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Abstract. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2 and distance function δ. A (vertex) subgraph Ω ⊆ X is said to be weak-
geodetically closed whenever for all x, y ∈ Ω and all z ∈ X,

δ(x, z) + δ(z, y) ≤ δ(x, y) + 1 −→ z ∈ Ω.

We show that if the intersection number c2 > 1 then any weak-geodetically
closed subgraph of X is distance-regular. Γ is said to be i-bounded, whenever
for all x, y ∈ X at distance δ(x, y) ≤ i, x, y are contained in a common weak-
geodetically closed subgraph of Γ of diameter δ(x, y). By a parallelogram of length
i, we mean a 4-tuple xyzw of vertices in X such that δ(x, y) = δ(z, w) = 1,
δ(x,w) = i, and δ(x, z) = δ(y, z) = δ(y, w) = i− 1. We prove the following two
theorems.

Theorem 1. Let Γ denote a distance-regular graph with diameter D ≥ 2,
and assume the intersection numbers c2 > 1, a1 6= 0. Then for each integer
i (1 ≤ i ≤ D), the following (i)-(ii) are equivalent.

(i) Γ is i-bounded.
(ii) Γ contains no parallelogram of length ≤ i + 1.

Restricting attention to the Q-polynomial case, we get the following stronger
result.

Theorem 2. Let Γ denote a distance-regular graph with diameter D ≥ 3, and
assume the intersection numbers c2 > 1, a1 6= 0. Suppose Γ is Q-polynomial.
Then the following (i)-(iii) are equivalent.

(i) Γ contains no parallelogram of length 2 or 3.
(ii) Γ is D-bounded.
(iii) Γ has classical parameters (D, b, α, β), and either b < −1, or else Γ is a dual

polar graph or a Hamming graph.

1. Introduction.

Let Γ = (X, R) denote a distance-regular graph with diameter D ≥ 2, and let δ
denote the distance function of Γ.

Recall a (vertex) subgraph Ω ⊆ X is geodetically closed whenever for all vertices
x, y ∈ Ω, and for all vertices z ∈ X,

δ(x, z) + δ(z, y) = δ(x, y) −→ z ∈ Ω.
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Distance-regular graphs containing many geodetically closed subgraphs have
been studied by several authors. Shult and Yanushka[4], Brouwer and Wilbrink[3]
showed that if Γ is a near polygon with c2 > 1, a1 6= 0, then there exist sub
2j-gons in Γ for each integer j (2 ≤ j ≤ D). Also, Ivanov and Shpectorov[5]
showed that if Γ is a Hermitian forms graph, then Γ has geodetically closed
subgraphs of any diameter j (1 ≤ j ≤ D).

In the present paper, we study the following special kind of geodetically closed
subgraphs. We say a subgraph Ω ⊆ X is weak-geodetically closed whenever for
all vertices x, y ∈ Ω, and for all z ∈ X,

δ(x, z) + δ(z, y) ≤ δ(x, y) + 1 −→ z ∈ Ω.

We have two main results. First, given an integer i (1 ≤ i ≤ D), we give
necessary and sufficient conditions for the existence of a weak-geodetically closed
subgraph of diameter δ(x, y) containing any two given vertices x, y with δ(x, y) ≤
i. Theorem 6.4 is our main result in this area.

We then tighten Theorem 6.4 in the case Γ is Q-polynomial, and obtain our
second main result, Theorem 7.2.

The paper is organized as follows. In sections 2-5, we set up the necessary tools
for the proof of Theorem 6.4. To do this, we study the structure theory of a
weak-geodetically closed subgraph Ω of Γ.

More precisely, in section 2, we define the notion of a subgraph being weak-
geodetically closed with respect to a vertex. We find necessary and sufficient
conditions for a subgraph to be weak-geodetically closed with respect to some
vertex.

In section 3, we get some inequalities involving the intersection numbers of Γ,
when we assume the existence of certain weak-geodetically closed subgraphs.
Proposition 3.2 is the main result in this section.

In section 4, we consider a regular connected subgraph Ω of Γ. First, we find a
lower bound for

∣∣∣Ω
∣∣∣ and necessary and sufficient conditions for this bound to be

met(Lemma 4.4). These conditions involve the notion of weak-geodetic closure.
In our main result of this section, Theorem 4.6, we show Ω is weak-geodetically
closed if and only if Ω is weak-geodetically closed with respect to at least one
vertex.

In section 5, we restrict to the case c2 > 1, and prove a weak-geodetically closed
subgraph Ω of Γ is distance-regular.

We prove the two main theorems in section 6 and section 7.

For the rest of this section, we give some definitions.
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Let Γ = (X, R) be a finite undirected graph without loops or multiple edges,
with vertex set X and edge set R. We say vertices x, y are adjacent if xy ∈ R.
Pick any integer i (0 ≤ i ≤ D) and any vertices x, y ∈ X. By a path of length i
from x to y, we mean a sequence x = x0, x1, · · · , xi = y of vertices from x such
that xj , xj+1 are adjacent for all j (0 ≤ j ≤ i−1). Being joined by a path is an
equivalence relation. Its equivalence classes are called the connected components
of Γ. Γ is said to be connected whenever Γ has a unique connected component.
From now on, assume Γ is connected. The distance δ(x, y) between two vertices
x, y ∈ X is the length of a shortest (geodesic) path from x to y. By the diameter
of Γ, we mean the scalar

D := max{δ(x, y)|x, y ∈ X}.

Sometimes we write diam(Γ) to denote the diameter of Γ. By a clique in Γ, we
mean a set of mutually adjacent vertices in X.

Let Γ = (X, R) be a graph with diameter D. By a subgraph of Γ, we mean a graph
(Ω,Ξ), where Ω is a nonempty subset of X and Ξ = { xy |x, y ∈ Ω, xy ∈ R}.
We refer to (Ω,Ξ) as the subgraph induced on Ω and by abuse of notation, we
refer to this subgraph as Ω. For any x ∈ X and any integer i, set

Γi(x) := {y|y ∈ X, δ(x, y) = i},

and for y ∈ Γi(x), set

B(x, y) := Γ1(x) ∩ Γi+1(y), (1.1)
A(x, y) := Γ1(x) ∩ Γi(y), (1.2)
C(x, y) := Γ1(x) ∩ Γi−1(y). (1.3)

Note that for all x, y ∈ Γ and for all z ∈ C(y, x), we have

C(x, z) ⊆ C(x, y), (1.4)
B(x, z) ⊇ B(x, y). (1.5)

The valency k(x) of a vertex x ∈ X is the cardinality of Γ1(x). The graph Γ is
called regular (with valency k) if each vertex in X has valency k. Γ is said to be
distance-regular whenever for all integers i (0 ≤ i ≤ D), and for all x, y ∈ X
with δ(x, y) = i, the numbers

ci :=
∣∣∣C(x, y)

∣∣∣, (1.6)

ai :=
∣∣∣A(x, y)

∣∣∣, (1.7)

bi :=
∣∣∣B(x, y)

∣∣∣ (1.8)
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are independent of x, y. The constants ci, ai, bi (0 ≤ i ≤ D) are known as the
intersection numbers of Γ. The sequence

{b0, b1, · · · , bD−1; c1, c2, · · · , cD}

is called the intersection array of Γ. Note that the valency k = b0, c0 = 0, c1 = 1,
bD = 0, and

k = ci + ai + bi (0 ≤ i ≤ D) (1.9)

[2, 126].

2. Weak-geodetically closed subgraphs with respect to a vertex.

Let Γ = (X,R) denote a graph, and let Ω denote a subgraph of Γ. In this section,
we define what it means for Ω to be weak-geodetically closed with respect to a
vertex. We find some necessary and sufficient conditions for Ω to have this
property.

We begin with a definition.
Definition 2.1. Let Γ = (X,R) denote a graph with distance function δ. Fix
a subgraph Ω of Γ, and pick any vertex x ∈ Ω. Ω is said to be geodetically closed
with respect to x (resp. weak-geodetically closed with respect to x), whenever for
all y ∈ Ω and for all z ∈ X,

δ(x, z) + δ(z, y) = δ(x, y) −→ z ∈ Ω

(resp. δ(x, z) + δ(z, y) ≤ δ(x, y) + 1 −→ z ∈ Ω).

Lemma 2.2. Let Γ = (X, R) denote a graph with distance function δ. Fix a
subgraph Ω of Γ, and pick any vertex x ∈ Ω. Then with the notation of (1.3),
the following (i)-(iii) are equivalent.

(i) Ω is geodetically closed with respect to x.

(ii) C(y, x) ⊆ Ω for all y ∈ Ω.

(iii) For all y ∈ Ω, and for all w ∈ Γ1(y) \ Ω,

δ(x,w) ≥ δ(x, y).

Proof. This is immediate from Definition 2.1.

Lemma 2.3. Let Γ = (X, R) denote a graph with distance function δ. Fix a
subgraph Ω of Γ, and pick any vertex x ∈ Ω. Then with the notation of (1.2),
(1.3), the following (i)-(iii) are equivalent.
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(i) Ω is weak-geodetically closed with respect to x.

(ii) C(y, x) ⊆ Ω and A(y, x) ⊆ Ω for all y ∈ Ω.

(iii) For all y ∈ Ω, and for all w ∈ Γ1(y) \ Ω,

δ(x,w) = δ(x, y) + 1. (2.1)

Proof. (i)−→(ii). Let the vertex y ∈ Ω be given, and pick any z ∈ A(y, x) ∪
C(y, x). Then δ(x, z) ≤ δ(x, y), and of course δ(z, y) = 1, so

δ(x, z) + δ(z, y) ≤ δ(x, y) + 1.

Hence z ∈ Ω by Definition 2.1.

(ii)−→(iii). Let y, w be given. Observe

w ∈ Γ1(y) \ Ω
⊆ B(y, x)

by (ii), and (2.1) follows from (1.1).

(iii)−→(i). Suppose Ω is not weak-geodetically closed with respect to x. Then
by Definition 2.1, there exists a vertex y ∈ Ω and a vertex z 6∈ Ω such that

δ(x, z) + δ(z, y) ≤ δ(x, y) + 1. (2.2)

Of all such pairs y, z, pick one with δ(z, y) minimal. Note that z 6= y by the
construction, and δ(z, y) 6= 1 by (2.1)-(2.2), so there exists a vertex z′ ∈ C(z, y).
Observe

δ(z′, y) = δ(z, y)− 1 (2.3)

by the construction, and
δ(x, z′) ≤ δ(x, z) + 1 (2.4)

by the triangular inequality. Adding (2.2)-(2.4), we obtain

δ(x, z′) + δ(z′, y) ≤ δ(x, y) + 1. (2.5)

Observe z′ ∈ Ω by (2.3), (2.5) and the construction. Now by (iii) (with y :=
z′, w := z), we find

δ(x, z) = δ(x, z′) + 1. (2.6)

By the triangular inequality,

δ(x, y) ≤ δ(x, z′) + δ(z′, y). (2.7)
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Adding (2.2), (2.3), and (2.7), we obtain

δ(x, z) ≤ δ(x, z′),

contradicting (2.6). We conclude Ω is weak-geodetically closed with respect to
x.

Lemma 2.4. Let Γ = (X, R) denote a graph with distance function δ. Fix
a subgraph Ω of Γ, and pick a vertex x ∈ Ω. Suppose Ω is weak-geodetically
closed with respect to x, and suppose there exists a vertex z ∈ Γ1(x) \ Ω. Then
the following (i)-(ii) hold.

(i) For any vertex y ∈ Ω,

δ(z, y) = δ(x, y) + 1.

(ii) x is the unique vertex in Ω adjacent to z.

Proof. (i). By Definition 2.1 and since z 6∈ Ω, we have δ(x, z) + δ(z, y) >
δ(x, y) + 1. Of course δ(x, z) = 1, so δ(z, y) > δ(x, y). Also by the triangular
inequality,

δ(z, y) ≤ δ(z, x) + δ(x, y)
= 1 + δ(x, y).

Hence δ(z, y) = δ(x, y) + 1.

(ii). This is immediate from (i).

Definition 2.5. Let Γ = (X, R) denote a graph with distance function δ, and
let Ω be any subgraph of Γ. For all vertices x ∈ Ω, define

diamx(Ω) := max{δ(x, y)|y ∈ Ω}.

Lemma 2.6. Let Γ = (X,R) denote a distance-regular graph. Fix a subgraph
Ω of Γ, and pick a vertex x ∈ Ω. Suppose Ω is weak-geodetically closed with
respect to x. Set d :=diamx(Ω). Then the following (i)-(iv) hold.

(i) For all y ∈ Ω ∩ Γd(x), ∣∣∣Ω ∩ Γ1(y)
∣∣∣ = cd + ad.

(ii) For all y ∈ Ω ∩ Γd(x),

C(x, y) ∪A(x, y) ⊆ Ω ∩ Γ1(x). (2.8)
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(iii) ∣∣∣Ω ∩ Γ1(x)
∣∣∣ ≥ cd + ad.

(iv) Equality holds in (iii) if and only if equality holds in (2.8) for at least one
y ∈ Ω ∩ Γd(x), if and only if equality holds in (2.8) for all y ∈ Ω ∩ Γd(x).

Proof. (i). Note that Γ1(y) = C(y, x) ∪ A(y, x) ∪ B(y, x). Observe that
Ω ∩B(y, x) = ∅ since δ(x, y) =diamx(Ω). Now Ω ∩ Γ1(y) = C(y, x) ∪A(y, x) by
Lemma 2.3(ii), and (i) follows by (1.6), (1.7).

(ii). Pick z ∈ C(x, y) ∪A(x, y). Then certainly z ∈ Γ1(x) and

δ(x, z) + δ(z, y) ≤ δ(x, y) + 1,

so z ∈ Ω by Definition 2.1.

(iii), (iv). These are immediate from (ii).

3. Weak-geodetically closed subgraphs.

Let Γ = (X, R) be any graph. In this section, we study a subgraph Ω that is
weak-geodetically closed with respect to all vertices in Ω. We prove that when
Γ is distance-regular, the existence of Ω forces certain inequalities involving the
intersection numbers of Γ.

Definition 3.1. Let Γ = (X, R) be a graph. A subgraph Ω of Γ is said to be
geodetically closed (resp. weak-geodetically closed) , whenever Ω is geodetically
closed (resp. weak-geodetically closed) with respect to all x ∈ Ω.

Note. A weak-geodetically closed subgraph Ω of Γ is geodetically closed in Γ.
In particular, Ω is connected, and the distances as measured in Ω are the same
as distances as measured in Γ.

Proposition 3.2. Let Γ = (X, R) denote a distance-regular graph with
diameter D ≥ 2. Fix an integer d (1 ≤ d < D), and suppose there exists a weak-
geodetically closed subgraph Ω of Γ that has diameter d. Then the intersection
numbers bi, ai, ci of Γ satisfy the following inequalities.

(i)
ci ≥ ci−1(c2 − 1) + 1 (1 ≤ i ≤ d + 1).

(ii)
ai ≥ ai−1(c2 − 1) + a1 (1 ≤ i ≤ d + 1).

(iii)
bi ≤ (bi−1 − k)(c2 − 1) + b1 (1 ≤ i ≤ d + 1).
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(iv) Suppose c2 > 1. Then

bi < bi−1 (1 ≤ i ≤ d + 1).

Proof. Let the integer i be given. Our result is clear if i = 1, since c1 = 1,
c0 = 0, a0 = 0, b0 = k. Hence we may assume i ≥ 2. First we claim there exist
vertices x, y ∈ Ω and z ∈ X \ Ω such that

δ(x, y) = i− 1, δ(y, z) = 1, δ(x, z) = i. (3.1)

Indeed, since diam(Ω) = d, we can pick vertices x′, y ∈ Ω with δ(x′, y) = d.
Observe B(y, x′) 6= ∅ since d < D, so pick a vertex z ∈ B(y, x′). Note that
z 6∈ Ω, since

δ(x′, z) = d + 1
> diam(Ω).

Now pick a vertex x in a geodesic path from x′ to y with δ(x, y) = i−1. Clearly,
x ∈ Ω, and x, y, z satisfy (3.1). This proves our claim. Recall by Lemma 2.4(ii),

Γ1(z) ∩ Ω = {y}. (3.2)

Now we consider the four parts of the proposition.

(i). Observe each vertex in C(y, x) is adjacent to c2− 1 vertices in C(z, x) \ {y}.
Next observe each vertex in C(z, x) \ {y} is adjacent to at most 1 vertex in
C(y, x). To see this, pick any w ∈ C(z, x) \ {y}. Then w 6∈ Ω by (3.2). Note
that C(y, x) ⊆ Ω by Lemma 2.3(ii), so w is adjacent to at most one vertex in
C(y, x) by Lemma 2.4(ii). Now by counting the edges between C(z, x)\{y} and
C(y, x), we find

ci − 1 =
∣∣∣C(z, x) \ {y}

∣∣∣

≥
∣∣∣C(y, x)

∣∣∣(c2 − 1)

= ci−1(c2 − 1),

as desired.

(ii). We first prove
A(z, y) ⊆ A(z, x), (3.3)

and then count the edges between A(z, x) \A(z, y) and A(y, x) to establish the
inequality.
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Note that
A(y, x) ⊆ Ω (3.4)

by Lemma 2.3(ii),
A(z, y) ∩ Ω = ∅ (3.5)

by (3.2), and
A(z, y) ⊆ A(y, x) ∪A(z, x) (3.6)

by construction. Now (3.3) follows from (3.4)-(3.6). We now count the edges
between A(z, x) \A(z, y) and A(y, x).

Claim 1. Each vertex in A(z, x) \ A(z, y) is adjacent to at most one vertex in
A(y, x).

Proof of Claim 1. Observe that by (3.2),

A(z, x) ∩ Ω = ∅,

so Claim 1 follows from (3.4) and Lemma 2.4(ii).

Claim 2. Each vertex in A(y, x) is adjacent to c2−1 vertices in A(z, x)\A(z, y).

Proof of Claim 2. Pick w ∈ A(y, x). Observe

w ∈ Ω (3.7)

by (3.4), so w is not adjacent to z by (3.2); in particular δ(w, z) = 2. It now
suffices to show

Γ1(w) ∩ (A(z, x) \A(z, y)) = C(z, w) \ {y}, (3.8)

since
∣∣∣C(z, w) \ {y}

∣∣∣ = c2 − 1. The inclusion

Γ1(w) ∩ (A(z, x) \A(z, y)) ⊆ C(z, w) \ {y}

is clear by construction. To prove

C(z, w) \ {y} ⊆ Γ1(w) ∩ (A(z, x) \A(z, y)),

pick u ∈ C(z, w) \ {y}. Of course u ∈ Γ1(w) and u ∈ Γ1(z), so

u 6∈ Ω (3.9)

by (3.2), and
u ∈ A(z, x) ∪A(w, x) (3.10)
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by construction. Note that
A(w, x) ⊆ Ω (3.11)

by (3.7) and Lemma 2.3(ii). Hence u ∈ A(z, x) by (3.9)-(3.11). Also u 6∈ A(z, y)
by (3.7) and (3.9), otherwise u is adjacent to y, w ∈ Ω, contradicting Lemma
2.4(ii). Hence we have (3.8). This proves Claim 2.

Now using Claim 1, Claim 2, we count the edges between A(z, x) \ A(z, y) and
A(y, x), obtaining

ai − a1 =
∣∣∣A(z, x) \A(z, y)

∣∣∣

≥
∣∣∣A(y, x)

∣∣∣(c2 − 1)

= ai−1(c2 − 1),

as desired.

(iii). By (i), (ii) and (1.9),

bi = k − ai − ci

≤ k − (ai−1 + ci−1)(c2 − 1)− a1 − 1
= (bi−1 − k)(c2 − 1) + b1,

as desired.

(iv). Observe bi−1 − k ≤ 0, c2 − 1 ≥ 1 and b1 < k, so by (iii),

bi ≤ (bi−1 − k)(c2 − 1) + b1

≤ bi−1 − k + b1

< bi−1,

as desired. This proves Proposition 3.2.

4. Regular subgraphs of distance-regular graphs.

In this section, we study basic properties of a regular connected subgraph Ω
in a distance-regular graph, and get a lower bound of

∣∣∣Ω
∣∣∣. We find necessary

and sufficient conditions for
∣∣∣Ω

∣∣∣ to meet this lower bound. These conditions are
related to the weak-geodetically closed property. Theorem 4.6 is the main result
of this section.

We begin with a definition.
Definition 4.1. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2, and let Ω denote a regular connected subgraph of Γ. We define
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(i)
βi(Ω) := γ − ci − ai (0 ≤ i ≤ D),

where γ denotes the valency of Ω.

(ii)

ki(Ω) :=
β0(Ω)β1(Ω) · · ·βi−1(Ω)

c1c2 · · · ci
(1 ≤ i ≤ D),

k0(Ω) := 1.

(iii)
d(Ω) := min{i|0 ≤ i ≤ D, βi(Ω) ≤ 0}. (4.1)

(We observe βD(Ω) ≤ 0, so (4.1) makes sense).

Lemma 4.2. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2. Let Ω denote a regular connected subgraph of Γ, and write d := d(Ω).
Then the following (i)-(iii) hold.

(i) βi(Ω) > 0 (0 ≤ i < d).

(ii) ki(Ω) > 0 (0 ≤ i ≤ d).

(iii) γ ≤ ad + cd, where γ denotes the valency of Ω.

Proof. (i). This is immediate from Definition 4.1(iii).

(ii). This is immediate from (i) and Definition 4.1(ii).

(iii). This is immediate from Definition 4.1(i), (iii).

Lemma 4.3. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2. Let Ω denote a regular connected subgraph of Γ, and pick any x ∈ Ω.
Pick an integer i (0 ≤ i ≤ d(Ω)). Then the following (i)-(iii) hold.

(i) ∣∣∣Ω ∩ Γi(x)
∣∣∣ ≥ ki(Ω) (4.2)

with equality if and only if

C(y, x) ⊆ Ω (∀y ∈ Ω, δ(x, y) ≤ i) (4.3)

and
A(y, x) ⊆ Ω (∀y ∈ Ω, δ(x, y) ≤ i− 1). (4.4)

(ii)
Ω ∩ Γi(x) 6= ∅. (4.5)
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(iii)
diamx(Ω) ≥ d(Ω). (4.6)

Proof. (i). We prove this by induction on the integer i. First assume i = 0.
Then (4.2)-(4.4) hold at i; indeed both sides in (4.2) equal 1. Next assume i ≥ 1.
Then by Definition 4.1(i), a counting argument, the induction hypothesis and
Definition 4.1(ii),

ci

∣∣∣Ω ∩ Γi(x)
∣∣∣ ≥ number of edges between Ω ∩ Γi(x) and Ω ∩ Γi−1(x) (4.7)

≥ βi−1(Ω)
∣∣∣Ω ∩ Γi−1(x)

∣∣∣ (4.8)

≥ βi−1(Ω)ki−1(Ω) (4.9)

=
β0(Ω)β1(Ω) · · ·βi−1(Ω)

c1c2 · · · ci−1
(4.10)

= ciki(Ω), (4.11)

and equalities hold in (4.7)-(4.9) if and only if (4.3)-(4.4) hold. Now (4.2) follows
since ci > 0.

(ii). This is immediate from (i) above and Lemma 4.2(ii).

(iii). This is immediate from (ii) and Definition 2.5.

Lemma 4.4. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2, and let Ω denote a regular connected subgraph of Γ. Then∣∣∣Ω

∣∣∣ ≥ k0(Ω) + k1(Ω) + · · ·+ kd(Ω), (4.12)

where d := d(Ω) is from Definition 4.1(iii). Furthermore, equality holds in (4.12)
if and only if for any x ∈ Ω (and for some x ∈ Ω),

d = diamx(Ω), (4.13)

C(y, x) ⊆ Ω (∀y ∈ Ω, δ(x, y) ≤ d) (4.14)

and
A(y, x) ⊆ Ω (∀y ∈ Ω, δ(x, y) ≤ d− 1). (4.15)

Proof. Pick x ∈ Ω. Then by Lemma 4.3,

∣∣∣Ω
∣∣∣ =

diamx(Ω)∑

i=0

∣∣∣Ω ∩ Γi(x)
∣∣∣

≥
d∑

i=0

∣∣∣Ω ∩ Γi(x)
∣∣∣ (4.16)

≥
d∑

i=0

ki(Ω), (4.17)
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and equalities in (4.16)-(4.17) hold if (4.13)-(4.15) hold. Hence we have the
lemma.

Theorem 4.5. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2. Let Ω denote a regular connected subgraph of Γ, and let d := d(Ω) be
as in Definition 4.1(iii). Then the following (i)-(iii) are equivalent.

(i) Equality is obtained in (4.12).

(ii) Ω is geodetically closed, and for all x, y ∈ Ω,

A(y, x) ⊆ Ω if δ(x, y) < diamx(Ω). (4.18)

(iii) There exists a vertex x ∈ Ω such that

Ω is geodetically closed with respect to x, (4.19)

and for all y ∈ Ω,

A(y, x) ⊆ Ω if δ(x, y) < diamx(Ω). (4.20)

If (i)-(iii) hold, then Ω is distance-regular, with diameter d, and intersection
numbers

ci(Ω) = ci (0 ≤ i ≤ d), (4.21)
ai(Ω) = ai (0 ≤ i < d). (4.22)

Proof. (i)→(ii) is immediate from Lemma 4.4, Lemma 2.2(ii), Definition 3.1
and (4.6). (ii)→(iii) is clear. To prove (iii)→(i), by Lemma 4.4, Lemma 2.2(ii),
we only need to prove (4.13). Observe by a counting argument,

∣∣∣Ω ∩ Γi(x)
∣∣∣ci =

∣∣∣Ω ∩ Γi−1(x)
∣∣∣βi−1(Ω) (1 ≤ i ≤ diamx(Ω)),

forcing
βi > 0 (0 ≤ i < diamx(Ω)).

Hence (4.13) holds by (4.6) and Definition 4.1(iii).

Now suppose (i)-(iii) hold. (4.21)-(4.22) follow from (4.13) and (ii) above. We
now have Theorem 4.5.

Theorem 4.6. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 2. Let Ω denote a regular connected subgraph of Γ, and let d := d(Ω) be
as in Definition 4.1(iii). Then the following (i)-(iii) are equivalent.
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(i) Equality holds in (4.12), and Ω has valency cd + ad.

(ii) Ω is weak-geodetically closed.

(iii) Ω is weak-geodetically closed with respect to at least one vertex in Ω.

Suppose (i)-(iii) hold. Then Ω is distance-regular, with diameter d, and inter-
section numbers

ci(Ω) = ci (0 ≤ i ≤ d), (4.23)
ai(Ω) = ai (0 ≤ i ≤ d). (4.24)

Proof. Observe each of the three statements (i)-(iii) in the present theorem
implies the corresponding statement in Theorem 4.5. Without loss of generality,
we may assume Theorem 4.5(i)-(iii) hold. In particular, we may assume Ω is
distance-regular with diameter d.

(i)→(ii). Since Theorem 4.5(ii) holds by assumption, it remains to show

A(y, x) ⊆ Ω (4.25)

for all x, y ∈ Ω such that δ(x, y) = d. To obtain (4.25), observe by (4.21) that
∣∣∣A(y, x) \ Ω

∣∣∣ = ad − ad(Ω)

= ad − (
∣∣∣Ω ∩ Γ1(y)

∣∣∣− cd)

= 0,

and (4.25) follows.

(ii)→(iii). This is clear.

(iii)→(i). Since Theorem 4.5(i) holds by assumption, it remains to show Ω has
valency cd + ad. Pick any x, y ∈ Ω such that δ(x, y) = d. Then

∣∣∣Ω ∩ Γ1(y)
∣∣∣ = cd + ad

by Lemma 2.6(i).

Now assume (i)-(iii) hold. Then (4.23)-(4.24) hold by (4.21)-(4.22), and since Ω
has valency cd + ad. This proves Theorem 4.6.

5. Distance-regular graphs with c2 > 1.

In this section, we restrict our attention to the case Γ = (X, R) is distance-
regular with intersection number c2 > 1. We first prove that a weak-geodetically
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closed subgraph Ω of Γ is regular (and consequently distance-regular by Theorem
4.6). We then give a precise description of Ω.

Lemma 5.1. Let Γ = (X, R) be a distance-regular graph with diameter D ≥ 2,
and assume the intersection number c2 > 1. Fix a subgraph Ω of Γ, and pick any
vertex x ∈ Ω. Suppose Ω is weak-geodetically closed with respect to x. Then for
all y ∈ Ω ∩ Γ1(x), ∣∣∣Ω ∩ Γ1(x)

∣∣∣ ≥
∣∣∣Ω ∩ Γ1(y)

∣∣∣.

Proof. Since Γ is regular, it suffices to prove
∣∣∣Γ1(x) \ Ω

∣∣∣ ≤
∣∣∣Γ1(y) \ Ω

∣∣∣. (5.1)

Observe that each vertex in Γ1(x) \Ω is adjacent to c2− 1 vertices in Γ1(y) \Ω.
Indeed pick z ∈ Γ1(x) \ Ω. Then by Lemma 2.4(i),

δ(z, y) = 2.

Note that z is adjacent to c2 vertices in Γ1(y), and x is the unique one of such
vertices in Ω by Lemma 2.4(ii). Hence z is adjacent to c2−1 vertices in Γ1(y)\Ω.

Next, observe that each vertex in Γ1(y)\Ω is adjacent to at most c2−1 vertices
in Γ1(x) \ Ω. Indeed pick w ∈ Γ1(y) \ Ω. Then by Lemma 2.3(iii),

δ(x,w) = 2.

Since y ∈ Ω ∩ Γ1(x), w is adjacent to at most c2 − 1 vertices in Γ1(x) \ Ω.

Now by counting edges between Γ1(x) \ Ω and Γ1(y) \ Ω, we have
∣∣∣Γ1(x) \ Ω

∣∣∣(c2 − 1) ≤
∣∣∣Γ1(y) \ Ω

∣∣∣(c2 − 1), (5.2)

and (5.1) follows since c2 > 1. This proves Lemma 5.1.

Lemma 5.2. Let Γ = (X, R) be a distance-regular graph with diameter D ≥ 2,
and assume the intersection number c2 > 1. Let Ω denote a weak-geodetically
closed subgraph of Γ. Then Ω is regular.

Proof. Suppose Ω is not regular. Since Ω is connected, there exist adjacent
vertices x, y ∈ Ω such that

∣∣∣Ω ∩ Γ1(x)
∣∣∣ <

∣∣∣Ω ∩ Γ1(y)
∣∣∣, (5.3)

contradicting Lemma 5.1.
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Corollary 5.3. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 2, and assume the intersection number c2 > 1. Let Ω denote a weak-
geodetically closed subgraph of Γ. Then Ω is distance-regular with intersection
array

{c1, c2, · · · , cd; b0 − bd, b1 − bd, · · · , bd−1 − bd},
where d = d(Ω).

Proof. This is immediate from Lemma 5.2, Theorem 4.6 and (1.9).

Corollary 5.4. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 2, and assume the intersection number c2 > 1. Let Ω, Ω′ denote two weak-
geodetically closed subgraphs such that Ω′ ⊆ Ω. Then the following (i)-(ii) are
equivalent.

(i) Ω′ = Ω.

(ii) diam(Ω′) = diam(Ω).

Proof. (i)−→(ii). Clear.

(ii)−→(i). Ω, Ω′ are distance-regular with the same intersection array by Corol-
lary 5.3. Now we have

∣∣∣Ω
∣∣∣ =

∣∣∣Ω′
∣∣∣, so Ω = Ω′.

Definition 5.5. Let Γ = (X,R) be a graph. For any vertex x ∈ X, and any
subset C ⊆ X, define

[x,C] := {v ∈ X|there exists y ∈ C, such that δ(x, v) + δ(v, y) = δ(x, y)}.

The following proposition gives us a description of a weak-geodetically closed
subgraph of a distance-regular graph with c2 > 1.

Proposition 5.6. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 2, and assume the intersection number c2 > 1. Pick any subgraph Ω of Γ,
and fix an integer d (0 ≤ d ≤ D). Then the following (i)-(ii) are equivalent.

(i) Ω is weak-geodetically closed with diameter d.

(ii) There exists a vertex x ∈ Ω that satisfies the following (iia)-(iid).

(iia) Ω is weak-geodetically closed with respect to x.

(iib)
∣∣∣Ω ∩ Γ1(x)

∣∣∣ = cd + ad.

(iic) Ω = [x,C] for some C ⊆ Γd(x).

(iid) For all v ∈ Ω and for all z ∈ X, if z is adjacent to two distinct vertices
in C(v, x), then z ∈ Ω.
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Proof. (i)−→(ii). Let x denote any vertex in Ω. (iia) is immediate from
Definition 3.1. (iib) is immediate from Corollary 5.3 and (1.9). Suppose (iic)
fails. Then there exists a vertex w ∈ Ω such that δ(x,w) < d and B(w, x)∩Ω = ∅.
This contradicts Corollary 5.3. Hence we have (iic). To prove (iid), suppose z is
adjacent to distinct vertices w, w′ ∈ C(v, x). Then w,w′ ∈ Ω by Lemma 2.3(ii),
so z ∈ Ω by Lemma 2.4(ii).

(ii)−→(i). First, we prove Ω is weak-geodetically closed. To do this, by parts
(ii), (iii) of Theorem 4.6, it suffices to show that Ω is regular. We will show each
vertex in Ω has valency cd + ad. Note that by Lemma 2.6(i), for all w ∈ C,

∣∣∣Ω ∩ Γ1(w)
∣∣∣ = cd + ad. (5.4)

Claim. For all integers j (1 ≤ j ≤ d), and for all pairs of adjacent vertices
u, v ∈ Ω such that u ∈ Γj−1(x) and v ∈ Γj(x), we have

∣∣∣Ω ∩ Γ1(u)
∣∣∣ ≥

∣∣∣Ω ∩ Γ1(v)
∣∣∣. (5.5)

Proof of Claim. Since Γ is regular, to prove (5.5), it suffices to prove
∣∣∣Γ1(u) \ Ω

∣∣∣ ≤
∣∣∣Γ1(v) \ Ω

∣∣∣. (5.6)

We will count the edges between Γ1(u)\Ω and Γ1(v)\Ω in two ways to establish
(5.6). On the one hand, we prove that each vertex in Γ1(u) \ Ω is adjacent to
exactly c2 − 1 vertices in Γ1(v) \ Ω. Pick z ∈ Γ1(u) \ Ω. Note that z ∈ Γj(x) by
Lemma 2.3(iii). We now show δ(z, v) = 2. Obviously δ(z, v) ≤ 2, since z, u, v is
a path. Observe z 6= v by construction. Also z, v are not adjacent, otherwise
z ∈ A(v, x) ⊆ Ω by Lemma 2.3(ii), a contradiction. Hence δ(z, v) = 2. Next we
show

Ω ∩ C(z, v) = {u}. (5.7)

To see this, pick w ∈ Ω ∩ C(z, v) and suppose w 6= u. Note that w 6∈ C(v, x),
otherwise z is adjacent to u,w ∈ C(v, x), putting z ∈ Ω by (iid), a contradiction.
Note that w 6∈ A(v, x), otherwise w ∈ A(v, x) and z ∈ A(w, x), putting z ∈ Ω by
Lemma 2.3(ii), a contradiction. Hence w ∈ B(v, x). Now z ∈ C(w, x), putting
z ∈ Ω by Lemma 2.3(ii), a contradiction. Hence w = u and we have (5.7). Now
observe that by (5.7),

∣∣∣Γ1(z) ∩ (Γ1(v) \ Ω)
∣∣∣ =

∣∣∣C(z, v) \ {u}
∣∣∣

= c2 − 1.

Hence z is adjacent to exactly c2 − 1 vertices in Γ1(v) \ Ω.
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On the other hand, we show that each vertex in Γ1(v) \Ω is adjacent to at most
c2 − 1 vertices in Γ1(u) \Ω. Pick a vertex z ∈ Γ1(v) \Ω. Observe δ(x, z) = j + 1
by Lemma 2.3(iii). Observe δ(u, z) = 2. Now we have the desired property, since
z is adjacent to c2 vertices in Γ1(u) and v ∈ Ω is one of them.

Using above the two ways to count the edges between vertices in Γ1(u) \Ω and
vertices in Γ1(v) \ Ω, we have

∣∣∣Γ1(u) \ Ω
∣∣∣(c2 − 1) ≤

∣∣∣Γ1(v) \ Ω
∣∣∣(c2 − 1),

and (5.6) follows since c2 > 1. This proves the claim.

To show Ω is regular, fix any geodesic path x = x0, x1, · · · , xd, where xd ∈ C,
and set

tl :=
∣∣∣Ω ∩ Γ1(xl)

∣∣∣ (0 ≤ l ≤ d).

Observe
t0 = ad + cd (5.8)

by assumption (iib),
td = ad + cd (5.9)

by (5.4), and
tl−1 ≥ tl (1 ≤ l ≤ d) (5.10)

by the claim. It follows from (5.8)-(5.10) that

tl = ad + cd (0 ≤ l ≤ d).

By Definition 5.5, Ω is the union of geodesic paths of the above type, and we
conclude every vertex in Ω has valency ad + cd. Now Ω is weak-geodetically
closed by Theorem 4.6. It remains to show Ω has diameter d. This holds, since
Ω is distance-regular by Corollary 5.3 and diamx(Ω) = d by (iic). This proves
Proposition 5.6.

If we assume d = 2 and a2 6= 0 in Proposition 5.6, we get the following improve-
ment.

Proposition 5.7. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 2, and assume the intersection numbers c2 > 1, a2 6= 0. Then for any
subgraph Ω of Γ, the following (i)-(ii) are equivalent.

(i) Ω is weak-geodetically closed with diameter 2.

(ii) There exists a vertex x ∈ Ω that satisfies the following (iia)-(iic).

(iia) Ω is weak-geodetically closed with respect to x.
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(iib)
∣∣∣Ω ∩ Γ1(x)

∣∣∣ = a2 + c2.

(iic) diamx(Ω) = 2.

Proof. (i)−→(ii). (iia)-(iic) are immediate from Proposition 5.6 (iia)-(iic)
(with d = 2).

(ii)−→(i). First, we prove Ω is weak-geodetically closed. To do this, in view
of parts (ii), (iii) of Theorem 4.6, it suffices to show Ω is regular. We show
each vertex in Ω has valency c2 + a2. Observe by Lemma 2.6(i) that for all
y ∈ Ω ∩ Γ2(x), ∣∣∣Ω ∩ Γ1(y)

∣∣∣ = c2 + a2. (5.11)

Observe by Lemma 5.1 that for all z ∈ Ω ∩ Γ1(x),

∣∣∣Ω ∩ Γ1(z)
∣∣∣ ≤ c2 + a2. (5.12)

It remains to show equality holds in (5.12) for all z ∈ Ω∩Γ1(x). We suppose this
is not the case and get a contradiction. Pick z′ ∈ Ω∩Γ1(x) such that

∣∣∣Ω∩Γ1(z′)
∣∣∣

is minimal and assume ∣∣∣Ω ∩ Γ1(z′)
∣∣∣ < c2 + a2. (5.13)

Claim 1. There exists a vertex y ∈ Ω ∩ Γ2(x) that is not adjacent to z′.

Proof of Claim 1. If this fails, then z′ is adjacent to each vertex in Ω ∩ Γ2(x).
Hence by Lemma 2.3(ii) and the construction, for all z ∈ Ω ∩ Γ1(x),

∣∣∣Ω ∩B(z, x)
∣∣∣ =

∣∣∣Ω ∩ Γ1(z)
∣∣∣− c1 − a1

≥
∣∣∣Ω ∩ Γ1(z′)

∣∣∣− c1 − a1

=
∣∣∣Ω ∩ Γ2(x)

∣∣∣.

Then every vertex in Ω∩Γ1(x) is adjacent to every vertex in Ω∩Γ2(x). But this
is inconsistent with (iib) and a2 6= 0. Hence we have Claim 1.

We fix y, z′ for the rest of this proof. Observe, by (iib), Lemma 2.6(iv),

C(x, y) ∪A(x, y) = Ω ∩ Γ1(x).

Now set
γ :=

1
c2

∑

z∈C(x,y)

∣∣∣Ω ∩ Γ1(z)
∣∣∣, (5.14)
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and observe γ is the average valency (in Ω) of a vertex in C(x, y). Similarly, set

λ :=
1
a2

∑

z∈A(x,y)

∣∣∣Ω ∩ Γ1(z)
∣∣∣, (5.15)

and observe λ is the average valency (in Ω) of a vertex in A(x, y).

Claim 2. λ < a2 + c2.

Proof of Claim 2. This is immediate from (5.12), (5.13), (5.15), and the obser-
vation z′ ∈ A(x, y).

Now set
∆ := {w ∈ Ω|δ(x,w) = 2, δ(y, w) ≥ 2}.

Claim 3. ∣∣∣∆
∣∣∣c2 + a2c2 + c2 = c2(γ − a1 − 1) + a2(λ− a1 − 1). (5.16)

Proof of Claim 3. Let e denote the number of edges connecting vertices in
Ω ∩ Γ1(x) to vertices in Ω ∩ Γ2(x). We count e in two ways. On the one hand,

e =
∣∣∣Ω ∩ Γ2(x)

∣∣∣c2

=
∣∣∣∆ ∪A(y, x) ∪ {y}

∣∣∣c2

= (
∣∣∣∆

∣∣∣ + a2 + 1)c2. (5.17)

On the other hand,

e =
∣∣∣C(x, y)

∣∣∣(γ − a1 − 1) +
∣∣∣A(x, y)

∣∣∣(λ− a1 − 1)

= c2(γ − a1 − 1) + a2(λ− a1 − 1). (5.18)

Line (5.16) is immediate from (5.17), (5.18), and Claim 3 is proved.

Claim 4.∣∣∣∆
∣∣∣c2 + a2c2 + c2 ≥ c2(γ − a1 − 1) + a2(a2 + c2 − a1 − 1). (5.19)

Proof of Claim 4. Let f denote the number of edges connecting vertices in
Ω ∩ Γ1(y) to vertices in Ω ∩ Γ2(y). Again, we count f in two ways. On the one
hand,

f ≤
∣∣∣Ω ∩ Γ2(y)

∣∣∣c2

≤
∣∣∣∆ ∪A(x, y) ∪ {x}

∣∣∣c2

=
∣∣∣∆

∣∣∣c2 + a2c2 + c2, (5.20)
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and on the other hand, using (5.11),

f ≥
∣∣∣C(y, x)

∣∣∣(γ − a1 − 1) +
∣∣∣A(y, x)

∣∣∣(a2 + c2 − a1 − 1)

= c2(γ − a1 − 1) + a2(a2 + c2 − a1 − 1). (5.21)

(5.19) is immediate from (5.20), (5.21), and Claim 4 is proved.

Now subtracting (5.16) from (5.19), we find

0 ≥ a2(a2 + c2 − λ).

But this is impossible since a2 > 0 by assumption, and a2 + c2−λ > 0 by Claim
2. Hence equality holds in (5.12) for all z ∈ Ω∩Γ1(x). Now Ω is regular by (iib),
(5.11), so Ω is weak-geodetically closed by Theorem 4.6. It remains to show
Ω has diameter 2. This holds, since Ω is distance-regular by Corollary 5.3, and
since diamx(Ω) = 2 by (iic). This proves Proposition 5.7.

6. Distance-regular graphs with many weak-geodetically closed sub-
graphs.

In this section, we obtain our first major result, Theorem 6.4. To describe it,
we need a few definitions.

Definition 6.1. Let Γ = (X, R) be a graph with diameter D, and let i denote
an integer (0 ≤ i ≤ D). Then Γ is said to be i − bounded , if for all integers j
(0 ≤ j ≤ i), and for all x, y ∈ X such that δ(x, y) = j, x, y are contained in a
common weak-geodetically closed subgraph of diameter j.

Lemma 6.2. Let Γ = (X, R) be a graph with diameter D ≥ 1. Then the
following (i)-(iii) hold.

(i) Γ is 0-bounded.

(ii) For each integer i (1 ≤ i ≤ D), if Γ is i-bounded then Γ is (i−1)-bounded.

(iii) Suppose Γ is (D − 1)-bounded. Then Γ is D-bounded.

Proof. (i)-(iii) are clear from Definition 6.1.

In Theorem 6.4, we obtain a simple criterion for a distance-regular graph Γ to
be i-bounded. We will use the following notation.

Definition 6.3. Let Γ = (X,R) be a graph with diameter D ≥ 2. Pick an
integer i (2 ≤ i ≤ D). By a parallelogram of length i in Γ, we mean a 4-tuple
xyzw of vertices of X such that

δ(x, y) = δ(z, w) = 1, δ(x,w) = i,
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δ(x, z) = δ(y, z) = δ(y, w) = i− 1.

We now state the first main theorem of our paper.

Theorem 6.4. Let Γ = (X,R) be a distance-regular graph with diameter
D ≥ 2, and assume the intersection numbers c2 > 1, a1 6= 0. Pick an integer i
(1 ≤ i < D). Then the following (i)-(ii) are equivalent.

(i) Γ is i-bounded.

(ii) Γ contains no parallelogram of length ≤ i + 1.

The following Lemma proves Theorem 6.4(i)−→(ii).

Lemma 6.5. Let Γ = (X, R) be a distance-regular graph with diameter D ≥ 2.
Pick an integer i (1 ≤ i < D). Suppose Γ is i-bounded. Then Γ contains no
parallelogram of length ≤ i + 1.

Proof. Suppose Γ contains a parallelogram xyzw of some length j ≤ i+1. Then
δ(y, z) = j − 1 ≤ i. By Definition 6.1, there exists a weak-geodetically closed
subgraph Ω of Γ that has diameter j − 1 and contains y, z. Observe x ∈ A(y, z)
and w ∈ A(z, y), so x,w ∈ Ω by Lemma 2.3(ii). But δ(x,w) = j, contradicting
our assumption that Ω has diameter j − 1. This proves the lemma.

We prove Theorem 6.4 (ii)−→(i) by induction on i. We deal with the case i = 1
in Lemma 6.6, the case i = 2 in Proposition 6.7, prove some general results in
Proposition 6.8-Lemma 6.13, and then proceed to the case i ≥ 3 at the end of
this section.

Lemma 6.6. Let Γ = (X, R) be a distance-regular graph with diameter D ≥ 2.
Suppose that Γ contains no parallelogram of length 2. Then Γ is 1-bounded.

Proof. Pick x, y ∈ X with δ(x, y) = 1, and set Ω := A(x, y) ∪ {x, y}. Ω is a
clique of size a1 +2 since Γ contains no parallelograms of length 2; in particular,
Ω has diameter 1. Also Ω is weak-geodetically closed by Theorem 4.6, since Ω
is regular and equality holds in (4.12). This proves Lemma 6.6

Our proof of the case i = 2 in Theorem 6.4 (ii)−→(i) is different from our proof
for the case i ≥ 3, also, we can prove it under the assumption a2 6= 0 instead
of a1 6= 0(One can easily show if Γ contains no parallelogram of length 2 then
a1 6= 0 implies a2 6= 0). Hence we prove it separately.

Proposition 6.7. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 2. Assume that the intersection numbers c2 > 1, a2 6= 0. Suppose that Γ
contains no parallelogram of length ≤ 3. Then Γ is 2-bounded.

Proof. Pick any vertices x, y ∈ X with δ(x, y) = 2. Let C be the connected
component of Γ2(x) containing y. Set Ω := [x,C] as in Definition 5.5. We prove
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Ω is weak-geodetically closed of diameter 2. To do this, we show Ω satisfies
(iia)-(iic) of Proposition 5.7.

Claim 1. Ω is weak-geodetically closed with respect to x. In particular, (iia) of
Proposition 5.7 is satisfied.

Proof of Claim 1. Fix z ∈ Ω. By Lemma 2.3(ii) and the construction, it suffices
to show A(z, x) ⊆ Ω. This clearly holds if z = x or z ∈ Ω ∩ Γ2(x), so assume
z ∈ Ω ∩ Γ1(x). Pick w ∈ A(z, x). By construction, there exists z′ ∈ C such that
z ∈ C(z′, x). Observe that δ(w, z′) = 2; otherwise δ(w, z′) = 1 and xzwz′ is a
parallelogram of length 2, a contradiction. Pick w′ ∈ C(w, z′) \ {z}. Observe
that w′ ∈ C(z′, x)∪A(z′, x). Suppose w′ ∈ C(z′, x). Then δ(z, w′) = 2; otherwise
δ(z, w′) = 1 and z′zw′x is a parallelogram of length 2, a contradiction. But now
w′wxz is a parallelogram of length 2, a contradiction. Hence w′ ∈ A(z′, x),
forcing w′ ∈ C by construction. Now w ∈ Ω by construction. This proves Claim
1.

Claim 2. For all adjacent vertices z, z′ ∈ C, B(x, z) = B(x, z′). In particular,
B(x,w) = B(x,w′) for all w, w′ ∈ C.

Proof of Claim 2. Fix adjacent vertices z, z′ ∈ C. By symmetry, it suffices to
prove B(x, z) ⊆ B(x, z′). Suppose there exists a vertex p ∈ B(x, z)\B(x, z′). Of
course δ(x, p) = 1, δ(z, p) = 3 by construction, so δ(z′, p) = 2 by the triangular
inequality. Now the 4-tuple pxz′z is a parallelogram of length 3, a contradiction.
Hence B(x, z) = B(x, z′). Since C is connected, we have B(x,w) = B(x,w′) for
all w,w′ ∈ C. This proves Claim 2.

Claim 3.
∣∣∣Ω∩Γ1(x)

∣∣∣ = c2 +a2. In particular, (iib) of Proposition 5.7 is satisfied.

Proof of Claim 3. Pick z ∈ C. Then it suffices to show Ω ∩ Γ1(x) = C(x, z) ∪
A(x, z). By Claim 1, Ω is weak-geodetically closed with respect to x. Hence by
Lemma 2.6(ii), C(x, z) ∪A(x, z) ⊆ Ω ∩ Γ1(x). Since Γ1(x) = C(x, z) ∪A(x, z) ∪
B(x, z), it remains to show Ω∩B(x, z) = ∅. Suppose there exists w ∈ Ω∩B(x, z).
By construction, there exists w′ ∈ C such that w ∈ C(x, w′). But w ∈ B(x, z) =
B(x,w′) by Claim 2, a contradiction. Hence Ω ∩ B(x, z) = ∅, as desired. This
proves Claim 3.

Note that (iic) of Proposition 5.7 is satisfied by the construction. Hence Ω
is weak-geodetically closed with diameter 2 by Proposition 5.7. We now have
Proposition 6.7.

Proposition 6.8. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 2. Assume the intersection numbers c2 > 1, a2 6= 0. Suppose Γ contains no
parallelogram of length 2 and suppose there exists a weak-geodetically closed
subgraph Ω of diameter 2. Fix a vertex x ∈ Ω. Then Ω ∩ Γ2(x) is connected.
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Proof. Note that Ω is distance-regular by Corollary 5.3. Suppose that Ω∩Γ2(x)
is not connected. Pick u, v ∈ Ω ∩ Γ2(x) such that there is no path in Ω ∩ Γ2(x)
connecting u, v. Observe δ(u, v) = 2, since Ω has diameter 2. For each vertex
z ∈ C(u, v), we must have z ∈ C(u, x), otherwise δ(x, z) = 2 and u, z, v is a path
in Ω ∩ Γ2(x). Hence we have C(u, v) ⊆ C(u, x). Now C(u, v) = C(u, x), since
both sets have the same cardinality c2. Similarly, we have C(u, v) = C(v, x).
Pick w ∈ A(u, v). Observe δ(x,w) = 2, since w 6∈ C(u, v) = C(u, x). We do not
have a path in Ω ∩ Γ2(x) connecting w, v, otherwise we can extend this path to
a path in Ω ∩ Γ2(x) connecting u, v. By the same argument as above, we have
C(w, v) = C(w, x) = C(v, x). Now we have

C(u, v) = C(v, x)
= C(w, v).

Pick distinct vertices z, z′ ∈ C(u, v) = C(w, v). If δ(z, z′) = 1 then the 4-tuple
uzz′v is a parallelogram of length 2, a contradiction. If δ(z, z′) = 2 then the
4-tuple zuwz′ is a parallelogram of length 2, another contradiction. Hence we
prove Ω ∩ Γ2(x) is connected.

Note. Proposition 6.8 tells us that in the case d = 2 of Proposition 5.6(iic),
some C ⊆ Γd(x) is connected. We do not know if this is true in general situation
d > 2.

Lemma 6.9. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 3. Suppose the intersection numbers c2 > 1, a2 6= 0. Pick an integer i
(2 ≤ i < D), and suppose Γ contains no parallelogram of any length ≤ i + 1.
Let x be a vertex of Γ, and let Ω be a weak-geodetically closed subgraph of Γ
with diameter 2. Suppose there exists a vertex u ∈ Ω ∩ Γi−1(x), and suppose
Ω ∩ Γi+1(x) 6= ∅. Then for all t ∈ Ω, we have δ(x, t) = i− 1 + δ(u, t).

Proof. We prove this by induction on the integer i. The case i = 2 is immediate
from Lemma 2.4(i), so suppose i > 2. Note that

Ω ⊆ Γi−1(x) ∪ Γi(x) ∪ Γi+1(x),

since diam(Ω) = 2, Ω ∩ Γi−1(x) 6= ∅, and Ω ∩ Γi+1(x) 6= ∅. We need to prove
Ω ∩ Γ1(u) ⊆ Γi(x) and Ω ∩ Γ2(u) ⊆ Γi+1(x). It suffices to prove that Ω ∩
Γ2(u) ⊆ Γi+1(x), since Ω is distance-regular with diameter 2 and for each vertex
w ∈ Ω ∩ Γ1(u), w ∈ C(z, u) for some vertex z ∈ Ω ∩ Γ2(u). Suppose that
Ω ∩ Γ2(u) 6⊆ Γi+1(x). Since Ω ∩ Γ2(u) is connected by Proposition 6.8, and
since Ω ∩ Γ2(u) ∩ Γi+1(x) = Ω ∩ Γi+1(x) 6= ∅, there exist adjacent vertices
v, v′ ∈ Γ2(u) ∩ Ω such that v ∈ Γi+1(x) and v′ ∈ Γi(x). Pick x′ ∈ C(x, u). Then
δ(x′, u) = i− 2 and δ(x′, v) = i. By induction hypothesis, we have δ(x′, v′) = i.
Now the 4-tuple xx′v′v is a parallelogram of length i + 1, a contradiction. This
proves the lemma.
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Corollary 6.10. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 3. Assume the intersection numbers c2 > 1, a2 6= 0. Pick any integer i
(2 ≤ i < D), and suppose Γ contains no parallelogram of any length ≤ i+1. Let
x be a vertex of Γ, and let Ω be a weak-geodetically closed subgraph of diameter
2. If there exist 2 distinct vertices u, v in Ω such that δ(x, u) = δ(x, v) = i− 1,
then δ(x, t) ≤ i for all vertices t ∈ Ω.

Proof. Suppose this is false. Then Ω∩Γi+1(x) 6= ∅, so δ(x, v) = δ(x, u)+δ(u, v)
by Lemma 6.9. Since δ(x, v) = δ(x, u) = i − 1, we have δ(u, v) = 0 and hence
u = v, a contradiction. This proves the corollary.

Definition 6.11. Let Γ = (X,R) be a graph with diameter D ≥ 2. Pick an
integer i (2 ≤ i ≤ D). By a kite of length i, we mean a 4-tuple xyzw of vertices
of Γ such that {x, y, z} is a clique, and w is at distances

δ(w, x) = i, δ(w, y) = i− 1, δ(w, z) = i− 1.

Note. A kite of length 2 is the same thing as a parallelogram of length 2.

Lemma 6.12. Let Γ = (X, R) be a graph with diameter D ≥ 2. Fix an
integer i (2 ≤ i ≤ D). Suppose Γ contains no parallelogram of any length ≤ i.
Then Γ contains no kite of any length ≤ i.

Proof. Suppose Γ contains a kite of length ≤ i. Of all these kites, pick a kite
xyzw with minimal length j. Observe j 6= 2, otherwise xyzw is a parallelogram
of length 2. Now pick a ∈ C(w, z). Note that δ(a, z) = j − 2. Observe

δ(a, y) ≤ δ(a, z) + δ(z, y)
= j − 2 + 1
= j − 1,

and

δ(a, y) ≥ δ(y, w)− δ(a,w)
= j − 1− 1
= j − 2,

so δ(a, y) = j − 2 or δ(a, y) = j − 1. If δ(a, y) = j − 2, then the 4-tuple xyza is
a kite of length j − 1, contradicting our construction, so δ(a, y) = j − 1. Now
the 4-tuple wayx is a parallelogram of length j, a contradiction. This proves the
lemma.

Lemma 6.13. Let Γ = (X, R) be a distance-regular graph with diameter
D ≥ 3. Assume the intersection numbers c2 > 1 and a1 6= 0. Pick an integer i
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(2 ≤ i < D), and suppose Γ contains no parallelogram of any length ≤ i + 1.
Let x be a vertex of X, and let Ω be a weak-geodetically closed subgraph of
diameter 2. Set j :=max{δ(x,w) |w ∈ Ω}, and assume j ≤ i. Then Ω ∩ Γj(x) is
connected.

Proof. Note that Ω is distance-regular by Corollary 5.3. Since Γ contains no
parallelogram of length 2, for any vertex u ∈ Ω, Ω ∩ Γ1(u) is a disjoined union
of cliques of size a1 + 1. Let l denote the number of these cliques in Ω ∩ Γ1(u).
Suppose Ω∩Γj(x) is not connected. Then there exist two vertices t, s ∈ Ω∩Γj(x)
such that there is no path in Ω∩Γj(x) connecting t and s. Note that δ(t, s) = 2,
since diam(Ω) = 2. Consider the set

N := {t} ∪ (Γj(x) ∩ Ω ∩ Γ1(t)).

Claim 1.
∣∣∣N

∣∣∣ ≥ 1 + la1.

Proof of Claim 1. Γ contains no kite of length j by Lemma 6.12, , so
∣∣∣K ∩

Γj−1(x)
∣∣∣ ≤ 1 for all maximal cliques K ⊆ Ω∩ Γ1(t). Hence

∣∣∣K ∩N
∣∣∣ ≥ a1 for all

maximal cliques K ⊆ Ω ∩ Γ1(t). Since there are l such cliques,
∣∣∣N

∣∣∣ ≥
∣∣∣{x}

∣∣∣ + la1

= 1 + la1,

as desired.

Claim 2. δ(z, s) = 2 for any z ∈ N.

Proof of Claim 2. δ(z, s) ≤ 2, since diam(Ω) = 2. z 6= s by construction. Also
δ(z, s) 6= 1, otherwise t, z, s is a path in Ω ∩ Γj(x), a contradiction. Hence
δ(z, s) = 2.

Now consider the set
M :=

⋃

z∈N

C(s, z).

Claim 3.
∣∣∣M

∣∣∣ ≤ l.

Proof of Claim 3. Note that M ⊆ Ω∩Γ1(s) by construction and Lemma 2.3(ii),
so there is no vertex in M with distance j + 1 to x. If the distance from x to
a vertex in M is j, then we find a path in Ω ∩ Γj(x) connecting t and s, a
contradiction. Thus

M ⊆ Ω ∩ Γ1(s) ∩ Γj−1(x).

Since δ(x, s) = j and since Γ contains no kite of length j by Lemma 6.12, each
maximal clique in Ω ∩ Γ1(s) contains at most one vertex in M. Hence |M | ≤ l.
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We count the number e of edges between vertices in N and vertices in M in two
ways. On the one hand, by Claim 1, we have

e =
∣∣∣N

∣∣∣c2

≥ (1 + la1)c2. (6.1)

On the other hand, a vertex in M ∩Γ1(t) is a adjacent to at most a1 +1 vertices
in N, and a vertex in M ∩Γ2(t) is adjacent to at most c2 vertices in N. Observe
that a1c2 ≥max{a1 + 1, c2}, since c2 > 1 and a1 6= 0. Hence each vertex in M is
adjacent to at most a1c2 vertices in N. Now by Claim 3,

e ≤
∣∣∣M

∣∣∣a1c2

≤ la1c2,

a contradiction to (6.1). This proves the lemma.

Note. Lemma 6.13 is the only place we need the assumption a1 6= 0 instead
of the assumption a2 6= 0.

Proof of Theorem 6.4 (ii)−→(i). This is by induction on the integer i.
The cases i = 1 and i = 2 hold by Lemma 6.6 and Proposition 6.7, so assume
i ≥ 3. Fix vertices x, y ∈ X with δ(x, y) = i. Let C be the connected component
in Γi(x) containing y. Let Ω := [x,C] be as in Definition 5.5. We prove Ω is
weak-geodetically closed of diameter i. To do this, we show Ω satisfies (iia)-(iid)
of Proposition 5.6.

Claim 1. Let z, z′, w be vertices in X, with δ(x,w) ≤ i, z ∈ C(w, x), z′ ∈ A(z, x).
Then δ(w, z′) = 2. Moreover, there exists a vertex w′ ∈ C(z′, w) ∩A(w, x).

Proof of Claim 1. By Lemma 6.12, Γ contains no kite of length ≤ i. Now
δ(w, z′) = 2, otherwise wzz′x is a kite of length δ(x,w). Since c2 > 1, there
exists w′ ∈ C(z′, w) \ {z}. Note that either w′ ∈ A(z′, x) or w′ ∈ A(w, x).
Suppose w′ ∈ A(z′, x). By the induction hypothesis, x, z′ are contained in a
common weak-geodetically closed subgraph Ω′ of diameter δ(x, z′). Observe that
by Lemma 2.3(ii), w′, z ∈ Ω′ and by Lemma 2.4(ii), w ∈ Ω′. But

δ(x,w) = δ(x, z) + 1
= δ(x, z′) + 1
> δ(x, z′),

a contradiction. Hence w′ ∈ A(w, x).

Claim 2. Ω is weak-geodetically closed with respect to x. In particular, (iia) of
Proposition 5.6 is satisfied.
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Proof of Claim 2. By Lemma 2.3(ii), it suffices to check C(z, x) ∪ A(z, x) ⊆ Ω
for all z ∈ Ω. If this is not the case, then there is a vertex z ∈ Ω such that
C(z, x)∪A(z, x) 6⊆ Ω. Of all such vertices z, we pick one with δ(x, z) maximum.
Observe δ(x, z) < i by construction, so there is a vertex w ∈ Ω such that
z ∈ C(w, x). Pick z′ ∈ C(z, x)∪A(z, x)\Ω. Note that C(z, x) ⊆ Ω by Definition
5.5, so z′ ∈ A(z, x). By Claim 1, there is a vertex w′ ∈ C(z′, w) ∩ A(w, x). By
the choice of z and since δ(x,w) > δ(x, z), we have w′ ∈ A(w, x) ⊆ Ω. But now
z′ ∈ C(w′, x) ⊆ Ω, a contradiction.

Claim 3. For all adjacent vertices z, z′ ∈ C, B(x, z) = B(x, z′). In particular,
B(x,w) = B(x,w′) for all w, w′ ∈ C.

Proof of Claim 3. Fix adjacent vertices z, z′ ∈ C ⊆ Γi(x). By symmetry, it
suffices to prove B(x, z) ⊆ B(x, z′). Suppose there exists a vertex p ∈ B(x, z) \
B(x, z′). Of course δ(x, p) = 1, δ(z, p) = i + 1 by construction, so δ(z′, p) = i
by the triangular inequality. Now the 4-tuple pxz′z is a parallelogram of length
i + 1, a contradiction. Hence B(x, z) = B(x, z′). Since C is connected, we have
B(x,w) = B(x,w′) for all w, w′ ∈ C. This proves Claim 3.

Claim 4.
∣∣∣Ω∩Γ1(x)

∣∣∣ = ci +ai. In particular, (iib) of Proposition 5.6 is satisfied.

Proof of Claim 4. Pick z ∈ C. Then it suffices to show Ω ∩ Γ1(x) = C(x, z) ∪
A(x, z). By Claim 2, Ω is weak-geodetically closed with respect to x. Hence by
Lemma 2.6(ii), C(x, z) ∪A(x, z) ⊆ Ω ∩ Γ1(x). Since Γ1(x) = C(x, z) ∪A(x, z) ∪
B(x, z), it remains to show Ω∩B(x, z) = ∅. Suppose there exists w ∈ Ω∩B(x, z).
By construction, there exists w′ ∈ C such that w ∈ C(x, w′). But w ∈ B(x, z) =
B(x,w′) by Claim 3, a contradiction. Hence Ω ∩ B(x, z) = ∅, as desired. This
proves Claim 4.

Claim 5. (iid) of Proposition 5.6 is satisfied.

Proof of Claim 5. Fix v ∈ Ω and z ∈ X such that z is adjacent to two distinct
vertices u,w ∈ C(v, x). We need to prove z ∈ Ω. Set j := δ(x, v). Note j ≤ i and
δ(x, u) = δ(x,w) = j−1. Observe that δ(z, v) ≤ 2 and u,w ∈ Ω by construction.
We can assume z ∈ B(u, x); otherwise z ∈ A(u, x) ∪ C(u, x) ⊆ Ω by Claim 2,
Lemma 2.3(ii), and we are done. Now δ(x, z) = j. We also can assume δ(z, v) =
2, otherwise v = z ∈ Ω or z ∈ A(v, x) ⊆ Ω by Claim 2, Lemma 2.3(ii), and we are
done. By the induction hypothesis, Γ is (i−1)-bounded. Especially, since i ≥ 3,
Γ is 2-bounded. Let Ω′ be the weak-geodetically closed subgraph of Γ that has
diameter 2 and contains z, v. Observe that u, w ∈ C(z, v) ⊆ Ω′, and a2 6= 0 by
Proposition 3.2(ii). Hence by Corollary 6.10, we have max{δ(x, s) |s ∈ Ω′} = j.
Now Ω′ ∩ Γj(x) is connected by Lemma 6.13. In particular, there is a path in
Γj(x) connecting v, z. Now by Claim 2 and Lemma 2.3(ii), we see each vertex
in this path is in Ω, in particular, z ∈ Ω. This proves Claim 5.
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Of course, (iic) of Proposition 5.6 is satisfied. Hence Ω is weak-geodetically
closed with diameter i by Proposition 5.6. We complete the proof of Theorem
6.4.

Problem. Can one prove Theorem 6.4(ii)−→(i) under the assumption a2 6= 0
instead of the assumption a1 6= 0?

7. Distance-regular graphs with the Q-polynomial property.

In this section, we consider distance-regular graphs with the Q-polynomial prop-
erty. Theorem 7.2 is our main result. First, we recall the definition of the
Q-polynomial property. Let Γ = (X,R) denote a distance-regular graph with
diameter D ≥ 3 and intersection numbers ph

ij (0 ≤ h, i, j ≤ D). For each integer
i (0 ≤ i ≤ D), the ith distance matrix Ai of Γ has rows and columns indexed
by X, and x, y entry

(Ai)xy =
{

1, if δ(x, y) = i,
0, if δ(x, y) 6= i

(x, y ∈ X).

Then

A0 = I, (7.1)
At

i = Ai (0 ≤ i ≤ D), (7.2)

and

AiAj =
D∑

h=0

ph
ijAh (0 ≤ i, j ≤ D) (7.3)

[2, p127]. By (7.1)-(7.3), the matrices A0, A1, · · · , AD form a basis for a com-
mutative semi-simple real algebra M , known as the Bose-Mesner algebra. By
[1,p59,p64], M has a second basis E0, E1, · · · , ED such that

E0 =| X |−1 J (J = all 1′s matrix), (7.4)
EiEj = δijEi (0 ≤ i, j ≤ D), (7.5)
E0 + E1 + · · ·+ ED = I, (7.6)
Et

i = Ei (0 ≤ i ≤ D). (7.7)

The E0, E1, · · · , ED are known as the primitive idempotents of Γ, and E0 is
known as the trivial idempotent.

Let ◦ denote entry-wise multiplication of matrices. Then

Ai ◦Aj = δijAi (0 ≤ i, j ≤ D),
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so M is closed under ◦. Thus there exists real numbers qh
ij (0 ≤ i, j, h ≤ D)

such that

Ei ◦ Ej =| X |−1
D∑

h=0

qh
ijEh (0 ≤ i, j ≤ D).

Γ is said to be Q-polynomial (with respect to the given ordering E0, E1, · · · , ED

of the primitive idempotents) if for all integers h, i, j (0 ≤ h, i, j ≤ D), qh
ij = 0

(resp. qh
ij 6= 0) whenever one of h, i, j is greater than (resp. equal to) the sum of

the other two. Let E denote any nontrivial primitive idempotent of Γ. Then Γ
is said to be Q-polynomial with respect to E whenever there exists an ordering
E0, E1 = E, E2, · · · , ED of the primitive idempotents of Γ, with respect to which
Γ is Q-polynomial.

The following is a special kind of Q-polynomial distance-regular graph[2, p193].

Definition 7.1. A distance-regular graph Γ is said to have classical parameters
(D, b, α, β) whenever the diameter of Γ is D, and the intersection numbers of
Γ satisfy

ci =
[
i

1

]
(1 + α

[
i− 1

1

]
) (0 ≤ i ≤ D), (7.8)

bi =
([

D

1

]
−

[
i

1

])(
β − α

[
i

1

])
(0 ≤ i ≤ D), (7.9)

where [
j

1

]
:= 1 + b + b2 + · · ·+ bj−1. (7.10)

Theorem 7.2. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 3 and intersection numbers c2 > 1, a1 6= 0. Assume Γ is Q-polynomial.
Then the following (i)-(viii) are equivalent.

(i) Γ contains no parallelogram of any length.

(ii) Γ contains no parallelogram of length 2 or 3.

(iii) Γ contains no kite of any length.

(iv) Γ contains no kite of length 2 or 3.

(v) Γ has classical parameters (D, b, α, β), and either b < −1 or Γ is a dual
polar graph or a Hamming graph.

(vi) Γ has classical parameters and contains no kite of length 2.

(vii) Γ is D-bounded.

(viii) Γ is 2-bounded.
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(See [1,III.2] and [1, III.6] for definition of Hamming graphs and dual polar
graphs).

We now mention a few items of notation, then prove a lemma, and then proceed
to the proof of Theorem 7.2.

Let Γ = (X, R) denote a distance-regular graph with diameter D ≥ 3. Suppose
Γ is Q-polynomial with respect to E. Then the dual eigenvalues θ∗i (0 ≤ i ≤ D)
are defined by

E =| X |−1
D∑

i=0

θ∗i Ai. (7.11)

By [6, p384], the dual eigenvalues θ∗i (0 ≤ i ≤ D) are mutually distinct real
numbers.

Set V = IR|X| (column vectors), and view the coordinates of V as being indexed
by X. For each vertex x ∈ X, set

x̂ = (0, 0, · · · , 1, 0, · · · , 0)t, (7.12)

where 1 is in coordinate x. Also, let 〈 , 〉 denote the dot product

〈u, v〉 = utv (u, v ∈ V ). (7.13)

Then referring to the primitive idempotent E in (7.11), we compute from (7.7),
(7.11)-(7.13) that for all x, y ∈ X,

〈Ex̂, ŷ〉 =| X |−1 θ∗i , (7.14)

where i = δ(x, y).

Lemma 7.3. Let Γ = (X, R) denote a distance-regular graph with diameter
D ≥ 3, and pick any integer i (2 ≤ i ≤ D). Pick vertices x, y ∈ X such that
δ(x, y) = i, and pick z ∈ C(x, y). Set

ei :=
∣∣∣{u|u ∈ X, xzuy is a kite of length i}

∣∣∣,

and
fi :=

∣∣∣{u|u ∈ X, xzuy is a parallelogram of length i}
∣∣∣.

(i) Suppose Γ is Q-polynomial with respect to the primitive idempotent

E1 =| X |−1
D∑

h=0

θ∗hAh.
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Then
fi = αiei + βi, (7.15)

where

αi =
θ∗2 − θ∗1

θ∗i − θ∗i−1

, (7.16)

and

βi =
1

θ∗i − θ∗i−1

(ci(
(θ∗1 − θ∗i−1)

2

θ∗0 − θ∗i
+ θ∗i − θ∗2) + ci−1(θ∗i−2 − θ∗i ) + θ∗2 − θ∗0). (7.17)

(ii) Suppose Γ has classical parameters (D, b, α, β). Then (7.15) holds, where

αi = bi−2, (7.18)

βi = 0. (7.19)

Proof. (i) Define
x−y :=

∑
u∈X

δ(x,u)=1
δ(u,y)=i−1

û,

and
y−x :=

∑
u∈X

δ(y,u)=1
δ(u,x)=i−1

û.

By Terwilliger[7, Theorem 3.3(vii)], we have

E1(x−y − y−x ) = ci

θ∗1 − θ∗i−1

θ∗0 − θ∗i
(E1x̂− E1ŷ), (7.20)

so

〈E1(x−y − y−x ), ẑ〉 = ci

θ∗1 − θ∗i−1

θ∗0 − θ∗i
〈E1x̂− E1ŷ, ẑ〉. (7.21)

Evaluating the inner products in (7.21) using (7.14), we obtain

| X |−1 (θ∗0 + eiθ
∗
1 + (ci − 1− ei)θ∗2 − ci−1θ

∗
i−2 − fiθ

∗
i−1 − (ci − ci−1 − fi)θ∗i )

= | X |−1 ci

(θ∗1 − θ∗i−1)
2

θ∗0 − θ∗i
. (7.22)

Solving (7.22) for fi we obtain (7.15).
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(ii) By [2, p250], Γ is Q-polynomial with respect to a primitive idempotent

E =| X |−1
D∑

h=0

θ∗hAh,

where

θ∗j − θ∗0 = (θ∗1 − θ∗0)
[
j

1

]
b1−j (0 ≤ j ≤ D). (7.23)

In particular (7.15)-(7.17) hold by (i). Lines (7.18), (7.19) are obtained by
eliminating θ∗2 , θ∗i−1, θ∗i in (7.16), (7.17) using (7.23), and simplifying using
(7.8). This proves Lemma 7.3.

Proof of Theorem 7.2. The equivalence of (iii), (iv), (v) is from [9, Theorem
2.6].

(iv), (v)→(vi). This is clear.

(vi)→(iii). This immediate from Terwilliger[8, Theorem 2.11(ii)].

(iii), (vi)→(i). This is immediate from Lemma 7.3(ii).

(i)→(ii). This is clear.

(ii)→(iv). This is from Lemma 6.12.

Now we have the equivalence of (i), (ii), (iii), (iv), (v), (vi).

(i)→(vii). Γ is (D− 1)-bounded by Theorem 6.4, so Γ is D-bounded by Lemma
6.2(iii).

(vii)→(viii). This is clear by Lemma 6.2(ii).

(viii)→(ii). This is clear by Lemma 6.5.
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