Weak-geodetically Closed Subgraphs in Distance-Regular Graphs

CHIH-WEN WENGH

Abstract. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2 and distance function §. A (vertex) subgraph  C X is said to be weak-
geodetically closed whenever for all x,y € 2 and all z € X,

dz,z) +0(z,y) <d(z,y)+1 — 2z€Q.

We show that if the intersection number co > 1 then any weak-geodetically
closed subgraph of X is distance-regular. T' is said to be i-bounded, whenever
for all x,y € X at distance é(x,y) < i, x,y are contained in a common weak-
geodetically closed subgraph of I" of diameter d(x, y). By a parallelogram of length
i, we mean a 4-tuple xyzw of vertices in X such that d(z,y) = d(z,w) = 1,
d(z,w) =1, and 0(z, 2) = 0(y,2) = d(y,w) =i — 1. We prove the following two
theorems.

Theorem 1. Let I' denote a distance-regular graph with diameter D > 2,

and assume the intersection numbers co > 1, a; # 0. Then for each integer
i (1 <1< D), the following (i)-(ii) are equivalent.
(i) T is i-bounded.

(ii) I’ contains no parallelogram of length < i+ 1.

Restricting attention to the ()-polynomial case, we get the following stronger
result.

Theorem 2. Let I' denote a distance-regular graph with diameter D > 3, and
assume the intersection numbers co > 1, a3 # 0. Suppose I' is Q-polynomial.
Then the following (i)-(iii) are equivalent.

(i) T contains no parallelogram of length 2 or 3.
(ii) T is D-bounded.
(iii) T has classical parameters (D, b, «, 3), and either b < —1, or else I is a dual
polar graph or a Hamming graph.

1. Introduction.

Let I' = (X, R) denote a distance-regular graph with diameter D > 2, and let §
denote the distance function of I'.

Recall a (vertex) subgraph 2 C X is geodetically closed whenever for all vertices
x,y € 2, and for all vertices z € X,

d(z,2) +0(z,y) =d(z,y) — z € Q.
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Distance-regular graphs containing many geodetically closed subgraphs have
been studied by several authors. Shult and Yanushka[4], Brouwer and Wilbrink|3]
showed that if ' is a near polygon with co > 1, a3 # 0, then there exist sub
2j-gons in I for each integer j (2 < j < D). Also, Ivanov and Shpectorov|[5]
showed that if I" is a Hermitian forms graph, then I' has geodetically closed
subgraphs of any diameter j (1 < j < D).

In the present paper, we study the following special kind of geodetically closed
subgraphs. We say a subgraph €2 C X is weak-geodetically closed whenever for
all vertices z,y € 2, and for all z € X,

§(z,2) +d(z,y) <d(z,y)+1 — 2 € Q.

We have two main results. First, given an integer i (1 < i < D), we give
necessary and sufficient conditions for the existence of a weak-geodetically closed
subgraph of diameter d(x, y) containing any two given vertices x, y with §(z,y) <
1. Theorem 6.4 is our main result in this area.

We then tighten Theorem 6.4 in the case I' is )-polynomial, and obtain our
second main result, Theorem 7.2.

The paper is organized as follows. In sections 2-5, we set up the necessary tools
for the proof of Theorem 6.4. To do this, we study the structure theory of a
weak-geodetically closed subgraph € of T'.

More precisely, in section 2, we define the notion of a subgraph being weak-
geodetically closed with respect to a vertex. We find necessary and sufficient
conditions for a subgraph to be weak-geodetically closed with respect to some
vertex.

In section 3, we get some inequalities involving the intersection numbers of I,
when we assume the existence of certain weak-geodetically closed subgraphs.
Proposition 3.2 is the main result in this section.

In section 4, we consider a regular connected subgraph €2 of I'. First, we find a
lower bound for ‘Q‘ and necessary and sufficient conditions for this bound to be

met(Lemma 4.4). These conditions involve the notion of weak-geodetic closure.
In our main result of this section, Theorem 4.6, we show (2 is weak-geodetically
closed if and only if €2 is weak-geodetically closed with respect to at least one
vertex.

In section 5, we restrict to the case co > 1, and prove a weak-geodetically closed
subgraph ) of I' is distance-regular.

We prove the two main theorems in section 6 and section 7.

For the rest of this section, we give some definitions.
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Let I' = (X, R) be a finite undirected graph without loops or multiple edges,
with vertex set X and edge set R. We say vertices z,y are adjacent if xy € R.
Pick any integer ¢ (0 <14 < D) and any vertices x,y € X. By a path of length i
from x to y, we mean a sequence x = xg, X1, -, x; =y of vertices from x such
that x;, 2,41 are adjacent for all j (0 < j <i—1). Being joined by a path is an
equivalence relation. Its equivalence classes are called the connected components
of I'. T is said to be connected whenever I' has a unique connected component.
From now on, assume I' is connected. The distance §(x,y) between two vertices
x,y € X is the length of a shortest (geodesic) path from z to y. By the diameter
of I', we mean the scalar

D := max{d(z,y)|r,y € X}.

Sometimes we write diam(I") to denote the diameter of I'. By a clique in T', we
mean a set of mutually adjacent vertices in X.

Let I' = (X, R) be a graph with diameter D. By a subgraph of T', we mean a graph
(Q,2), where 2 is a nonempty subset of X and E = { zy |z,y € Q, zy € R}.
We refer to (€2, Z) as the subgraph induced on € and by abuse of notation, we
refer to this subgraph as (). For any x € X and any integer i, set

Fz(x) = {y|y € X,(S(.Q?,y) = Z}?
and for y € I';(z), set

B(z,y) :=T'1(x) NTiya1(y),
Az, y) = Ti(x) NTi(y),
Clx,y) :=T1(x) NT;_1(y).

Note that for all z,y € T and for all z € C(y, z), we have

C(z, 2) € Cl,y),
B(z,z) O B(x,y). (1.5)

The valency k(x) of a vertex x € X is the cardinality of I'y(z). The graph I is
called regular (with valency k) if each vertex in X has valency k. I is said to be
distance-reqular whenever for all integers i (0 < i < D), and for all z,y € X
with 0(x,y) = i, the numbers

¢i = |C(z,y)|, (1.6)
a; = |A(z,y)|, (1.7)
b; := |B(x,y) (1.8)




are independent of x,y. The constants ¢;,a;,b; (0 < i < D) are known as the
intersection numbers of I'. The sequence

{b07 b17“'7bD—l; C1, C2," ", CD}

is called the intersection array of I'. Note that the valency k = by, co =0, ¢c1 =1,
bp = 0, and
k:ci+a¢+bi (OS%SD) (19)

[2, 126].

2. Weak-geodetically closed subgraphs with respect to a vertex.

Let I' = (X, R) denote a graph, and let {2 denote a subgraph of I". In this section,
we define what it means for 2 to be weak-geodetically closed with respect to a
verter. We find some necessary and sufficient conditions for €2 to have this

property.

We begin with a definition.
Definition 2.1. Let I' = (X, R) denote a graph with distance function ¢. Fix
a subgraph € of I'; and pick any vertex x € 2. Q is said to be geodetically closed
with respect to x (resp. weak-geodetically closed with respect to x), whenever for
all y € Q and for all z € X,

0(x,2) +0(z,y) = d(x,y) — 2 €Q
(resp. d(z,2) +6(z,y) <d(z,y)+1— 2z € Q).

Lemma 2.2. Let I' = (X, R) denote a graph with distance function §. Fix a
subgraph Q of T', and pick any vertex x € €. Then with the notation of (1.3),
the following (i)-(iii) are equivalent.

(i) € is geodetically closed with respect to z.
(ii) C(y,z) CQforally € Q.
(iii) For all y € Q, and for all w € I'1(y) \ £,

d(x,w) > (x,y).

Proof. This is immediate from Definition 2.1.

Lemma 2.3. Let I' = (X, R) denote a graph with distance function ¢. Fix a
subgraph Q of I', and pick any vertex z € . Then with the notation of (1.2),
(1.3), the following (i)-(iii) are equivalent.
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(i) € is weak-geodetically closed with respect to x.
(ii)) C(y,z) C Qand A(y,z) C Q for all y € Q.
(iii) For all y € Q, and for all w € I';(y) \ €2,

d(x,w) =d(x,y) + 1. (2.1)

Proof. (i)——(ii). Let the vertex y € Q be given, and pick any z € A(y,z) U
C(y,x). Then §(x, z) < d(x,y), and of course d(z,y) =1, so

6(w,2) +6(z,y) <d6(x,y) + 1.
Hence z € Q) by Definition 2.1.
(ii)—(iii). Let y,w be given. Observe

weTi(y)\ Q2
€ B(y,z)
by (ii), and (2.1) follows from (1.1).
(iii))—(i). Suppose Q is not weak-geodetically closed with respect to z. Then
by Definition 2.1, there exists a vertex y € {2 and a vertex z & () such that
6(x,2) +0(z,y) < 6(x,y) + 1. (2.2)

Of all such pairs y, z, pick one with ¢
construction, and 6(z,y) # 1 by (2.1)-(
Observe

(z,y) minimal. Note that z # y by the
2.2), so there exists a vertex 2z’ € C(z,y).

82 y) =0(z,y) —1 (2.3)

by the construction, and
§(z,2") <d(x,2) +1 (2.4)

by the triangular inequality. Adding (2.2)-(2.4), we obtain
0(x,2") +0(2,y) < 0(z,y) + 1. (2.5)
Observe 2/ € Q by (2.3), (2.5) and the construction. Now by (iii) (with y :=
2 w = z), we find
§(z,2) =6(x,2') + 1. (2.6)
By the triangular inequality,

§(z,y) <6(z,2") + (2, y). (2.7)
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Adding (2.2), (2.3), and (2.7), we obtain
§(z,2) <d(x,2),
contradicting (2.6). We conclude {2 is weak-geodetically closed with respect to

X.

Lemma 2.4. Let I' = (X, R) denote a graph with distance function J. Fix
a subgraph ) of I', and pick a vertex x € 2. Suppose 2 is weak-geodetically

closed with respect to z, and suppose there exists a vertex z € I'y(x) \ €. Then
the following (i)-(ii) hold.

(i) For any vertex y € (,
6(z,y) = d(z,y) + 1.
(ii) « is the unique vertex in Q adjacent to z.

Proof. (i). By Definition 2.1 and since z ¢ €, we have §(x,z) + 0(z,y) >
d(x,y) + 1. Of course §(z,2) = 1, so §(z,y) > d(x,y). Also by the triangular
inequality,

6(z,y) < 0(z,2) +6(x,y)
=1+4(z,y).
Hence §(z,y) = 6(z,y) + 1.
(ii). This is immediate from (i).

Definition 2.5. Let I' = (X, R) denote a graph with distance function ¢, and
let €2 be any subgraph of I". For all vertices x € €1, define

diam, (Q) := max{d(z, y)|y € Q}.

Lemma 2.6. Let I' = (X, R) denote a distance-regular graph. Fix a subgraph
Q of I', and pick a vertex z € (). Suppose () is weak-geodetically closed with
respect to x. Set d :=diam, (€2). Then the following (i)-(iv) hold.

(i) For ally € QNTq4(z),
)Qﬂfl(y)‘ =cq+ aq.

(ii) For all y € QN Ty4(z),
Clx,y) UA(xz,y) CQNT(x). (2.8)
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(i)
‘QﬁFl(x)’ > cq+ ag.

(iv) Equality holds in (iii) if and only if equality holds in (2.8) for at least one
y € QN Ty(x), if and only if equality holds in (2.8) for all y € QN Ty(x).

Proof. (i). Note that I'1(y) = C(y,z) U A(y,z) U B(y,x). Observe that
QN B(y,x) =0 since §(z,y) =diam, (). Now QNT1(y) = C(y,z) U A(y, x) by
Lemma 2.3(ii), and (i) follows by (1.6), (1.7).

(ii). Pick z € C(x,y) U A(z,y). Then certainly z € I'y(x) and
0(z,2) +0(z,y) <o(x,y) +1,

so z € Q) by Definition 2.1.

(iii), (iv). These are immediate from (ii).

3. Weak-geodetically closed subgraphs.

Let I' = (X, R) be any graph. In this section, we study a subgraph Q that is
weak-geodetically closed with respect to all vertices in €2. We prove that when
I' is distance-regular, the existence of () forces certain inequalities involving the
intersection numbers of T'.

Definition 3.1. Let I' = (X, R) be a graph. A subgraph 2 of T is said to be
geodetically closed (resp. weak-geodetically closed) , whenever ) is geodetically
closed (resp. weak-geodetically closed) with respect to all = € Q.

Note. A weak-geodetically closed subgraph 2 of I' is geodetically closed in T'.
In particular, €2 is connected, and the distances as measured in €2 are the same
as distances as measured in I'.

Proposition 3.2. Let T' = (X, R) denote a distance-regular graph with
diameter D > 2. Fix an integer d (1 < d < D), and suppose there exists a weak-
geodetically closed subgraph 2 of I' that has diameter d. Then the intersection
numbers b;, a;, ¢; of I' satisfy the following inequalities.

CZ'ZCi_l(CQ—l)-I-l (1§’i§d+1).
a¢2ai_1(02—1)+a1 (1§i§d+1).

bi < (bi—1 —k)(ca — 1)+ by (1<i<d+1).
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(iv) Suppose ¢z > 1. Then

bi < bi—1 (1<i<d+1).

Proof. Let the integer ¢ be given. Our result is clear if ¢ = 1, since ¢; = 1,
co =0, ap =0, bg = k. Hence we may assume ¢ > 2. First we claim there exist
vertices z,y € Q and z € X \ {2 such that

Sz, y)=1—1, §(y,z) =1, o(x,2z)=1. (3.1)

Indeed, since diam(f2) = d, we can pick vertices z’,y € Q with §(2’,y) = d.
Observe B(y,z’) # () since d < D, so pick a vertex z € B(y,z’). Note that
z & (), since

6z, 2)=d+1
> diam(€2).

Now pick a vertex x in a geodesic path from 2’ to y with §(z,y) = i — 1. Clearly,
x € Q, and z,y, z satisfy (3.1). This proves our claim. Recall by Lemma 2.4(ii),

I'i(z)NnQ={y}. (3.2)

Now we consider the four parts of the proposition.

(i). Observe each vertex in C(y, x) is adjacent to co — 1 vertices in C(z,x) \ {y}.
Next observe each vertex in C(z,z) \ {y} is adjacent to at most 1 vertex in
C(y,z). To see this, pick any w € C(z,z) \ {y}. Then w ¢ Q by (3.2). Note
that C(y,z) C Q by Lemma 2.3(ii), so w is adjacent to at most one vertex in
C(y,x) by Lemma 2.4(ii). Now by counting the edges between C(z,z)\ {y} and
C(y,x), we find

¢~ 1=|C(2) \ {v}]

> |C(y,)|(e2 = 1)
= Ci—l(c2 - 1)7
as desired.
(ii). We first prove
A(zy) € Az, 2), (3.3)

and then count the edges between A(z,x) \ A(z,y) and A(y, x) to establish the
inequality.



Note that

A(y,z) CQ (3.4)
by Lemma 2.3(ii),
Alz,y) NQ =0 (3.5)
by (3.2), and
A(z,y) C A(y,z) U A(z, x) (3.6)

by construction. Now (3.3) follows from (3.4)-(3.6). We now count the edges
between A(z,z) \ A(z,y) and A(y, x).

Claim 1. Each vertex in A(z,z) \ A(z,y) is adjacent to at most one vertex in
Aly, z).

Proof of Claim 1. Observe that by (3.2),
A(z,z) N Q =1,

so Claim 1 follows from (3.4) and Lemma 2.4(ii).
Claim 2. Each vertex in A(y, x) is adjacent to co — 1 vertices in A(z,z)\ A(z,y).
Proof of Claim 2. Pick w € A(y,x). Observe

w € ) (3.7)

by (3.4), so w is not adjacent to z by (3.2); in particular §(w, z) = 2. It now
suffices to show

I'i(w) N (A(z,2) \ A(z,9)) = C(z,w) \ {y}, (3-8)

since |C(z,w) \ {y}| = ¢2 — 1. The inclusion

Iy (w) N (A(z,2) \ A(z,y)) € Cz,w) \ {y}
is clear by construction. To prove
C(z,w) \ {y} CT1(w) N (A(z,2) \ A(z,9)),
pick u € C'(z,w) \ {y}. Of course u € T'y (w) and u € 'y (2), so
ugQ (3.9)

by (3.2), and
u€ A(z,z) U A(w, x) (3.10)
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by construction. Note that
A(w,z) € Q (3.11)

by (3.7) and Lemma 2.3(ii). Hence u € A(z,z) by (3.9)-(3.11). Also u & A(z,y)
by (3.7) and (3.9), otherwise u is adjacent to y,w € €, contradicting Lemma
2.4(ii). Hence we have (3.8). This proves Claim 2.

Now using Claim 1, Claim 2, we count the edges between A(z,z) \ A(z,y) and
A(y, x), obtaining
ai— a1 = |A(z,2) \ A=)

> |A@w,2)| (e - 1)

= a;—1(c2 — 1),
as desired.
(iii). By (i), (ii) and (1.9),
bz‘ =k— a; — C;

<k- (CLi_l + Ci_l)(cz — 1) —a1 —1

= (bi—1 —k)(ca — 1) + by,
as desired.
(iv). Observe b;_1 —k <0, co —1 > 1 and by < k, so by (iii),

bi < (bi—1 —k)(ca—1) + b

<bi—1—k+b
< bi—17

as desired. This proves Proposition 3.2.

4. Regular subgraphs of distance-regular graphs.

In this section, we study basic properties of a regular connected subgraph 2

in a distance-regular graph, and get a lower bound of ‘Q‘ We find necessary

and sufficient conditions for ‘Q‘ to meet this lower bound. These conditions are
related to the weak-geodetically closed property. Theorem 4.6 is the main result
of this section.

We begin with a definition.
Definition 4.1. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2, and let €2 denote a regular connected subgraph of I'. We define
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ﬁl(Q) =Y —Cp— ay (OSZSD),

where v denotes the valency of ).

(i)
mmwzﬁﬁm%faif““m (1<i<D),
/{10(9) = 1. 1
(iid)
d() := min{il0 < i < D, 3(Q) < 0}. (4.1)

(We observe Bp(€2) <0, so (4.1) makes sense).

Lemma 4.2. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2. Let Q denote a regular connected subgraph of I', and write d := d(Q).
Then the following (i)-(iii) hold.

(i) Bi()>0 (0<i<d).

(i) k(Q2)>0 (0<i<a).

(iii) v < aq + ¢4, where v denotes the valency of .
Proof. (i). This is immediate from Definition 4.1(iii).
(ii). This is immediate from (i) and Definition 4.1(ii).
(iii). This is immediate from Definition 4.1(i), (iii).

Lemma 4.3. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2. Let € denote a regular connected subgraph of I', and pick any x € ).
Pick an integer i (0 < ¢ < d(£2)). Then the following (i)-(iii) hold.
(i)

‘an@ﬂth) (4.2)

with equality if and only if

C(y,z) CQ (Vy € Q,0(x,y) <1) (4.3)
and
Ay,xz) CQ (Vy € Q,6(x,y) <i—1). (4.4)
(i)
QNT;(x) #0. (4.5)
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(iii)
diam, (Q) > d(9). (4.6)

Proof. (i). We prove this by induction on the integer i. First assume i = 0.
Then (4.2)-(4.4) hold at ¢; indeed both sides in (4.2) equal 1. Next assume ¢ > 1.
Then by Definition 4.1(i), a counting argument, the induction hypothesis and
Definition 4.1(ii),

¢ |20 Fz(x)‘ > number of edges between Q NI';(z) and QN T;_q(x) (4.7)
E@AKManquﬁ (4.8)
> Bi—1 (ki1 () (4.9)
_ Bo()B1 () -+ Bia () (4.10)
C1C2 -+ Cj—1
= ik (), (4.11)

and equalities hold in (4.7)-(4.9) if and only if (4.3)-(4.4) hold. Now (4.2) follows
since ¢; > 0.

(ii). This is immediate from (i) above and Lemma 4.2(ii).
(iii). This is immediate from (ii) and Definition 2.5.

Lemma 4.4. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2, and let €2 denote a regular connected subgraph of I'. Then

]Q) > ko (Q) + k1 (Q) + - + ka(€), (4.12)

where d := d(£2) is from Definition 4.1(iii). Furthermore, equality holds in (4.12)
if and only if for any = € Q (and for some z € ),

d = diam,(2), (4.13)
C(y,x) CQ (Vy € Q,0(x,y) < d) (4.14)

and
Ay, x) € Q (Vy € Q,0(z,y) <d—1). (4.15)

Proof. Pick z € . Then by Lemma 4.3,
diam, ()

pw: 3 @ﬂfxﬂ‘
=0

d

EZ‘QﬂFi(a:)‘ (4.16)
1=0
d

> Sk (Q), (4.17)
1=0



and equalities in (4.16)-(4.17) hold if (4.13)-(4.15) hold. Hence we have the
lemma.

Theorem 4.5. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2. Let Q denote a regular connected subgraph of T', and let d := d(2) be
as in Definition 4.1(iii). Then the following (i)-(iii) are equivalent.

(i) Equality is obtained in (4.12).
(ii) € is geodetically closed, and for all x,y € Q,

Ay, z) CQ  if 0(x,y) < diam,(Q). (4.18)
(iii) There exists a vertex = € §2 such that
Q1 is geodetically closed with respect to z, (4.19)
and for all y € €Q,

Ay, z) CQ if 0(x,y) < diam,(Q). (4.20)
If (i)-(iii) hold, then 2 is distance-regular, with diameter d, and intersection
numbers
i <d), (4.21)
a;() =a; (0<1i<d). (4.22)

Proof. (i)—(ii) is immediate from Lemma 4.4, Lemma 2.2(ii), Definition 3.1
and (4.6). (ii)—(iii) is clear. To prove (iii)—(i), by Lemma 4.4, Lemma 2.2(ii),
we only need to prove (4.13). Observe by a counting argument,

‘Qﬂfi(ac)

c; = ‘Q NT;_1(x)

Bi—1(9) (1 <i < diam,(9)),
forcing

Bi >0 (0 <i < diam,(92)).
Hence (4.13) holds by (4.6) and Definition 4.1(iii).

Now suppose (i)-(iii) hold. (4.21)-(4.22) follow from (4.13) and (ii) above. We
now have Theorem 4.5.

Theorem 4.6. Let I' = (X, R) denote a distance-regular graph with diameter
D > 2. Let Q) denote a regular connected subgraph of ', and let d := d(2) be
as in Definition 4.1(iii). Then the following (i)-(iii) are equivalent.
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(i) Equality holds in (4.12), and € has valency ¢4 + aq.
(ii) € is weak-geodetically closed.
(iii) € is weak-geodetically closed with respect to at least one vertex in .

Suppose (i)-(iii) hold. Then € is distance-regular, with diameter d, and inter-
section numbers

)
N
Y
=
~—
I
)
N
—~~
IN

i <d), (4.23)
a(Q) =a; (0<i<d). (4.24)

Proof. Observe each of the three statements (i)-(iii) in the present theorem
implies the corresponding statement in Theorem 4.5. Without loss of generality,
we may assume Theorem 4.5(i)-(iii) hold. In particular, we may assume € is
distance-regular with diameter d.

(i)—(ii). Since Theorem 4.5(ii) holds by assumption, it remains to show
Aly,x) € 9 (4.25)

for all z,y € Q such that §(x,y) = d. To obtain (4.25), observe by (4.21) that

A(y.2)\ Q] = a0 - au()

= aa— (|2NT1(y)| - ca)
— O,

and (4.25) follows.

(ii)—(iii). This is clear.

(iii)—(i). Since Theorem 4.5(i) holds by assumption, it remains to show (2 has
valency ¢4 + aq. Pick any z,y € Q such that §(z,y) = d. Then

’Qﬂfl(y)‘ =cq+ aq

by Lemma 2.6(3).

Now assume (i)-(iii) hold. Then (4.23)-(4.24) hold by (4.21)-(4.22), and since (2
has valency ¢4 4 a4. This proves Theorem 4.6.

5. Distance-regular graphs with c; > 1.

In this section, we restrict our attention to the case I' = (X, R) is distance-

regular with intersection number ¢y > 1. We first prove that a weak-geodetically
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closed subgraph Q of I is regular (and consequently distance-regular by Theorem
4.6). We then give a precise description of €.

Lemma 5.1. Let I' = (X, R) be a distance-regular graph with diameter D > 2,
and assume the intersection number ¢y > 1. Fix a subgraph €2 of I', and pick any
vertex x € (). Suppose 2 is weak-geodetically closed with respect to x. Then for
ally e QN Ty(x),

‘Q N Fl(m)‘ > ‘Q ﬂFl(y)‘.
Proof. Since I is regular, it suffices to prove

Ti@)\ 0] < [P\ 9 (5.1

Observe that each vertex in I'y (x) \ €2 is adjacent to co — 1 vertices in I'1 (y) \ .
Indeed pick z € I'y(x) \ 2. Then by Lemma 2.4(i),

i(z,y) =2.

Note that z is adjacent to co vertices in I'1(y), and z is the unique one of such
vertices in 2 by Lemma 2.4(ii). Hence z is adjacent to co —1 vertices in I'y (y) \ 2.

Next, observe that each vertex in I';(y) \ 2 is adjacent to at most co — 1 vertices
in I'y (z) \ 2. Indeed pick w € I';(y) \ ©. Then by Lemma 2.3(iii),

§(z,w) = 2.

Since y € QN Ty (z), w is adjacent to at most co — 1 vertices in I'y (z) \ Q.

Now by counting edges between I'1(x) \ 2 and ' (y) \ 2, we have

‘Fl(x) \Q

(c2—1) < ‘F1<y) \ Q2

(c2 — 1), (5.2)

and (5.1) follows since ¢3 > 1. This proves Lemma 5.1.

Lemma 5.2. Let I’ = (X, R) be a distance-regular graph with diameter D > 2,
and assume the intersection number ¢y > 1. Let (2 denote a weak-geodetically
closed subgraph of I'. Then 2 is regular.

Proof. Suppose 2 is not regular. Since €2 is connected, there exist adjacent
vertices x,y € () such that

‘Qﬂfl(m)‘ < ‘Qﬂrl(y)‘, (5.3)
contradicting Lemma 5.1.
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Corollary 5.3. Let I' = (X, R) be a distance-regular graph with diameter
D > 2, and assume the intersection number c; > 1. Let 2 denote a weak-
geodetically closed subgraph of I'. Then 2 is distance-regular with intersection
array

{617027 s, Cd, bO - bdvbl - bda e 7bd71 - bd}7
where d = d(Q).
Proof. This is immediate from Lemma 5.2, Theorem 4.6 and (1.9).

Corollary 5.4. Let I' = (X, R) be a distance-regular graph with diameter
D > 2, and assume the intersection number ¢ > 1. Let €, €’ denote two weak-
geodetically closed subgraphs such that £’ C Q. Then the following (i)-(ii) are
equivalent.

(i) ' =Q.
(ii)) diam(Q') = diam(Q).
Proof. (i)—(ii). Clear.

(il)—(i). Q, ' are distance-regular with the same intersection array by Corol-
Q1,50 02=0Q".

lary 5.3. Now we have ‘Q‘ =

Definition 5.5. Let I' = (X, R) be a graph. For any vertex z € X, and any
subset C' C X, define

[z,C] := {v € X|there exists y € C,such that §(z,v) + §(v,y) = d(x,y)}.

The following proposition gives us a description of a weak-geodetically closed
subgraph of a distance-regular graph with ¢y > 1.

Proposition 5.6. Let I' = (X, R) be a distance-regular graph with diameter
D > 2, and assume the intersection number c; > 1. Pick any subgraph €2 of I,
and fix an integer d (0 < d < D). Then the following (i)-(ii) are equivalent.
(i) € is weak-geodetically closed with diameter d.

(ii) There exists a vertex = € () that satisfies the following (iia)-(iid).

(ila) € is weak-geodetically closed with respect to x.
(iib) ’Q N Fl(a:)’ =cq+ aq.

(iic) Q= [z,C] for some C C I'y(x).

(iid) For all v €  and for all z € X, if z is adjacent to two distinct vertices
in C(v, ), then z € Q.
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Proof.  (i)—(ii). Let x denote any vertex in €. (iia) is immediate from
Definition 3.1. (iib) is immediate from Corollary 5.3 and (1.9). Suppose (iic)
fails. Then there exists a vertex w € Q such that §(x,w) < d and B(w, )N = (.
This contradicts Corollary 5.3. Hence we have (iic). To prove (iid), suppose z is
adjacent to distinct vertices w,w’ € C(v,x). Then w,w’ € ) by Lemma 2.3(ii),
so z € Q by Lemma 2.4(ii).

(ii)—(i). First, we prove Q2 is weak-geodetically closed. To do this, by parts
(ii), (iii) of Theorem 4.6, it suffices to show that 2 is regular. We will show each
vertex in ) has valency cgq + a4. Note that by Lemma 2.6(i), for all w € C,

‘Qﬂf‘l(w)) =cq+ aq. (5.4)
Claim. For all integers j (1 < j < d), and for all pairs of adjacent vertices
u,v € Q such that v € I';_;(x) and v € I';(x), we have
(erl(m) > )mrl(v). (5.5)
Proof of Claim. Since I' is regular, to prove (5.5), it suffices to prove
TN ESIORNe! (5.6)

We will count the edges between I'1 (v) \ 2 and 'y (v) \ © in two ways to establish
(5.6). On the one hand, we prove that each vertex in I';(u) \ © is adjacent to
exactly ca — 1 vertices in I'1(v) \ Q. Pick z € I'1(u) \ 2. Note that z € I';(x) by
Lemma 2.3(iii). We now show 6(z,v) = 2. Obviously §(z,v) < 2, since z,u, v is
a path. Observe z # v by construction. Also z,v are not adjacent, otherwise
z € A(v,z) C Q by Lemma 2.3(ii), a contradiction. Hence §(z,v) = 2. Next we
show

QN C(z,v) ={u}. (5.7)

To see this, pick w € QN C(z,v) and suppose w # u. Note that w € C(v,x),
otherwise z is adjacent to u,w € C(v, x), putting z € 2 by (iid), a contradiction.
Note that w ¢ A(v, x), otherwise w € A(v,z) and z € A(w, z), putting z € Q by
Lemma 2.3(ii), a contradiction. Hence w € B(v,x). Now z € C(w, z), putting
z € Q by Lemma 2.3(ii), a contradiction. Hence w = u and we have (5.7). Now
observe that by (5.7),

F1(2) 0 (T2 (0) \ )] = |C(z,0)\ {u)

202—1.

Hence z is adjacent to exactly co — 1 vertices in I'y (v) \ §2.
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On the other hand, we show that each vertex in I'y(v) \ 2 is adjacent to at most
co — 1 vertices in 'y (u) \ Q. Pick a vertex z € T'1(v) \ 2. Observe §(z,2) = j+1
by Lemma 2.3(iii). Observe §(u, z) = 2. Now we have the desired property, since
z is adjacent to co vertices in 'y (u) and v € Q is one of them.

Using above the two ways to count the edges between vertices in I'1 (u) \ © and
vertices in 'y (v) \ §2, we have

‘Fl(u)\Q

(2= 1) < [Ni(@) \ 0

(02 - 1)7

and (5.6) follows since ca > 1. This proves the claim.

To show 2 is regular, fix any geodesic path ©* = xg,x1,- -, x4, where x4 € C,
and set
f = ]Q N rl(x,)( (0<1<d).

Observe
to = aq + ¢4 (5.8)
by assumption (iib),
ti = aq+ cq (5.9)
by (5.4), and
ter >t (1<1<4d) (5.10)

by the claim. It follows from (5.8)-(5.10) that

t] =aq+ cq (Oflgd)

By Definition 5.5, €2 is the union of geodesic paths of the above type, and we
conclude every vertex in €2 has valency agq + c4. Now ) is weak-geodetically
closed by Theorem 4.6. It remains to show () has diameter d. This holds, since
Q2 is distance-regular by Corollary 5.3 and diam,(2) = d by (iic). This proves
Proposition 5.6.

If we assume d = 2 and ay # 0 in Proposition 5.6, we get the following improve-
ment.

Proposition 5.7. Let I' = (X, R) be a distance-regular graph with diameter
D > 2, and assume the intersection numbers co > 1, as # 0. Then for any
subgraph 2 of T, the following (i)-(ii) are equivalent.

(i) € is weak-geodetically closed with diameter 2.
(ii) There exists a vertex = € {2 that satisfies the following (iia)-(iic).

(ila) € is weak-geodetically closed with respect to x.
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(iib) ’Q N Fl(a:)’ = ay + co.
(lic) diamg, () = 2.

Proof.  (i)—(ii). (iia)-(iic) are immediate from Proposition 5.6 (iia)-(iic)
(with d = 2).

(ii)—(i). First, we prove Q is weak-geodetically closed. To do this, in view
of parts (ii), (ili) of Theorem 4.6, it suffices to show (2 is regular. We show
each vertex in € has valency cs + as. Observe by Lemma 2.6(i) that for all
(VIS Qn I (.T)7

’Qﬂl—‘l(y)’ = Co + Q2. (511)

Observe by Lemma 5.1 that for all z € QNI (x),
’erﬂ@)§@+ﬂ2 (5.12)

It remains to show equality holds in (5.12) for all z € QNI'y (z). We suppose this
is not the case and get a contradiction. Pick 2z’ € QNI';(z) such that ‘QﬂFl(z’)’

is minimal and assume

‘erﬂ/ﬂ<c?+@. (5.13)

Claim 1. There exists a vertex y € Q NTy(xz) that is not adjacent to 2’.

Proof of Claim 1. If this fails, then 2’ is adjacent to each vertex in Q N Ty(x).
Hence by Lemma 2.3(ii) and the construction, for all z € QNI (z),

‘QﬂB(z,m)‘: QNTi(z)| —a1 —aq
Z QﬂFl(z') —C1 — Q1

= Qﬂf‘g(x) .

Then every vertex in QNT';(z) is adjacent to every vertex in QN I'e(x). But this
is inconsistent with (iib) and ay # 0. Hence we have Claim 1.

We fix y, 2’ for the rest of this proof. Observe, by (iib), Lemma 2.6(iv),
C(z,y) UA(z,y) = QNT4(z).

Now set

1
7= 3 ‘QﬂFl(z)’, (5.14)
z€C(z,y)
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and observe 7 is the average valency (in €2) of a vertex in C(z,y). Similarly, set

1
o E NIi(2)], (5.15)
z€A(z,y)

and observe A is the average valency (in 2) of a vertex in A(x,y).
Claim 2. A < ag + ¢s.

Proof of Claim 2. This is immediate from (5.12), (5.13), (5.15), and the obser-
vation 2z’ € A(z,vy).

Now set
A :={w € Qé(z,w) = 2,0(y,w) > 2}.

Claim 3.
‘A

Co+asca+co =co(y—a; —1)+as(A—ay —1). (5.16)

Proof of Claim 3. Let e denote the number of edges connecting vertices in
QNTy(z) to vertices in 2 N Ty (x). We count e in two ways. On the one hand,

e= ’Q N Fz(a:)‘CQ

C2

— [auaE.2) Uy}

ZQALHQ+DQ. (5.17)
On the other hand,
e =|C,v)|(v = a1 = 1) + |AG@,y)| (A = a1 1)
=cy(y—a1 —1)+azy(A—a; —1). (5.18)

Line (5.16) is immediate from (5.17), (5.18), and Claim 3 is proved.
Claim 4.

‘A‘Cg + asco +co > 62(’7 —ay) — 1) + CLQ(CLQ +co—ay; — 1). (5.19)

Proof of Claim 4. Let f denote the number of edges connecting vertices in
QNT4(y) to vertices in 2 NIy (y). Again, we count f in two ways. On the one
hand,

f< erﬂwﬁ2

IN

AUA(z,y)U {x}‘CQ

A‘CQ + asco + Co, (520)
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and on the other hand, using (5.11),

f> }C(y,x)‘(’y —a;— 1)+ ‘A(y,:z:)‘(ag +co—a;—1)
=co(y—a; — 1) +az(ag +c2 —a; —1). (5.21)

(5.19) is immediate from (5.20), (5.21), and Claim 4 is proved.
Now subtracting (5.16) from (5.19), we find

0 Z CLQ(CLQ + Co — )\)

But this is impossible since as > 0 by assumption, and as +ce — A > 0 by Claim
2. Hence equality holds in (5.12) for all z € QNI (x). Now 2 is regular by (iib),
(5.11), so Q2 is weak-geodetically closed by Theorem 4.6. It remains to show
) has diameter 2. This holds, since () is distance-regular by Corollary 5.3, and
since diam, (§2) = 2 by (iic). This proves Proposition 5.7.

6. Distance-regular graphs with many weak-geodetically closed sub-
graphs.

In this section, we obtain our first major result, Theorem 6.4. To describe it,
we need a few definitions.

Definition 6.1. Let I' = (X, R) be a graph with diameter D, and let i denote
an integer (0 < i < D). Then I is said to be i — bounded, if for all integers j
(0 < j <), and for all z, y € X such that §(z,y) = j, x,y are contained in a
common weak-geodetically closed subgraph of diameter j.

Lemma 6.2. Let I' = (X, R) be a graph with diameter D > 1. Then the
following (i)-(iii) hold.

(i) T is O-bounded.

(ii) For each integer i (1 <1i < D), if I is i-bounded then I" is (i — 1)-bounded.
(iii) Suppose I'' is (D — 1)-bounded. Then I' is D-bounded.

Proof. (i)-(iii) are clear from Definition 6.1.

In Theorem 6.4, we obtain a simple criterion for a distance-regular graph I' to
be i-bounded. We will use the following notation.

Definition 6.3. Let I' = (X, R) be a graph with diameter D > 2. Pick an
integer i (2 <i < D). By a parallelogram of length i in I', we mean a 4-tuple
xyzw of vertices of X such that

x,y) =0(z,w) =1, d(z,w) =1,
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§z,z) =0(y,2) =d(y,w) =i — 1.

We now state the first main theorem of our paper.

Theorem 6.4. Let I' = (X, R) be a distance-regular graph with diameter
D > 2, and assume the intersection numbers c5 > 1, a; # 0. Pick an integer
(1 <i< D). Then the following (i)-(ii) are equivalent.

(i) T isi-bounded.
(ii) T contains no parallelogram of length < + 1.
The following Lemma proves Theorem 6.4(i)—(ii).

Lemma 6.5. Let ' = (X, R) be a distance-regular graph with diameter D > 2.
Pick an integer i (1 < i < D). Suppose I' is i-bounded. Then I' contains no
parallelogram of length <7+ 1.

Proof. Suppose I contains a parallelogram xyzw of some length j < i+1. Then
d(y,z) = j — 1 < i. By Definition 6.1, there exists a weak-geodetically closed
subgraph € of I" that has diameter j — 1 and contains y, z. Observe = € A(y, z)
and w € A(z,y), so z,w € Q by Lemma 2.3(ii). But d(x,w) = j, contradicting
our assumption that €2 has diameter j — 1. This proves the lemma.

We prove Theorem 6.4 (ii)— (i) by induction on i. We deal with the case i =1
in Lemma 6.6, the case ¢ = 2 in Proposition 6.7, prove some general results in
Proposition 6.8-Lemma 6.13, and then proceed to the case ¢ > 3 at the end of
this section.

Lemma 6.6. LetI' = (X, R) be a distance-regular graph with diameter D > 2.
Suppose that I' contains no parallelogram of length 2. Then I' is 1-bounded.

Proof. Pick z,y € X with §(z,y) = 1, and set Q := A(x,y) U {z,y}. Qis a
clique of size a; + 2 since I' contains no parallelograms of length 2; in particular,
2 has diameter 1. Also §2 is weak-geodetically closed by Theorem 4.6, since {2
is regular and equality holds in (4.12). This proves Lemma 6.6

Our proof of the case i = 2 in Theorem 6.4 (ii)—(i) is different from our proof
for the case ¢ > 3, also, we can prove it under the assumption as # 0 instead
of a; # 0(One can easily show if I contains no parallelogram of length 2 then
a1 # 0 implies ay # 0). Hence we prove it separately.

Proposition 6.7. Let I' = (X, R) be a distance-regular graph with diameter
D > 2. Assume that the intersection numbers co > 1, ay # 0. Suppose that I"
contains no parallelogram of length < 3. Then I' is 2-bounded.

Proof. Pick any vertices z,y € X with §(z,y) = 2. Let C be the connected
component of I'y(x) containing y. Set €2 := [z, C| as in Definition 5.5. We prove

22



(2 is weak-geodetically closed of diameter 2. To do this, we show 2 satisfies
(iia)-(iic) of Proposition 5.7.

Claim 1. Q is weak-geodetically closed with respect to x. In particular, (iia) of
Proposition 5.7 is satisfied.

Proof of Claim 1. Fix z € ). By Lemma 2.3(ii) and the construction, it suffices
to show A(z,x) C . This clearly holds if z = x or z € Q NT'3(x), so assume
z € QNTI(z). Pick w € A(z, ). By construction, there exists 2’ € C' such that
z € C(2',x). Observe that 0(w, z’) = 2; otherwise d(w, 2’) = 1 and xzw?z’ is a
parallelogram of length 2, a contradiction. Pick w’ € C(w,z’) \ {z}. Observe
that w' € C(2',x)UA(2, ). Suppose w’ € C(%’, x). Then 6(z,w’) = 2; otherwise
d(z,w") =1 and 2’zw’zx is a parallelogram of length 2, a contradiction. But now
w'wzz is a parallelogram of length 2, a contradiction. Hence w’ € A(Z,x),
forcing w’ € C by construction. Now w € € by construction. This proves Claim
1.

Claim 2. For all adjacent vertices z,z’ € C, B(z,z) = B(z,2’). In particular,
B(xz,w) = B(z,w") for all w,w’ € C.

Proof of Claim 2. Fix adjacent vertices z,z" € C. By symmetry, it suffices to
prove B(z,z) C B(z,2'). Suppose there exists a vertex p € B(x, z) \ B(z, 2’). Of
course d(x,p) = 1, §(z,p) = 3 by construction, so d(z’,p) = 2 by the triangular
inequality. Now the 4-tuple pxzz’z is a parallelogram of length 3, a contradiction.
Hence B(x,z) = B(x, ). Since C' is connected, we have B(z,w) = B(z,w’) for
all w,w’ € C. This proves Claim 2.

Claim 3. ‘Q ﬂl“l(x)‘ = ¢ +as. In particular, (iib) of Proposition 5.7 is satisfied.

Proof of Claim 3. Pick z € C. Then it suffices to show QNI (z) = C(z,2) U
A(z, z). By Claim 1, Q is weak-geodetically closed with respect to x. Hence by
Lemma 2.6(ii), C(x,z) U A(z,z) C QNI (x). Since I'1 (x) = C(x,2) U A(z, z) U
B(z, z), it remains to show QN B(z, z) = (. Suppose there exists w € QN B(z, z).
By construction, there exists w’ € C such that w € C(z,w’). But w € B(z,z2) =
B(xz,w’) by Claim 2, a contradiction. Hence Q N B(x, z) = (0, as desired. This
proves Claim 3.

Note that (iic) of Proposition 5.7 is satisfied by the construction. Hence €
is weak-geodetically closed with diameter 2 by Proposition 5.7. We now have
Proposition 6.7.

Proposition 6.8. Let I' = (X, R) be a distance-regular graph with diameter
D > 2. Assume the intersection numbers ¢y > 1, as # 0. Suppose I' contains no
parallelogram of length 2 and suppose there exists a weak-geodetically closed
subgraph 2 of diameter 2. Fix a vertex x € 2. Then Q NI'y(x) is connected.
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Proof. Note that 2 is distance-regular by Corollary 5.3. Suppose that QNI (z)
is not connected. Pick u,v € QN9 (z) such that there is no path in Q N T'y(x)
connecting u,v. Observe §(u,v) = 2, since {2 has diameter 2. For each vertex
z € C(u,v), we must have z € C(u, x), otherwise §(z, z) = 2 and u, z, v is a path
in Q N I'y(z). Hence we have C(u,v) C C(u,x). Now C(u,v) = C(u,z), since
both sets have the same cardinality co. Similarly, we have C(u,v) = C(v,x).
Pick w € A(u,v). Observe §(z,w) = 2, since w ¢ C(u,v) = C(u,x). We do not
have a path in Q NT'3(z) connecting w, v, otherwise we can extend this path to
a path in Q NTy(x) connecting u,v. By the same argument as above, we have
C(w,v) = C(w,z) = C(v,x). Now we have

C(u,v) =C(v,z)
= C(w,v).

Pick distinct vertices z, 2z’ € C(u,v) = C(w,v). If §(z,2") = 1 then the 4-tuple
uzz'v is a parallelogram of length 2, a contradiction. If §(z,2’) = 2 then the
4-tuple zuwz’ is a parallelogram of length 2, another contradiction. Hence we
prove Q NI'y(z) is connected.

Note. Proposition 6.8 tells us that in the case d = 2 of Proposition 5.6(iic),
some C' C I'y(x) is connected. We do not know if this is true in general situation
d > 2.

Lemma 6.9. Let I' = (X, R) be a distance-regular graph with diameter
D > 3. Suppose the intersection numbers c; > 1, as # 0. Pick an integer i
(2 < i < D), and suppose I' contains no parallelogram of any length < ¢ + 1.
Let x be a vertex of I', and let €2 be a weak-geodetically closed subgraph of T"
with diameter 2. Suppose there exists a vertex u € QN I';_1(x), and suppose
QNT;11(x) # 0. Then for all ¢ € Q, we have 0(x,t) =i — 1+ §(u,t).

Proof. We prove this by induction on the integer i. The case ¢ = 2 is immediate
from Lemma 2.4(i), so suppose i > 2. Note that

Q g Fi_l(IL’) U FZ(Z‘) U FH_l(IL’),

since diam(Q2) = 2, QNT;_1(z) # 0, and QN T;11(x) # . We need to prove
QNTi(u) C Ti(x) and QN Ta(u) C Tipa(z). It suffices to prove that QN
[y(u) CTyqq(x), since Q is distance-regular with diameter 2 and for each vertex
w e QNTi(u), w € C(z,u) for some vertex z € Q N y(u). Suppose that
QNTy(u) € Tigpi(z). Since Q N To(u) is connected by Proposition 6.8, and
since @ N Ty(u) NTipq(z) = QN Tipi(x) # 0, there exist adjacent vertices
v,v" € Ia(u) N Q such that v € I';41(x) and V' € T';(x). Pick 2’ € C(z,u). Then
d(x',u) =i —2 and 6(2’,v) = i. By induction hypothesis, we have §(z’,v") = i.
Now the 4-tuple xz’v'v is a parallelogram of length i + 1, a contradiction. This
proves the lemma.
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Corollary 6.10. Let I' = (X, R) be a distance-regular graph with diameter
D > 3. Assume the intersection numbers co > 1, as # 0. Pick any integer i
(2 <i < D), and suppose I contains no parallelogram of any length < i+ 1. Let
x be a vertex of I', and let () be a weak-geodetically closed subgraph of diameter
2. If there exist 2 distinct vertices u, v in Q such that §(z,u) = é(x,v) =i — 1,
then §(z,t) < i for all vertices t € .

Proof. Suppose this is false. Then QN1 (z) # 0, s0 6(z,v) = 0(z, u)+0(u,v)
by Lemma 6.9. Since 6(x,v) = d(x,u) = i — 1, we have d(u,v) = 0 and hence
u = v, a contradiction. This proves the corollary.

Definition 6.11. Let I' = (X, R) be a graph with diameter D > 2. Pick an
integer i (2 <1i < D). By a kite of length i, we mean a 4-tuple xyzw of vertices
of I' such that {z,y, z} is a clique, and w is at distances

S(w,x) =14, O(w,y)=i—1, §w,z)=1—1.

Note. A kite of length 2 is the same thing as a parallelogram of length 2.

Lemma 6.12. Let I' = (X, R) be a graph with diameter D > 2. Fix an
integer ¢ (2 <14 < D). Suppose I' contains no parallelogram of any length < i.
Then I' contains no kite of any length < 1.

Proof. Suppose I' contains a kite of length < 4. Of all these kites, pick a kite
xyzw with minimal length j. Observe j # 2, otherwise zyzw is a parallelogram
of length 2. Now pick a € C(w, z). Note that d(a, z) = j — 2. Observe

§(a,y) < 0(a,z) +0(2,y)
=j—2+1
:]_1,

and

(5(@,’!/) > 5(y7 w) - 5(@,’[1})
—j-1-1
= ] - 27

so d(a,y) =j—2ord(a,y)=j—1.1f 6(a,y) = j — 2, then the 4-tuple zyza is
a kite of length j — 1, contradicting our construction, so d(a,y) = j — 1. Now
the 4-tuple wayzr is a parallelogram of length j, a contradiction. This proves the
lemma.

Lemma 6.13. Let I' = (X, R) be a distance-regular graph with diameter
D > 3. Assume the intersection numbers ¢, > 1 and a; # 0. Pick an integer ¢
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(2 < i < D), and suppose I' contains no parallelogram of any length < i + 1.
Let x be a vertex of X, and let 2 be a weak-geodetically closed subgraph of
diameter 2. Set j :=max{d(z,w) |w € 2}, and assume j <. Then QNT;(x) is
connected.

Proof. Note that () is distance-regular by Corollary 5.3. Since I' contains no
parallelogram of length 2, for any vertex u € £, Q N T (u) is a disjoined union
of cliques of size a; + 1. Let [ denote the number of these cliques in Q NIy (u).
Suppose 2NI';(x) is not connected. Then there exist two vertices ¢, s € QNI';(x)
such that there is no path in QNI';(z) connecting ¢t and s. Note that §(t, s) = 2,
since diam(2) = 2. Consider the set

N:={t}u(@(z)nQnTi(t)).
Claim 1. ‘N‘ >1+lay.

Proof of Claim 1. I' contains no kite of length j by Lemma 6.12, , so ’K N
Fj_l(x)’ <1 for all maximal cliques K C QNI (¢). Hence ‘K N N‘ > a; for all

maximal cliques K C Q2N T'q(¢). Since there are [ such cliques,

V| > |{o}] +lon
=1 +la1,

as desired.
Claim 2. §(z,s) =2 for any z € N.

Proof of Claim 2. §(z,s) < 2, since diam({2) = 2. z # s by construction. Also
d(z,s) # 1, otherwise t,z,s is a path in Q NT';(z), a contradiction. Hence
0(z,8) = 2.

Now consider the set

M = U C(s, 2).

2EN
Claim 3. ‘M‘ <1

Proof of Claim 3. Note that M C QNI (s) by construction and Lemma 2.3(ii),
so there is no vertex in M with distance j + 1 to x. If the distance from z to
a vertex in M is j, then we find a path in Q@ N T'j(x) connecting ¢ and s, a
contradiction. Thus

M Q aQn Fl(S) N Fj_l(.CC).

Since 6(x,s) = j and since I' contains no kite of length j by Lemma 6.12, each
maximal clique in Q NT';(s) contains at most one vertex in M. Hence |[M| <.
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We count the number e of edges between vertices in N and vertices in M in two
ways. On the one hand, by Claim 1, we have
e= ‘N ‘02
> (1 + lal)CQ. (61)
On the other hand, a vertex in M NT'y(t) is a adjacent to at most a; 4+ 1 vertices
in N, and a vertex in M NT'y(t) is adjacent to at most ¢y vertices in N. Observe

that ajco >max{aj + 1, ¢z}, since co > 1 and a; # 0. Hence each vertex in M is
adjacent to at most a;cy vertices in N. Now by Claim 3,

e < M‘alcg

IN

lCLlCQ,

a contradiction to (6.1). This proves the lemma.

Note. Lemma 6.13 is the only place we need the assumption a; # 0 instead
of the assumption ag # 0.

Proof of Theorem 6.4 (ii)——(i). This is by induction on the integer 1.
The cases ¢ = 1 and 7 = 2 hold by Lemma 6.6 and Proposition 6.7, so assume
i > 3. Fix vertices z,y € X with 6(z,y) = i. Let C be the connected component
in I';(x) containing y. Let Q := [x,C] be as in Definition 5.5. We prove Q is
weak-geodetically closed of diameter 7. To do this, we show (2 satisfies (iia)-(iid)
of Proposition 5.6.

Claim 1. Let z, 2/, w be vertices in X, with 6(z,w) <1, z € C(w,x), 2’ € A(z,x).
Then §(w, 2’) = 2. Moreover, there exists a vertex w’ € C(z/,w) N A(w, x).

Proof of Claim 1. By Lemma 6.12, I' contains no kite of length < 7. Now
d(w,z") = 2, otherwise wzz'z is a kite of length §(z,w). Since co > 1, there
exists w’ € C(z2',w) \ {z}. Note that either w' € A(z',z) or w' € A(w,x).
Suppose w’ € A(Z',x). By the induction hypothesis, z, 2" are contained in a
common weak-geodetically closed subgraph ' of diameter §(z, z’). Observe that
by Lemma 2.3(ii), w’, z € @’ and by Lemma 2.4(ii), w € Q'. But

§(z,w) =6(x,2) +1
=0(x,2")+1
> §(z,2'),

a contradiction. Hence w’ € A(w, ).

Claim 2. Q is weak-geodetically closed with respect to z. In particular, (iia) of
Proposition 5.6 is satisfied.

27



Proof of Claim 2. By Lemma 2.3(ii), it suffices to check C(z,z) U A(z,z) C Q
for all z € Q. If this is not the case, then there is a vertex z € () such that
C(z,z) UA(z,x) € Q. Of all such vertices z, we pick one with é(z, z) maximum.
Observe 0(x,z) < ¢ by construction, so there is a vertex w € € such that
z € C(w,x). Pick 2/ € C(z,2) UA(z,z) \ Q. Note that C(z,z) C Q by Definition
5.5, so 2z’ € A(z,z). By Claim 1, there is a vertex v’ € C(z',w) N A(w,x). By
the choice of z and since d(x,w) > §(z, z), we have w’ € A(w,z) C Q. But now
' e C(w',x) C Q, a contradiction.

Claim 3. For all adjacent vertices z,z" € C, B(z,z) = B(z,z’). In particular,
B(z,w) = B(z,w") for all w,w’" € C.

Proof of Claim 3. Fix adjacent vertices z,z’ € C C T';(z). By symmetry, it
suffices to prove B(x, z) C B(x,2’"). Suppose there exists a vertex p € B(z, z) \
B(xz,z"). Of course é(x,p) = 1, §(z,p) = i + 1 by construction, so §(z',p) = i
by the triangular inequality. Now the 4-tuple pxz’z is a parallelogram of length
i+ 1, a contradiction. Hence B(z,z) = B(z, ). Since C' is connected, we have
B(z,w) = B(z,w’) for all w,w’ € C. This proves Claim 3.

Claim 4. ‘Q N Fl(x)‘ = ¢; + a;. In particular, (iib) of Proposition 5.6 is satisfied.

Proof of Claim 4. Pick z € C. Then it suffices to show Q@ NT'y(x) = C(x,2) U
A(z, z). By Claim 2, Q is weak-geodetically closed with respect to x. Hence by
Lemma 2.6(ii), C(z,2) U A(x,z) C QNI (x). Since 'y (z) = C(z,2) U Az, 2) U
B(x, z), it remains to show QN B(z, z) = (). Suppose there exists w € QN B(z, z).
By construction, there exists w’ € C such that w € C(z,w’). But w € B(z, 2) =
B(z,w") by Claim 3, a contradiction. Hence QN B(x,z) = (), as desired. This
proves Claim 4.

Claim 5. (iid) of Proposition 5.6 is satisfied.

Proof of Claim 5. Fix v € 2 and z € X such that z is adjacent to two distinct
vertices u, w € C(v,x). We need to prove z € Q. Set j := §(z,v). Note j < i and
d(xz,u) = 0(x,w) = j—1. Observe that d(z,v) < 2 and u,w € Q by construction.
We can assume z € B(u,z); otherwise z € A(u,z) U C(u,z) C Q by Claim 2,
Lemma 2.3(ii), and we are done. Now d(z, z) = j. We also can assume 0(z,v) =
2, otherwise v =z € Qor z € A(v,z) C Q by Claim 2, Lemma 2.3(ii), and we are
done. By the induction hypothesis, I' is (i — 1)-bounded. Especially, since i > 3,
I' is 2-bounded. Let Q' be the weak-geodetically closed subgraph of I" that has
diameter 2 and contains z,v. Observe that u,w € C(z,v) C @, and as # 0 by
Proposition 3.2(ii). Hence by Corollary 6.10, we have max{d(z,s) |s € '} = j.
Now ' NT';(z) is connected by Lemma 6.13. In particular, there is a path in
I'j(x) connecting v, z. Now by Claim 2 and Lemma 2.3(ii), we see each vertex
in this path is in €2, in particular, z € €. This proves Claim 5.
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Of course, (iic) of Proposition 5.6 is satisfied. Hence 2 is weak-geodetically
closed with diameter ¢ by Proposition 5.6. We complete the proof of Theorem
6.4.

Problem. Can one prove Theorem 6.4(ii)— (i) under the assumption ay # 0
instead of the assumption a; # 07

7. Distance-regular graphs with the @)-polynomial property.

In this section, we consider distance-regular graphs with the Q)-polynomial prop-
erty. Theorem 7.2 is our main result. First, we recall the definition of the
(Q-polynomial property. Let I' = (X, R) denote a distance-regular graph with
diameter D > 3 and intersection numbers p?j (0 < h,i,j < D). For each integer
i (0 <i< D), the ith distance matriz A; of I has rows and columns indexed
by X, and x,y entry

1, if o(x,y) =1,

Then
Ay =1, (7.1)
Al = A; (0<i< D),
and
D
A A=) plA, (0<i,j < D) (7.3)

h=0

[2, p127]. By (7.1)-(7.3), the matrices Ag, A1, -+, Ap form a basis for a com-
mutative semi-simple real algebra M, known as the Bose-Mesner algebra. By
[1,p59,p64], M has a second basis Ey, E1,-- -, Ep such that

Eo=|X |7t J (J = all 1’s matrix), (7.4)
E,E; =6, E; (0<i,j<D), (7.5)
Ey+FEy+---+Ep =1, (7.6)
E! = E; (0<i< D). (7.7)
The Ey, Eq,---,Ep are known as the primitive idempotents of I', and Fj is

known as the trivial idempotent.

Let o denote entry-wise multiplication of matrices. Then
Ajo Aj =064, (0<4,j<D),
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so M is closed under o. Thus there exists real numbers qf“j (0 <i,5,h < D)
such that

D
EioE;j=| X |7'Y ¢iEn (0<i,j<D).
h=0

I is said to be Q-polynomial (with respect to the given ordering Ey, E1, -+, Ep
of the primitive idempotents) if for all integers h,i,7 (0 < h,i,j < D), qlhj =0
(resp. qlhj # 0) whenever one of h, 1, j is greater than (resp. equal to) the sum of
the other two. Let E denote any nontrivial primitive idempotent of I'. Then I
is said to be Q-polynomial with respect to E whenever there exists an ordering
FEy, By = FE,FEs5,---, Ep of the primitive idempotents of I', with respect to which
I' is @-polynomial.

The following is a special kind of @Q-polynomial distance-regular graph[2, p193].

Definition 7.1. A distance-regular graph I is said to have classical parameters
(D, b, a, B) whenever the diameter of I' is D, and the intersection numbers of
I' satisfy

cl-:[i](l%—ar_l}) (0<i<D), (7.8)

1 1
(DOl wsem
e ﬂ =1+b+b*+-- 0L (7.10)

Theorem 7.2. Let I' = (X, R) denote a distance-regular graph with diameter
D > 3 and intersection numbers co > 1, a; # 0. Assume I' is Q-polynomial.
Then the following (i)-(viii) are equivalent.

(i) T contains no parallelogram of any length.
I' contains no parallelogram of length 2 or 3.

)

(iii) T contains no kite of any length.
) T contains no kite of length 2 or 3.
)

I has classical parameters (D, b, «, (3), and either b < —1 or I' is a dual
polar graph or a Hamming graph.

(vi) T has classical parameters and contains no kite of length 2.
(vii) T'is D-bounded.
(viii) T is 2-bounded.
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(See [1,II1.2] and [1, IIL.6] for definition of Hamming graphs and dual polar
graphs).

We now mention a few items of notation, then prove a lemma, and then proceed
to the proof of Theorem 7.2.

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. Suppose
I' is @-polynomial with respect to E. Then the dual eigenvalues 87 (0 <1i < D)
are defined by

D
E=|X|") 6 A (7.11)
=0

By [6, p384], the dual eigenvalues 8 (0 < ¢ < D) are mutually distinct real
numbers.

Set V= R (column vectors), and view the coordinates of V' as being indexed
by X. For each vertex x € X, set

§3=(0,0,---,1,0,--~,0)t, (712)
where 1 is in coordinate z. Also, let { , ) denote the dot product
(u,v) =u'v  (u,v € V). (7.13)

Then referring to the primitive idempotent E in (7.11), we compute from (7.7),
(7.11)-(7.13) that for all z,y € X,

(Bx,g) =] X |71 0], (7.14)

where i = 0(x,y).
Lemma 7.3. Let I' = (X, R) denote a distance-regular graph with diameter
D > 3, and pick any integer i (2 <1 < D). Pick vertices z,y € X such that
d(x,y) =1, and pick z € C(x,y). Set

€; = ’{u|u € X, zzuy is a kite of length z}‘,

and
fi = ‘{u\u € X, xzuy is a parallelogram of length z}‘

(i) Suppose I' is @Q-polynomial with respect to the primitive idempotent

D
By =[ X |71 05 An.
h=0
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Then

fi = aiei + 5, (7.15)
where . .
o = _9232__9? - (7.16)
and
et (O g gy o 0r - 604 05— 0). (7A7)

T

(ii) Suppose I' has classical parameters (D, b, a, ). Then (7.15) holds, where
a; =b"2, (7.18)
B; =0. (7.19)

Proof. (i) Define

and

Yy = E U.
ueX

§(y,u)=1
S(u,z)=1—1

By Terwilliger[7, Theorem 3.3(vii)], we have

07 —0;_ ) .
Ei(z, —y,)= ciﬁ(Elx — Ev19), (7.20)
0 Y
SO
o 01 =071, . -
<E1(fl?y — Y ), Z) = Cz‘w<E1$ - Ely, Z> (721)
0 %

Evaluating the inner products in (7.21) using (7.14), we obtain

| X |71 (65 + ey + (ci — 1 —€;)05 — cimabi_y — filli_y — (¢; — cie1 — [i)0])
(07 —0;_,)?

=X | 'e
N

(7.22)

Solving (7.22) for f; we obtain (7.15).
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(ii) By [2, p250], T" is @Q-polynomial with respect to a primitive idempotent

D
E=[X | 054,

where

05 — 65 = (07 — eﬁ{klﬂ(ogng) (7.23)

In particular (7.15)-(7.17) hold by (i). Lines (7.18), (7.19) are obtained by
eliminating 03, 6 ;, 6 in (7.16), (7.17) using (7.23), and simplifying using
(7.8). This proves Lemma 7.3.

Proof of Theorem 7.2. The equivalence of (iii), (iv), (v) is from [9, Theorem
2.6].

(iv),

(v)—(vi). This is clear.

)
vi)—(iii). This immediate from Terwilliger[8, Theorem 2.11(ii)].
iii),

(vi)—(i). This is immediate from Lemma 7.3(ii).
i)—(ii). This is clear.

(
(
(
(ii)—(iv). This is from Lemma 6.12.

Now we have the equivalence of (i), (ii), (iii), (iv), (v), (vi).

(i)—(vii). I'is (D — 1)-bounded by Theorem 6.4, so I' is D-bounded by Lemma
6.2(iii).

(vii)—(viii). This is clear by Lemma 6.2(ii).
(viii)—(ii). This is clear by Lemma 6.5.
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