-\left(1+\sum_{i=1}^{t}\left|V_{i}\right|\right) \\
& =\sum_{i=1}^{t}\left(c_{T_{p}^{i}}\left(V_{i}\right)-\left|V_{i}\right|\right)-1 \\
& \leq s\left(T_{p}^{1}\right)+\cdots+s\left(T_{p}^{t}\right)-1 \tag{19}
\end{align*}
$$

Suppose $p \notin V$. Then

$$
\begin{equation*}
|V|=\sum_{i=1}^{t}\left|V_{i}\right| \tag{20}
\end{equation*}
$$

Let u denote the number of neighbors of p in $T \backslash V$. Each of the u vertices is in a connected component of $T_{p}^{i} \backslash V_{i}$ which contains it, and p merges these u components into a single connected component of $T \backslash V$. Then

$$
\begin{equation*}
c_{T}(V)=1-u+\sum_{i=1}^{t} c_{T_{p}^{i}}\left(V_{i}\right) \tag{21}
\end{equation*}
$$

Let v denote the number of neighbors of p in V which have degrees 1 or 2 in T. Since each of these v vertices has degree 0 or 1 in the subgraph T_{p}^{i} which contains it, and by the fact, a separating set contains no endpoints, we have the corresponding V_{i} is not a separating set of T_{p}^{i}. Hence there are at least v indices i such that

$$
c_{T_{p}^{i}}\left(V_{i}\right)-\left|V_{i}\right|+1 \leq s\left(T_{p}^{i}\right)
$$

Then

$$
\begin{equation*}
v+\sum_{i=1}^{t}\left(c_{T_{p}^{i}}\left(V_{i}\right)-\left|V_{i}\right|\right) \leq \sum_{i=1}^{t} s\left(T_{p}^{i}\right) . \tag{22}
\end{equation*}
$$

Note that

$$
\begin{equation*}
u+v \geq 2 \tag{23}
\end{equation*}
$$

since p is typical. Then by (20)-(23),

$$
\begin{align*}
c_{T}(V)-|V| & =1-u+\sum_{i=1}^{t} c_{T_{p}^{i}}\left(V_{i}\right)-\sum_{i=1}^{t}\left|V_{i}\right| \\
& =1-u+\sum_{i=1}^{t}\left(c_{T_{p}^{i}}\left(V_{i}\right)-\left|V_{i}\right|\right) \\
& \leq s\left(T_{p}^{1}\right)+\cdots+s\left(T_{p}^{t}\right)+1-u-v \\
& \leq s\left(T_{p}^{1}\right)+\cdots+s\left(T_{p}^{t}\right)-1 \tag{24}
\end{align*}
$$

This proves (17). To prove Theorem 1.2, set $V=U$ in (17). Then $p \in V$. Suppose $V_{i}=V \cap T_{p}^{i}$ is a separating set of T_{p}^{i} for all i. Then equality holds in (19). Hence for the vertex set $V, c_{T}(V)-|V|$ attains its maximum in (17). We conclude V is separating set of T, and (9) holds. To prove the other direction, suppose V is a separating set of T. Then equality holds in (17) and (19). This forces

$$
c_{T_{p}^{i}}\left(V_{i}\right)-\left|V_{i}\right|=s\left(T_{p}^{i}\right) \quad(1 \leq i \leq t),
$$

where $V_{i}=V \cap T_{p}^{i}$. Hence for each $i \quad(1 \leq i \leq t), V \cap T_{p}^{i}$ is a separating set of T_{p}^{i}. This proves the theorem.

Proof of Corollary 1.3. We prove the corollary by induction on the cardinality of U. This is clear if U is empty. Assume U is not empty. Pick $p \in U$. Let $T_{p}^{1}, \cdots, T_{p}^{t}$ denote the connected components of $T \backslash\{p\}$. Fix an integer $i \quad(1 \leq i \leq t)$. Observe that T_{p}^{i} contains those T_{U}^{j} it intersects. First we prove that

$$
\begin{equation*}
\left(U \cap T_{p}^{i}\right) \cup\left(\bigcup_{S_{j} \subseteq T_{p}^{i}} S_{j}\right) \tag{25}
\end{equation*}
$$

is a separating set of T_{p}^{i}, and

$$
\begin{equation*}
s\left(T_{p}^{i}\right)=\sum_{T_{U}^{j} \subseteq T_{p}^{i}} s\left(T_{U}^{j}\right)-\left|U \cap T_{p}^{i}\right| \tag{26}
\end{equation*}
$$

(25)-(26) follow from induction, if we prove $U \cap T_{p}^{i}$ contains typical vertices of T_{p}^{i} satisfying $\left(^{*}\right)$ condition of T_{p}^{i}. Let x denote the neighbor of p in T_{p}^{i}. Note that for vertices in T_{p}^{i}, the degrees in T and the degrees in T_{p}^{i} are the
same except the vertex x whose degrees are decreased by 1 . Hence we only need to show that if $x \in U$ then x is also typical in T_{p}^{i}, and furthermore, if x has degree 2 in T_{p}^{i} then x is not adjacent to other vertices in $U \cap T_{p}^{i}$. Suppose $x \in U$. Then p has degree at least 3 , since U satisfies the $\left(^{*}\right)$ condition of T. Hence x is also typical in T_{p}^{i} by the definition of typical. Furthermore, suppose x has degree 2 in T_{p}^{i}. By the definition of typical again, the two neighbors of x in T_{p}^{i} have degrees 1 or 2 in T, and then are not contained in U since U satisfies the $\left(^{*}\right)$ condition of T. This proves (25)-(26). By applying Theorem 1.2 to (25)-(26),

$$
\begin{aligned}
& \{p\} \cup \bigcup_{1 \leq i \leq t}\left(\left(U \cap T_{p}^{i}\right) \cup\left(\bigcup_{S_{j} \subseteq T_{p}^{i}} S_{j}\right)\right) \\
= & U \cup\left(\bigcup_{1 \leq j \leq l} S_{j}\right)
\end{aligned}
$$

is a separating set of T, and

$$
\begin{aligned}
s(T) & =s\left(T_{p}^{1}\right)+\cdots+s\left(T_{p}^{t}\right)-1 \\
& =\sum_{1 \leq i \leq t}\left(\sum_{T_{U}^{j} \subseteq T_{p}^{i}} s\left(T_{U}^{j}\right)-\left|U \cap T_{p}^{i}\right|\right)-1 \\
& =s\left(T_{U}^{1}\right)+\cdots+s\left(T_{U}^{l}\right)-|U|
\end{aligned}
$$

This proves the corollary.

Proof of Theorem 1.4. First assume $f(T)$ are numbers generated from (5)-(6). We prove by induction on the number $n(T)$. Note that $n\left(P_{1}\right)=1$, $n\left(P_{2}\right)=2, s\left(P_{1}\right)=s\left(P_{2}\right)=1, f\left(P_{1}\right)=a, f\left(P_{2}\right)=b$. Hence (11) can be checked directly if $n(T) \leq 2$. Assume $n(T) \geq 3$. Pick a typical vertex p in T. By (6), induction, (1) and (9), we obtain

$$
\begin{align*}
f(T) & =f\left(T_{p}^{1}\right)+\cdots+f\left(T_{p}^{t}\right)+c \\
& =\frac{a+c}{2} \sum_{i=1}^{t} n\left(T_{p}^{i}\right)+\frac{a-c}{2} \sum_{i=1}^{t} s\left(T_{p}^{i}\right)+c \\
& =\frac{a+c}{2}\left(\sum_{i=1}^{t} n\left(T_{p}^{i}\right)+1\right)+\frac{a-c}{2}\left(\sum_{i=1}^{t} s\left(T_{p}^{i}\right)-1\right) \\
& =\frac{a+c}{2} n(T)+\frac{a-c}{2} s(T) . \tag{27}
\end{align*}
$$

This proves the necessary condition (11). $f(T)$ has a unique solution, since $n(T), s(T)$ in (11) are well-defined functions. For the other direction, we assume (11) holds. (5) can be check directly. Reversing above four equalities in (27), we obtain $f(T)$ satisfies (6). This proves the theorem.

Proof of Theorem 1.5. We give a lower bound of $s^{*}(T)$ first. Suppose $F^{\prime} \subseteq E(T)$ dissolves T. We shall prove

$$
\begin{equation*}
\left|F^{\prime}\right| \geq s^{*}\left(T_{p}^{1}\right)+\cdots+s^{*}\left(T_{p}^{t}\right)+t-2 \tag{28}
\end{equation*}
$$

Set $F_{i}^{\prime}=F^{\prime} \cap E\left(T_{p}^{i}\right) \quad(1 \leq i \leq t)$. Since the vertex p has degree t in T, and $T \backslash F^{\prime}$ are simple paths, F^{\prime} contains at least $t-2$ edges incident on p. Hence

$$
\begin{equation*}
\left|F^{\prime}\right| \geq\left|F_{1}^{\prime}\right|+\cdots+\left|F_{t}^{\prime}\right|+t-2 \tag{29}
\end{equation*}
$$

Observe that F_{i}^{\prime} dissolves T_{p}^{i}. Hence

$$
\begin{equation*}
\left|F_{i}^{\prime}\right| \geq s^{*}\left(T_{p}^{i}\right) \quad(1 \leq i \leq t) \tag{30}
\end{equation*}
$$

(28) follows from (29)-(30). To prove the theorem, set

$$
F^{\prime}=\left\{e_{1}, \cdots, e_{t-2}\right\} \cup\left(\bigcup_{1 \leq i \leq t} F_{i}\right)
$$

Hence $F_{i}^{\prime}=F_{i}$. Observe F^{\prime} dissolves T, and equalities hold in (29)-(30). Hence equality holds in (28). This proves that (13) holds and F^{\prime} is a separating edge set of T. To prove (14), observe

$$
\begin{aligned}
g(T) & =e(T)-s^{*}(T) \\
& =e(T)-s^{*}\left(T_{p}^{1}\right)-\cdots-s^{*}\left(T_{p}^{t}\right)-t+2 \\
& =\sum_{1 \leq i \leq t}\left(e\left(T_{p}^{i}\right)-s^{*}\left(T_{p}^{i}\right)\right)+2 \\
& =\sum_{1 \leq i \leq t} g\left(T_{p}^{i}\right)+2 .
\end{aligned}
$$

Proof of Corollary 1.6. With the notation of Theorem 1.5, observe $g\left(P_{n}\right)=e\left(P_{n}\right)-s^{*}\left(P_{n}\right)=n-1$, especially $g\left(P_{1}\right)=0 g\left(P_{2}\right)=1$. Hence (14)
is the case $f=g, a=0, b=1$, and $c=2$ in (5)-(6). We obtain $e(T)-s^{*}(T)=$ $n(T)-s(T)$ by (11). Then $s(T)=s^{*}(T)+1$, since $n(T)-e(T)=1$.

Proof of Theorem 1.7. $m(T)$ is the unique solution of the algorithm in (3)-(4). However (3)-(4) is a special case of (5)-(6) with p appropriate, $a=0$, $b=1$ and $c=2$. Since $3 a-2 b+c=0$, the algorithm in (5)-(6) with p typical has the unique solution $m(T)$ by Theorem 1.4.

Proof of Corollary 1.8. The result follows by applying (3), (16) to (11) using (15).

REFERENCES

1. P. Nylen, Minimum-Rank Matrices With Prescribed Graph, Linear Algebra Appl., 248:303-316(1996).
2. P. Nylen and F. Uhlig, Realization of interlacing by tree-patterned matrices, Linear and Multilinear Algebra, 38:13-37(1994).
3. R. Johnsonbaugh, Discrete Mathematics, Prentice Hall International, (1993).
4. G. Wiener, Spectral multiplicity and splitting results for a class of qualitative matrices, Linear Algebra Appl., 61:15-29(1984).
5. C.R. Johnson and A.L. Duarte, The Maximum Multiplicity of an Eigenvalue in a Matrix Whose Graph is a Tree, Linear and Multilinear Algebra, Vol. 46:139-144(1999).

[^0]: *Department of Applied Mathematics, National Chiao Tung University, Taiwan R.O.C.
 ${ }^{\dagger}$ Department of Applied Mathematics, National Chiao Tung University, Taiwan R.O.C.

