## Weak-geodetically Closed Subgraphs in Distance-Regular Graphs

## CHIH-WEN WENG $\dagger$

Abstract. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$ and distance function $\delta$. A (vertex) subgraph $\Omega \subseteq X$ is said to be weakgeodetically closed whenever for all $x, y \in \Omega$ and all $z \in X$,

$$
\delta(x, z)+\delta(z, y) \leq \delta(x, y)+1 \quad \longrightarrow \quad z \in \Omega
$$

We show that if the intersection number $c_{2}>1$ then any weak-geodetically closed subgraph of $X$ is distance-regular. $\Gamma$ is said to be $i$-bounded, whenever for all $x, y \in X$ at distance $\delta(x, y) \leq i, x, y$ are contained in a common weakgeodetically closed subgraph of $\Gamma$ of diameter $\delta(x, y)$. By a parallelogram of length $i$, we mean a 4-tuple $x y z w$ of vertices in $X$ such that $\delta(x, y)=\delta(z, w)=1$, $\delta(x, w)=i$, and $\delta(x, z)=\delta(y, z)=\delta(y, w)=i-1$. We prove the following two theorems.

Theorem 1. Let $\Gamma$ denote a distance-regular graph with diameter $D \geq 2$, and assume the intersection numbers $c_{2}>1, a_{1} \neq 0$. Then for each integer $i \quad(1 \leq i \leq D)$, the following (i)-(ii) are equivalent.
(i) $\Gamma$ is $i$-bounded.
(ii) $\Gamma$ contains no parallelogram of length $\leq i+1$.

Restricting attention to the $Q$-polynomial case, we get the following stronger result.

Theorem 2. Let $\Gamma$ denote a distance-regular graph with diameter $D \geq 3$, and assume the intersection numbers $c_{2}>1, a_{1} \neq 0$. Suppose $\Gamma$ is $Q$-polynomial. Then the following (i)-(iii) are equivalent.
(i) $\Gamma$ contains no parallelogram of length 2 or 3 .
(ii) $\Gamma$ is $D$-bounded.
(iii) $\Gamma$ has classical parameters $(D, b, \alpha, \beta)$, and either $b<-1$, or else $\Gamma$ is a dual polar graph or a Hamming graph.

## 1. Introduction.

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$, and let $\delta$ denote the distance function of $\Gamma$.

Recall a (vertex) subgraph $\Omega \subseteq X$ is geodetically closed whenever for all vertices $x, y \in \Omega$, and for all vertices $z \in X$,

$$
\delta(x, z)+\delta(z, y)=\delta(x, y) \longrightarrow z \in \Omega .
$$

[^0]Distance-regular graphs containing many geodetically closed subgraphs have been studied by several authors. Shult and Yanushka[4], Brouwer and Wilbrink[3] showed that if $\Gamma$ is a near polygon with $c_{2}>1, a_{1} \neq 0$, then there exist sub $2 j$-gons in $\Gamma$ for each integer $j \quad(2 \leq j \leq D)$. Also, Ivanov and Shpectorov[5] showed that if $\Gamma$ is a Hermitian forms graph, then $\Gamma$ has geodetically closed subgraphs of any diameter $j \quad(1 \leq j \leq D)$.

In the present paper, we study the following special kind of geodetically closed subgraphs. We say a subgraph $\Omega \subseteq X$ is weak-geodetically closed whenever for all vertices $x, y \in \Omega$, and for all $z \in X$,

$$
\delta(x, z)+\delta(z, y) \leq \delta(x, y)+1 \longrightarrow z \in \Omega .
$$

We have two main results. First, given an integer $i \quad(1 \leq i \leq D)$, we give necessary and sufficient conditions for the existence of a weak-geodetically closed subgraph of diameter $\delta(x, y)$ containing any two given vertices $x, y$ with $\delta(x, y) \leq$ $i$. Theorem 6.4 is our main result in this area.

We then tighten Theorem 6.4 in the case $\Gamma$ is $Q$-polynomial, and obtain our second main result, Theorem 7.2.

The paper is organized as follows. In sections 2-5, we set up the necessary tools for the proof of Theorem 6.4. To do this, we study the structure theory of a weak-geodetically closed subgraph $\Omega$ of $\Gamma$.

More precisely, in section 2, we define the notion of a subgraph being weakgeodetically closed with respect to a vertex. We find necessary and sufficient conditions for a subgraph to be weak-geodetically closed with respect to some vertex.

In section 3 , we get some inequalities involving the intersection numbers of $\Gamma$, when we assume the existence of certain weak-geodetically closed subgraphs. Proposition 3.2 is the main result in this section.

In section 4, we consider a regular connected subgraph $\Omega$ of $\Gamma$. First, we find a lower bound for $|\Omega|$ and necessary and sufficient conditions for this bound to be met(Lemma 4.4). These conditions involve the notion of weak-geodetic closure. In our main result of this section, Theorem 4.6, we show $\Omega$ is weak-geodetically closed if and only if $\Omega$ is weak-geodetically closed with respect to at least one vertex.

In section 5 , we restrict to the case $c_{2}>1$, and prove a weak-geodetically closed subgraph $\Omega$ of $\Gamma$ is distance-regular.

We prove the two main theorems in section 6 and section 7 .
For the rest of this section, we give some definitions.

Let $\Gamma=(X, R)$ be a finite undirected graph without loops or multiple edges, with vertex set $X$ and edge set $R$. We say vertices $x, y$ are adjacent if $x y \in R$. Pick any integer $i \quad(0 \leq i \leq D)$ and any vertices $x, y \in X$. By a path of length $i$ from $x$ to $y$, we mean a sequence $x=x_{0}, x_{1}, \cdots, x_{i}=y$ of vertices from $x$ such that $x_{j}, x_{j+1}$ are adjacent for all $j \quad(0 \leq j \leq i-1)$. Being joined by a path is an equivalence relation. Its equivalence classes are called the connected components of $\Gamma$. $\Gamma$ is said to be connected whenever $\Gamma$ has a unique connected component. From now on, assume $\Gamma$ is connected. The distance $\delta(x, y)$ between two vertices $x, y \in X$ is the length of a shortest (geodesic) path from $x$ to $y$. By the diameter of $\Gamma$, we mean the scalar

$$
D:=\max \{\delta(x, y) \mid x, y \in X\}
$$

Sometimes we write diam $(\Gamma)$ to denote the diameter of $\Gamma$. By a clique in $\Gamma$, we mean a set of mutually adjacent vertices in $X$.

Let $\Gamma=(X, R)$ be a graph with diameter $D$. By a subgraph of $\Gamma$, we mean a graph $(\Omega, \Xi)$, where $\Omega$ is a nonempty subset of $X$ and $\Xi=\{x y \mid x, y \in \Omega, x y \in R\}$. We refer to $(\Omega, \Xi)$ as the subgraph induced on $\Omega$ and by abuse of notation, we refer to this subgraph as $\Omega$. For any $x \in X$ and any integer $i$, set

$$
\Gamma_{i}(x):=\{y \mid y \in X, \delta(x, y)=i\}
$$

and for $y \in \Gamma_{i}(x)$, set

$$
\begin{align*}
& B(x, y):=\Gamma_{1}(x) \cap \Gamma_{i+1}(y)  \tag{1.1}\\
& A(x, y):=\Gamma_{1}(x) \cap \Gamma_{i}(y)  \tag{1.2}\\
& C(x, y):=\Gamma_{1}(x) \cap \Gamma_{i-1}(y) \tag{1.3}
\end{align*}
$$

Note that for all $x, y \in \Gamma$ and for all $z \in C(y, x)$, we have

$$
\begin{align*}
& C(x, z) \subseteq C(x, y)  \tag{1.4}\\
& B(x, z) \supseteq B(x, y) . \tag{1.5}
\end{align*}
$$

The valency $k(x)$ of a vertex $x \in X$ is the cardinality of $\Gamma_{1}(x)$. The graph $\Gamma$ is called regular (with valency $k$ ) if each vertex in $X$ has valency $k$. $\Gamma$ is said to be distance-regular whenever for all integers $i \quad(0 \leq i \leq D)$, and for all $x, y \in X$ with $\delta(x, y)=i$, the numbers

$$
\begin{align*}
c_{i} & :=|C(x, y)|,  \tag{1.6}\\
a_{i} & :=|A(x, y)|,  \tag{1.7}\\
b_{i} & :=|B(x, y)| \tag{1.8}
\end{align*}
$$

are independent of $x, y$. The constants $c_{i}, a_{i}, b_{i} \quad(0 \leq i \leq D)$ are known as the intersection numbers of $\Gamma$. The sequence

$$
\left\{b_{0}, b_{1}, \cdots, b_{D-1} ; c_{1}, c_{2}, \cdots, c_{D}\right\}
$$

is called the intersection array of $\Gamma$. Note that the valency $k=b_{0}, c_{0}=0, c_{1}=1$, $b_{D}=0$, and

$$
\begin{equation*}
k=c_{i}+a_{i}+b_{i} \quad(0 \leq i \leq D) \tag{1.9}
\end{equation*}
$$

$[2,126]$.

## 2. Weak-geodetically closed subgraphs with respect to a vertex.

Let $\Gamma=(X, R)$ denote a graph, and let $\Omega$ denote a subgraph of $\Gamma$. In this section, we define what it means for $\Omega$ to be weak-geodetically closed with respect to a vertex. We find some necessary and sufficient conditions for $\Omega$ to have this property.

We begin with a definition.
Definition 2.1. Let $\Gamma=(X, R)$ denote a graph with distance function $\delta$. Fix a subgraph $\Omega$ of $\Gamma$, and pick any vertex $x \in \Omega . \Omega$ is said to be geodetically closed with respect to $x$ (resp. weak-geodetically closed with respect to $x$ ), whenever for all $y \in \Omega$ and for all $z \in X$,

$$
\begin{gathered}
\delta(x, z)+\delta(z, y)=\delta(x, y) \longrightarrow z \in \Omega \\
\text { (resp. } \delta(x, z)+\delta(z, y) \leq \delta(x, y)+1 \longrightarrow z \in \Omega) .
\end{gathered}
$$

Lemma 2.2. Let $\Gamma=(X, R)$ denote a graph with distance function $\delta$. Fix a subgraph $\Omega$ of $\Gamma$, and pick any vertex $x \in \Omega$. Then with the notation of (1.3), the following (i)-(iii) are equivalent.
(i) $\Omega$ is geodetically closed with respect to $x$.
(ii) $C(y, x) \subseteq \Omega$ for all $y \in \Omega$.
(iii) For all $y \in \Omega$, and for all $w \in \Gamma_{1}(y) \backslash \Omega$,

$$
\delta(x, w) \geq \delta(x, y)
$$

Proof. This is immediate from Definition 2.1.
Lemma 2.3. Let $\Gamma=(X, R)$ denote a graph with distance function $\delta$. Fix a subgraph $\Omega$ of $\Gamma$, and pick any vertex $x \in \Omega$. Then with the notation of (1.2), (1.3), the following (i)-(iii) are equivalent.
(i) $\Omega$ is weak-geodetically closed with respect to $x$.
(ii) $C(y, x) \subseteq \Omega$ and $A(y, x) \subseteq \Omega$ for all $y \in \Omega$.
(iii) For all $y \in \Omega$, and for all $w \in \Gamma_{1}(y) \backslash \Omega$,

$$
\begin{equation*}
\delta(x, w)=\delta(x, y)+1 \tag{2.1}
\end{equation*}
$$

Proof. (i) $\longrightarrow$ (ii). Let the vertex $y \in \Omega$ be given, and pick any $z \in A(y, x) \cup$ $C(y, x)$. Then $\delta(x, z) \leq \delta(x, y)$, and of course $\delta(z, y)=1$, so

$$
\delta(x, z)+\delta(z, y) \leq \delta(x, y)+1
$$

Hence $z \in \Omega$ by Definition 2.1.
(ii) $\longrightarrow$ (iii). Let $y, w$ be given. Observe

$$
\begin{aligned}
w & \in \Gamma_{1}(y) \backslash \Omega \\
& \subseteq B(y, x)
\end{aligned}
$$

by (ii), and (2.1) follows from (1.1).
(iii) $\longrightarrow$ (i). Suppose $\Omega$ is not weak-geodetically closed with respect to $x$. Then by Definition 2.1, there exists a vertex $y \in \Omega$ and a vertex $z \notin \Omega$ such that

$$
\begin{equation*}
\delta(x, z)+\delta(z, y) \leq \delta(x, y)+1 \tag{2.2}
\end{equation*}
$$

Of all such pairs $y, z$, pick one with $\delta(z, y)$ minimal. Note that $z \neq y$ by the construction, and $\delta(z, y) \neq 1$ by (2.1)-(2.2), so there exists a vertex $z^{\prime} \in C(z, y)$. Observe

$$
\begin{equation*}
\delta\left(z^{\prime}, y\right)=\delta(z, y)-1 \tag{2.3}
\end{equation*}
$$

by the construction, and

$$
\begin{equation*}
\delta\left(x, z^{\prime}\right) \leq \delta(x, z)+1 \tag{2.4}
\end{equation*}
$$

by the triangular inequality. Adding (2.2)-(2.4), we obtain

$$
\begin{equation*}
\delta\left(x, z^{\prime}\right)+\delta\left(z^{\prime}, y\right) \leq \delta(x, y)+1 \tag{2.5}
\end{equation*}
$$

Observe $z^{\prime} \in \Omega$ by (2.3), (2.5) and the construction. Now by (iii) (with $y:=$ $z^{\prime}, w:=z$ ), we find

$$
\begin{equation*}
\delta(x, z)=\delta\left(x, z^{\prime}\right)+1 \tag{2.6}
\end{equation*}
$$

By the triangular inequality,

$$
\begin{equation*}
\delta(x, y) \leq \delta\left(x, z^{\prime}\right)+\delta\left(z^{\prime}, y\right) \tag{2.7}
\end{equation*}
$$

Adding (2.2), (2.3), and (2.7), we obtain

$$
\delta(x, z) \leq \delta\left(x, z^{\prime}\right)
$$

contradicting (2.6). We conclude $\Omega$ is weak-geodetically closed with respect to $x$.

Lemma 2.4. Let $\Gamma=(X, R)$ denote a graph with distance function $\delta$. Fix a subgraph $\Omega$ of $\Gamma$, and pick a vertex $x \in \Omega$. Suppose $\Omega$ is weak-geodetically closed with respect to $x$, and suppose there exists a vertex $z \in \Gamma_{1}(x) \backslash \Omega$. Then the following (i)-(ii) hold.
(i) For any vertex $y \in \Omega$,

$$
\delta(z, y)=\delta(x, y)+1
$$

(ii) $x$ is the unique vertex in $\Omega$ adjacent to $z$.

Proof. (i). By Definition 2.1 and since $z \notin \Omega$, we have $\delta(x, z)+\delta(z, y)>$ $\delta(x, y)+1$. Of course $\delta(x, z)=1$, so $\delta(z, y)>\delta(x, y)$. Also by the triangular inequality,

$$
\begin{aligned}
\delta(z, y) & \leq \delta(z, x)+\delta(x, y) \\
& =1+\delta(x, y)
\end{aligned}
$$

Hence $\delta(z, y)=\delta(x, y)+1$.
(ii). This is immediate from (i).

Definition 2.5. Let $\Gamma=(X, R)$ denote a graph with distance function $\delta$, and let $\Omega$ be any subgraph of $\Gamma$. For all vertices $x \in \Omega$, define

$$
\operatorname{diam}_{x}(\Omega):=\max \{\delta(x, y) \mid y \in \Omega\}
$$

Lemma 2.6. Let $\Gamma=(X, R)$ denote a distance-regular graph. Fix a subgraph $\Omega$ of $\Gamma$, and pick a vertex $x \in \Omega$. Suppose $\Omega$ is weak-geodetically closed with respect to $x$. Set $d:=\operatorname{diam}_{x}(\Omega)$. Then the following (i)-(iv) hold.
(i) For all $y \in \Omega \cap \Gamma_{d}(x)$,

$$
\left|\Omega \cap \Gamma_{1}(y)\right|=c_{d}+a_{d}
$$

(ii) For all $y \in \Omega \cap \Gamma_{d}(x)$,

$$
\begin{equation*}
C(x, y) \cup A(x, y) \subseteq \Omega \cap \Gamma_{1}(x) \tag{2.8}
\end{equation*}
$$

(iii)

$$
\left|\Omega \cap \Gamma_{1}(x)\right| \geq c_{d}+a_{d} .
$$

(iv) Equality holds in (iii) if and only if equality holds in (2.8) for at least one $y \in \Omega \cap \Gamma_{d}(x)$, if and only if equality holds in (2.8) for all $y \in \Omega \cap \Gamma_{d}(x)$.

Proof. (i). Note that $\Gamma_{1}(y)=C(y, x) \cup A(y, x) \cup B(y, x)$. Observe that $\Omega \cap B(y, x)=\emptyset$ since $\delta(x, y)=\operatorname{diam}_{x}(\Omega)$. Now $\Omega \cap \Gamma_{1}(y)=C(y, x) \cup A(y, x)$ by Lemma 2.3(ii), and (i) follows by (1.6), (1.7).
(ii). Pick $z \in C(x, y) \cup A(x, y)$. Then certainly $z \in \Gamma_{1}(x)$ and

$$
\delta(x, z)+\delta(z, y) \leq \delta(x, y)+1
$$

so $z \in \Omega$ by Definition 2.1.
(iii), (iv). These are immediate from (ii).

## 3. Weak-geodetically closed subgraphs.

Let $\Gamma=(X, R)$ be any graph. In this section, we study a subgraph $\Omega$ that is weak-geodetically closed with respect to all vertices in $\Omega$. We prove that when $\Gamma$ is distance-regular, the existence of $\Omega$ forces certain inequalities involving the intersection numbers of $\Gamma$.

Definition 3.1. Let $\Gamma=(X, R)$ be a graph. A subgraph $\Omega$ of $\Gamma$ is said to be geodetically closed (resp. weak-geodetically closed), whenever $\Omega$ is geodetically closed (resp. weak-geodetically closed) with respect to all $x \in \Omega$.

Note. A weak-geodetically closed subgraph $\Omega$ of $\Gamma$ is geodetically closed in $\Gamma$. In particular, $\Omega$ is connected, and the distances as measured in $\Omega$ are the same as distances as measured in $\Gamma$.

Proposition 3.2. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$. Fix an integer $d \quad(1 \leq d<D)$, and suppose there exists a weakgeodetically closed subgraph $\Omega$ of $\Gamma$ that has diameter $d$. Then the intersection numbers $b_{i}, a_{i}, c_{i}$ of $\Gamma$ satisfy the following inequalities.
(i)

$$
c_{i} \geq c_{i-1}\left(c_{2}-1\right)+1 \quad(1 \leq i \leq d+1)
$$

(ii)

$$
a_{i} \geq a_{i-1}\left(c_{2}-1\right)+a_{1} \quad(1 \leq i \leq d+1)
$$

(iii)

$$
b_{i} \leq\left(b_{i-1}-k\right)\left(c_{2}-1\right)+b_{1} \quad(1 \leq i \leq d+1)
$$

(iv) Suppose $c_{2}>1$. Then

$$
b_{i}<b_{i-1} \quad(1 \leq i \leq d+1)
$$

Proof. Let the integer $i$ be given. Our result is clear if $i=1$, since $c_{1}=1$, $c_{0}=0, a_{0}=0, b_{0}=k$. Hence we may assume $i \geq 2$. First we claim there exist vertices $x, y \in \Omega$ and $z \in X \backslash \Omega$ such that

$$
\begin{equation*}
\delta(x, y)=i-1, \quad \delta(y, z)=1, \quad \delta(x, z)=i . \tag{3.1}
\end{equation*}
$$

Indeed, since $\operatorname{diam}(\Omega)=d$, we can pick vertices $x^{\prime}, y \in \Omega$ with $\delta\left(x^{\prime}, y\right)=d$. Observe $B\left(y, x^{\prime}\right) \neq \emptyset$ since $d<D$, so pick a vertex $z \in B\left(y, x^{\prime}\right)$. Note that $z \notin \Omega$, since

$$
\begin{aligned}
\delta\left(x^{\prime}, z\right) & =d+1 \\
& >\operatorname{diam}(\Omega) .
\end{aligned}
$$

Now pick a vertex $x$ in a geodesic path from $x^{\prime}$ to $y$ with $\delta(x, y)=i-1$. Clearly, $x \in \Omega$, and $x, y, z$ satisfy (3.1). This proves our claim. Recall by Lemma 2.4(ii),

$$
\begin{equation*}
\Gamma_{1}(z) \cap \Omega=\{y\} . \tag{3.2}
\end{equation*}
$$

Now we consider the four parts of the proposition.
(i). Observe each vertex in $C(y, x)$ is adjacent to $c_{2}-1$ vertices in $C(z, x) \backslash\{y\}$. Next observe each vertex in $C(z, x) \backslash\{y\}$ is adjacent to at most 1 vertex in $C(y, x)$. To see this, pick any $w \in C(z, x) \backslash\{y\}$. Then $w \notin \Omega$ by (3.2). Note that $C(y, x) \subseteq \Omega$ by Lemma 2.3(ii), so $w$ is adjacent to at most one vertex in $C(y, x)$ by Lemma 2.4(ii). Now by counting the edges between $C(z, x) \backslash\{y\}$ and $C(y, x)$, we find

$$
\begin{aligned}
c_{i}-1 & =|C(z, x) \backslash\{y\}| \\
& \geq|C(y, x)|\left(c_{2}-1\right) \\
& =c_{i-1}\left(c_{2}-1\right),
\end{aligned}
$$

as desired.
(ii). We first prove

$$
\begin{equation*}
A(z, y) \subseteq A(z, x) \tag{3.3}
\end{equation*}
$$

and then count the edges between $A(z, x) \backslash A(z, y)$ and $A(y, x)$ to establish the inequality.

Note that

$$
\begin{equation*}
A(y, x) \subseteq \Omega \tag{3.4}
\end{equation*}
$$

by Lemma 2.3(ii),

$$
\begin{equation*}
A(z, y) \cap \Omega=\emptyset \tag{3.5}
\end{equation*}
$$

by (3.2), and

$$
\begin{equation*}
A(z, y) \subseteq A(y, x) \cup A(z, x) \tag{3.6}
\end{equation*}
$$

by construction. Now (3.3) follows from (3.4)-(3.6). We now count the edges between $A(z, x) \backslash A(z, y)$ and $A(y, x)$.
Claim 1. Each vertex in $A(z, x) \backslash A(z, y)$ is adjacent to at most one vertex in $A(y, x)$.
Proof of Claim 1. Observe that by (3.2),

$$
A(z, x) \cap \Omega=\emptyset,
$$

so Claim 1 follows from (3.4) and Lemma 2.4(ii).
Claim 2. Each vertex in $A(y, x)$ is adjacent to $c_{2}-1$ vertices in $A(z, x) \backslash A(z, y)$. Proof of Claim 2. Pick $w \in A(y, x)$. Observe

$$
\begin{equation*}
w \in \Omega \tag{3.7}
\end{equation*}
$$

by (3.4), so $w$ is not adjacent to $z$ by (3.2); in particular $\delta(w, z)=2$. It now suffices to show

$$
\begin{equation*}
\Gamma_{1}(w) \cap(A(z, x) \backslash A(z, y))=C(z, w) \backslash\{y\} \tag{3.8}
\end{equation*}
$$

since $|C(z, w) \backslash\{y\}|=c_{2}-1$. The inclusion

$$
\Gamma_{1}(w) \cap(A(z, x) \backslash A(z, y)) \subseteq C(z, w) \backslash\{y\}
$$

is clear by construction. To prove

$$
C(z, w) \backslash\{y\} \subseteq \Gamma_{1}(w) \cap(A(z, x) \backslash A(z, y))
$$

pick $u \in C(z, w) \backslash\{y\}$. Of course $u \in \Gamma_{1}(w)$ and $u \in \Gamma_{1}(z)$, so

$$
\begin{equation*}
u \notin \Omega \tag{3.9}
\end{equation*}
$$

by (3.2), and

$$
\begin{equation*}
u \in A(z, x) \cup A(w, x) \tag{3.10}
\end{equation*}
$$

by construction. Note that

$$
\begin{equation*}
A(w, x) \subseteq \Omega \tag{3.11}
\end{equation*}
$$

by (3.7) and Lemma 2.3(ii). Hence $u \in A(z, x)$ by (3.9)-(3.11). Also $u \notin A(z, y)$ by (3.7) and (3.9), otherwise $u$ is adjacent to $y, w \in \Omega$, contradicting Lemma 2.4(ii). Hence we have (3.8). This proves Claim 2.

Now using Claim 1, Claim 2, we count the edges between $A(z, x) \backslash A(z, y)$ and $A(y, x)$, obtaining

$$
\begin{aligned}
a_{i}-a_{1} & =|A(z, x) \backslash A(z, y)| \\
& \geq|A(y, x)|\left(c_{2}-1\right) \\
& =a_{i-1}\left(c_{2}-1\right)
\end{aligned}
$$

as desired.
(iii). By (i), (ii) and (1.9),

$$
\begin{aligned}
b_{i} & =k-a_{i}-c_{i} \\
& \leq k-\left(a_{i-1}+c_{i-1}\right)\left(c_{2}-1\right)-a_{1}-1 \\
& =\left(b_{i-1}-k\right)\left(c_{2}-1\right)+b_{1},
\end{aligned}
$$

as desired.
(iv). Observe $b_{i-1}-k \leq 0, c_{2}-1 \geq 1$ and $b_{1}<k$, so by (iii),

$$
\begin{aligned}
b_{i} & \leq\left(b_{i-1}-k\right)\left(c_{2}-1\right)+b_{1} \\
& \leq b_{i-1}-k+b_{1} \\
& <b_{i-1}
\end{aligned}
$$

as desired. This proves Proposition 3.2.

## 4. Regular subgraphs of distance-regular graphs.

In this section, we study basic properties of a regular connected subgraph $\Omega$ in a distance-regular graph, and get a lower bound of $|\Omega|$. We find necessary and sufficient conditions for $|\Omega|$ to meet this lower bound. These conditions are related to the weak-geodetically closed property. Theorem 4.6 is the main result of this section.

We begin with a definition.
Definition 4.1. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$, and let $\Omega$ denote a regular connected subgraph of $\Gamma$. We define
(i)

$$
\beta_{i}(\Omega):=\gamma-c_{i}-a_{i} \quad(0 \leq i \leq D)
$$

where $\gamma$ denotes the valency of $\Omega$.
(ii)

$$
\begin{aligned}
& k_{i}(\Omega):=\frac{\beta_{0}(\Omega) \beta_{1}(\Omega) \cdots \beta_{i-1}(\Omega)}{c_{1} c_{2} \cdots c_{i}} \quad(1 \leq i \leq D), \\
& k_{0}(\Omega):=1
\end{aligned}
$$

(iii)

$$
\begin{equation*}
d(\Omega):=\min \left\{i \mid 0 \leq i \leq D, \beta_{i}(\Omega) \leq 0\right\} . \tag{4.1}
\end{equation*}
$$

(We observe $\beta_{D}(\Omega) \leq 0$, so (4.1) makes sense).
Lemma 4.2. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$. Let $\Omega$ denote a regular connected subgraph of $\Gamma$, and write $d:=d(\Omega)$. Then the following (i)-(iii) hold.
(i) $\beta_{i}(\Omega)>0 \quad(0 \leq i<d)$.
(ii) $k_{i}(\Omega)>0 \quad(0 \leq i \leq d)$.
(iii) $\gamma \leq a_{d}+c_{d}$, where $\gamma$ denotes the valency of $\Omega$.

Proof. (i). This is immediate from Definition 4.1(iii).
(ii). This is immediate from (i) and Definition 4.1(ii).
(iii). This is immediate from Definition 4.1(i), (iii).

Lemma 4.3. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$. Let $\Omega$ denote a regular connected subgraph of $\Gamma$, and pick any $x \in \Omega$. Pick an integer $i \quad(0 \leq i \leq d(\Omega))$. Then the following (i)-(iii) hold.
(i)

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{i}(x)\right| \geq k_{i}(\Omega) \tag{4.2}
\end{equation*}
$$

with equality if and only if

$$
\begin{equation*}
C(y, x) \subseteq \Omega \quad(\forall y \in \Omega, \delta(x, y) \leq i) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A(y, x) \subseteq \Omega \quad(\forall y \in \Omega, \delta(x, y) \leq i-1) \tag{4.4}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\Omega \cap \Gamma_{i}(x) \neq \emptyset . \tag{4.5}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\operatorname{diam}_{x}(\Omega) \geq d(\Omega) \tag{4.6}
\end{equation*}
$$

Proof. (i). We prove this by induction on the integer $i$. First assume $i=0$. Then (4.2)-(4.4) hold at $i$; indeed both sides in (4.2) equal 1 . Next assume $i \geq 1$. Then by Definition 4.1(i), a counting argument, the induction hypothesis and Definition 4.1(ii),

$$
\begin{align*}
c_{i}\left|\Omega \cap \Gamma_{i}(x)\right| & \geq \text { number of edges between } \Omega \cap \Gamma_{i}(x) \text { and } \Omega \cap \Gamma_{i-1}(x)  \tag{4.7}\\
& \geq \beta_{i-1}(\Omega)\left|\Omega \cap \Gamma_{i-1}(x)\right|  \tag{4.8}\\
& \geq \beta_{i-1}(\Omega) k_{i-1}(\Omega)  \tag{4.9}\\
& =\frac{\beta_{0}(\Omega) \beta_{1}(\Omega) \cdots \beta_{i-1}(\Omega)}{c_{1} c_{2} \cdots c_{i-1}}  \tag{4.10}\\
& =c_{i} k_{i}(\Omega) \tag{4.11}
\end{align*}
$$

and equalities hold in (4.7)-(4.9) if and only if (4.3)-(4.4) hold. Now (4.2) follows since $c_{i}>0$.
(ii). This is immediate from (i) above and Lemma 4.2(ii).
(iii). This is immediate from (ii) and Definition 2.5.

Lemma 4.4. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$, and let $\Omega$ denote a regular connected subgraph of $\Gamma$. Then

$$
\begin{equation*}
|\Omega| \geq k_{0}(\Omega)+k_{1}(\Omega)+\cdots+k_{d}(\Omega) \tag{4.12}
\end{equation*}
$$

where $d:=d(\Omega)$ is from Definition 4.1(iii). Furthermore, equality holds in (4.12) if and only if for any $x \in \Omega$ (and for some $x \in \Omega$ ),

$$
\begin{gather*}
d=\operatorname{diam}_{x}(\Omega)  \tag{4.13}\\
C(y, x) \subseteq \Omega \quad(\forall y \in \Omega, \delta(x, y) \leq d) \tag{4.14}
\end{gather*}
$$

and

$$
\begin{equation*}
A(y, x) \subseteq \Omega \quad(\forall y \in \Omega, \delta(x, y) \leq d-1) \tag{4.15}
\end{equation*}
$$

Proof. Pick $x \in \Omega$. Then by Lemma 4.3,

$$
\begin{align*}
|\Omega| & =\sum_{i=0}^{\operatorname{diam}_{x}(\Omega)}\left|\Omega \cap \Gamma_{i}(x)\right| \\
& \geq \sum_{i=0}^{d}\left|\Omega \cap \Gamma_{i}(x)\right|  \tag{4.16}\\
& \geq \sum_{i=0}^{d} k_{i}(\Omega) \tag{4.17}
\end{align*}
$$

and equalities in (4.16)-(4.17) hold if (4.13)-(4.15) hold. Hence we have the lemma.

Theorem 4.5. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$. Let $\Omega$ denote a regular connected subgraph of $\Gamma$, and let $d:=d(\Omega)$ be as in Definition 4.1(iii). Then the following (i)-(iii) are equivalent.
(i) Equality is obtained in (4.12).
(ii) $\Omega$ is geodetically closed, and for all $x, y \in \Omega$,

$$
\begin{equation*}
A(y, x) \subseteq \Omega \quad \text { if } \delta(x, y)<\operatorname{diam}_{x}(\Omega) \tag{4.18}
\end{equation*}
$$

(iii) There exists a vertex $x \in \Omega$ such that

$$
\begin{equation*}
\Omega \text { is geodetically closed with respect to } x \text {, } \tag{4.19}
\end{equation*}
$$

and for all $y \in \Omega$,

$$
\begin{equation*}
A(y, x) \subseteq \Omega \quad \text { if } \delta(x, y)<\operatorname{diam}_{x}(\Omega) \tag{4.20}
\end{equation*}
$$

If (i)-(iii) hold, then $\Omega$ is distance-regular, with diameter $d$, and intersection numbers

$$
\begin{gather*}
c_{i}(\Omega)=c_{i} \quad(0 \leq i \leq d)  \tag{4.21}\\
a_{i}(\Omega)=a_{i} \quad(0 \leq i<d) \tag{4.22}
\end{gather*}
$$

Proof. (i) $\rightarrow$ (ii) is immediate from Lemma 4.4, Lemma 2.2(ii), Definition 3.1 and (4.6). (ii) $\rightarrow$ (iii) is clear. To prove (iii) $\rightarrow$ (i), by Lemma 4.4, Lemma 2.2(ii), we only need to prove (4.13). Observe by a counting argument,

$$
\left|\Omega \cap \Gamma_{i}(x)\right| c_{i}=\left|\Omega \cap \Gamma_{i-1}(x)\right| \beta_{i-1}(\Omega) \quad\left(1 \leq i \leq \operatorname{diam}_{x}(\Omega)\right)
$$

forcing

$$
\beta_{i}>0 \quad\left(0 \leq i<\operatorname{diam}_{x}(\Omega)\right)
$$

Hence (4.13) holds by (4.6) and Definition 4.1(iii).
Now suppose (i)-(iii) hold. (4.21)-(4.22) follow from (4.13) and (ii) above. We now have Theorem 4.5.

Theorem 4.6. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 2$. Let $\Omega$ denote a regular connected subgraph of $\Gamma$, and let $d:=d(\Omega)$ be as in Definition 4.1(iii). Then the following (i)-(iii) are equivalent.
(i) Equality holds in (4.12), and $\Omega$ has valency $c_{d}+a_{d}$.
(ii) $\Omega$ is weak-geodetically closed.
(iii) $\Omega$ is weak-geodetically closed with respect to at least one vertex in $\Omega$.

Suppose (i)-(iii) hold. Then $\Omega$ is distance-regular, with diameter $d$, and intersection numbers

$$
\begin{array}{cc}
c_{i}(\Omega)=c_{i} & (0 \leq i \leq d) \\
a_{i}(\Omega)=a_{i} & (0 \leq i \leq d) \tag{4.24}
\end{array}
$$

Proof. Observe each of the three statements (i)-(iii) in the present theorem implies the corresponding statement in Theorem 4.5. Without loss of generality, we may assume Theorem 4.5(i)-(iii) hold. In particular, we may assume $\Omega$ is distance-regular with diameter $d$.
(i) $\rightarrow$ (ii). Since Theorem 4.5 (ii) holds by assumption, it remains to show

$$
\begin{equation*}
A(y, x) \subseteq \Omega \tag{4.25}
\end{equation*}
$$

for all $x, y \in \Omega$ such that $\delta(x, y)=d$. To obtain (4.25), observe by (4.21) that

$$
\begin{aligned}
|A(y, x) \backslash \Omega| & =a_{d}-a_{d}(\Omega) \\
& =a_{d}-\left(\left|\Omega \cap \Gamma_{1}(y)\right|-c_{d}\right) \\
& =0,
\end{aligned}
$$

and (4.25) follows.
(ii) $\rightarrow$ (iii). This is clear.
(iii) $\rightarrow$ (i). Since Theorem 4.5 (i) holds by assumption, it remains to show $\Omega$ has valency $c_{d}+a_{d}$. Pick any $x, y \in \Omega$ such that $\delta(x, y)=d$. Then

$$
\left|\Omega \cap \Gamma_{1}(y)\right|=c_{d}+a_{d}
$$

by Lemma 2.6(i).
Now assume (i)-(iii) hold. Then (4.23)-(4.24) hold by (4.21)-(4.22), and since $\Omega$ has valency $c_{d}+a_{d}$. This proves Theorem 4.6.
5. Distance-regular graphs with $c_{2}>1$.

In this section, we restrict our attention to the case $\Gamma=(X, R)$ is distanceregular with intersection number $c_{2}>1$. We first prove that a weak-geodetically
closed subgraph $\Omega$ of $\Gamma$ is regular (and consequently distance-regular by Theorem 4.6). We then give a precise description of $\Omega$.

Lemma 5.1. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection number $c_{2}>1$. Fix a subgraph $\Omega$ of $\Gamma$, and pick any vertex $x \in \Omega$. Suppose $\Omega$ is weak-geodetically closed with respect to $x$. Then for all $y \in \Omega \cap \Gamma_{1}(x)$,

$$
\left|\Omega \cap \Gamma_{1}(x)\right| \geq\left|\Omega \cap \Gamma_{1}(y)\right| .
$$

Proof. Since $\Gamma$ is regular, it suffices to prove

$$
\begin{equation*}
\left|\Gamma_{1}(x) \backslash \Omega\right| \leq\left|\Gamma_{1}(y) \backslash \Omega\right| . \tag{5.1}
\end{equation*}
$$

Observe that each vertex in $\Gamma_{1}(x) \backslash \Omega$ is adjacent to $c_{2}-1$ vertices in $\Gamma_{1}(y) \backslash \Omega$. Indeed pick $z \in \Gamma_{1}(x) \backslash \Omega$. Then by Lemma 2.4(i),

$$
\delta(z, y)=2
$$

Note that $z$ is adjacent to $c_{2}$ vertices in $\Gamma_{1}(y)$, and $x$ is the unique one of such vertices in $\Omega$ by Lemma 2.4(ii). Hence $z$ is adjacent to $c_{2}-1$ vertices in $\Gamma_{1}(y) \backslash \Omega$. Next, observe that each vertex in $\Gamma_{1}(y) \backslash \Omega$ is adjacent to at most $c_{2}-1$ vertices in $\Gamma_{1}(x) \backslash \Omega$. Indeed pick $w \in \Gamma_{1}(y) \backslash \Omega$. Then by Lemma 2.3(iii),

$$
\delta(x, w)=2
$$

Since $y \in \Omega \cap \Gamma_{1}(x), w$ is adjacent to at most $c_{2}-1$ vertices in $\Gamma_{1}(x) \backslash \Omega$.
Now by counting edges between $\Gamma_{1}(x) \backslash \Omega$ and $\Gamma_{1}(y) \backslash \Omega$, we have

$$
\begin{equation*}
\left|\Gamma_{1}(x) \backslash \Omega\right|\left(c_{2}-1\right) \leq\left|\Gamma_{1}(y) \backslash \Omega\right|\left(c_{2}-1\right) \tag{5.2}
\end{equation*}
$$

and (5.1) follows since $c_{2}>1$. This proves Lemma 5.1.
Lemma 5.2. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection number $c_{2}>1$. Let $\Omega$ denote a weak-geodetically closed subgraph of $\Gamma$. Then $\Omega$ is regular.
Proof. Suppose $\Omega$ is not regular. Since $\Omega$ is connected, there exist adjacent vertices $x, y \in \Omega$ such that

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{1}(x)\right|<\left|\Omega \cap \Gamma_{1}(y)\right|, \tag{5.3}
\end{equation*}
$$

contradicting Lemma 5.1.

Corollary 5.3. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection number $c_{2}>1$. Let $\Omega$ denote a weakgeodetically closed subgraph of $\Gamma$. Then $\Omega$ is distance-regular with intersection array

$$
\left\{c_{1}, c_{2}, \cdots, c_{d} ; b_{0}-b_{d}, b_{1}-b_{d}, \cdots, b_{d-1}-b_{d}\right\}
$$

where $d=d(\Omega)$.
Proof. This is immediate from Lemma 5.2, Theorem 4.6 and (1.9).
Corollary 5.4. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection number $c_{2}>1$. Let $\Omega, \Omega^{\prime}$ denote two weakgeodetically closed subgraphs such that $\Omega^{\prime} \subseteq \Omega$. Then the following (i)-(ii) are equivalent.
(i) $\Omega^{\prime}=\Omega$.
(ii) $\operatorname{diam}\left(\Omega^{\prime}\right)=\operatorname{diam}(\Omega)$.

Proof. (i) $\longrightarrow$ (ii). Clear.
(ii) $\longrightarrow$ (i). $\Omega, \Omega^{\prime}$ are distance-regular with the same intersection array by Corollary 5.3. Now we have $|\Omega|=\left|\Omega^{\prime}\right|$, so $\Omega=\Omega^{\prime}$.
Definition 5.5. Let $\Gamma=(X, R)$ be a graph. For any vertex $x \in X$, and any subset $C \subseteq X$, define

$$
[x, C]:=\{v \in X \mid \text { there exists } y \in C, \text { such that } \delta(x, v)+\delta(v, y)=\delta(x, y)\}
$$

The following proposition gives us a description of a weak-geodetically closed subgraph of a distance-regular graph with $c_{2}>1$.

Proposition 5.6. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection number $c_{2}>1$. Pick any subgraph $\Omega$ of $\Gamma$, and fix an integer $d \quad(0 \leq d \leq D)$. Then the following (i)-(ii) are equivalent.
(i) $\Omega$ is weak-geodetically closed with diameter $d$.
(ii) There exists a vertex $x \in \Omega$ that satisfies the following (iia)-(iid).
(iia) $\Omega$ is weak-geodetically closed with respect to $x$.
(iib) $\left|\Omega \cap \Gamma_{1}(x)\right|=c_{d}+a_{d}$.
(iic) $\Omega=[x, C]$ for some $C \subseteq \Gamma_{d}(x)$.
(iid) For all $v \in \Omega$ and for all $z \in X$, if $z$ is adjacent to two distinct vertices in $C(v, x)$, then $z \in \Omega$.

Proof. (i) $\longrightarrow$ (ii). Let $x$ denote any vertex in $\Omega$. (iia) is immediate from Definition 3.1. (iib) is immediate from Corollary 5.3 and (1.9). Suppose (iic) fails. Then there exists a vertex $w \in \Omega$ such that $\delta(x, w)<d$ and $B(w, x) \cap \Omega=\emptyset$. This contradicts Corollary 5.3. Hence we have (iic). To prove (iid), suppose $z$ is adjacent to distinct vertices $w, w^{\prime} \in C(v, x)$. Then $w, w^{\prime} \in \Omega$ by Lemma 2.3(ii), so $z \in \Omega$ by Lemma 2.4(ii).
(ii) $\longrightarrow$ (i). First, we prove $\Omega$ is weak-geodetically closed. To do this, by parts (ii), (iii) of Theorem 4.6, it suffices to show that $\Omega$ is regular. We will show each vertex in $\Omega$ has valency $c_{d}+a_{d}$. Note that by Lemma 2.6(i), for all $w \in C$,

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{1}(w)\right|=c_{d}+a_{d} \tag{5.4}
\end{equation*}
$$

Claim. For all integers $j \quad(1 \leq j \leq d)$, and for all pairs of adjacent vertices $u, v \in \Omega$ such that $u \in \Gamma_{j-1}(x)$ and $v \in \Gamma_{j}(x)$, we have

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{1}(u)\right| \geq\left|\Omega \cap \Gamma_{1}(v)\right| . \tag{5.5}
\end{equation*}
$$

Proof of Claim. Since $\Gamma$ is regular, to prove (5.5), it suffices to prove

$$
\begin{equation*}
\left|\Gamma_{1}(u) \backslash \Omega\right| \leq\left|\Gamma_{1}(v) \backslash \Omega\right| . \tag{5.6}
\end{equation*}
$$

We will count the edges between $\Gamma_{1}(u) \backslash \Omega$ and $\Gamma_{1}(v) \backslash \Omega$ in two ways to establish (5.6). On the one hand, we prove that each vertex in $\Gamma_{1}(u) \backslash \Omega$ is adjacent to exactly $c_{2}-1$ vertices in $\Gamma_{1}(v) \backslash \Omega$. Pick $z \in \Gamma_{1}(u) \backslash \Omega$. Note that $z \in \Gamma_{j}(x)$ by Lemma 2.3(iii). We now show $\delta(z, v)=2$. Obviously $\delta(z, v) \leq 2$, since $z, u, v$ is a path. Observe $z \neq v$ by construction. Also $z, v$ are not adjacent, otherwise $z \in A(v, x) \subseteq \Omega$ by Lemma 2.3(ii), a contradiction. Hence $\delta(z, v)=2$. Next we show

$$
\begin{equation*}
\Omega \cap C(z, v)=\{u\} \tag{5.7}
\end{equation*}
$$

To see this, pick $w \in \Omega \cap C(z, v)$ and suppose $w \neq u$. Note that $w \notin C(v, x)$, otherwise $z$ is adjacent to $u, w \in C(v, x)$, putting $z \in \Omega$ by (iid), a contradiction. Note that $w \notin A(v, x)$, otherwise $w \in A(v, x)$ and $z \in A(w, x)$, putting $z \in \Omega$ by Lemma 2.3(ii), a contradiction. Hence $w \in B(v, x)$. Now $z \in C(w, x)$, putting $z \in \Omega$ by Lemma 2.3(ii), a contradiction. Hence $w=u$ and we have (5.7). Now observe that by (5.7),

$$
\begin{aligned}
\left|\Gamma_{1}(z) \cap\left(\Gamma_{1}(v) \backslash \Omega\right)\right| & =|C(z, v) \backslash\{u\}| \\
& =c_{2}-1
\end{aligned}
$$

Hence $z$ is adjacent to exactly $c_{2}-1$ vertices in $\Gamma_{1}(v) \backslash \Omega$.

On the other hand, we show that each vertex in $\Gamma_{1}(v) \backslash \Omega$ is adjacent to at most $c_{2}-1$ vertices in $\Gamma_{1}(u) \backslash \Omega$. Pick a vertex $z \in \Gamma_{1}(v) \backslash \Omega$. Observe $\delta(x, z)=j+1$ by Lemma 2.3(iii). Observe $\delta(u, z)=2$. Now we have the desired property, since $z$ is adjacent to $c_{2}$ vertices in $\Gamma_{1}(u)$ and $v \in \Omega$ is one of them.
Using above the two ways to count the edges between vertices in $\Gamma_{1}(u) \backslash \Omega$ and vertices in $\Gamma_{1}(v) \backslash \Omega$, we have

$$
\left|\Gamma_{1}(u) \backslash \Omega\right|\left(c_{2}-1\right) \leq\left|\Gamma_{1}(v) \backslash \Omega\right|\left(c_{2}-1\right),
$$

and (5.6) follows since $c_{2}>1$. This proves the claim.
To show $\Omega$ is regular, fix any geodesic path $x=x_{0}, x_{1}, \cdots, x_{d}$, where $x_{d} \in C$, and set

$$
t_{l}:=\left|\Omega \cap \Gamma_{1}\left(x_{l}\right)\right| \quad(0 \leq l \leq d)
$$

Observe

$$
\begin{equation*}
t_{0}=a_{d}+c_{d} \tag{5.8}
\end{equation*}
$$

by assumption (iib),

$$
\begin{equation*}
t_{d}=a_{d}+c_{d} \tag{5.9}
\end{equation*}
$$

by (5.4), and

$$
\begin{equation*}
t_{l-1} \geq t_{l} \quad(1 \leq l \leq d) \tag{5.10}
\end{equation*}
$$

by the claim. It follows from (5.8)-(5.10) that

$$
t_{l}=a_{d}+c_{d} \quad(0 \leq l \leq d)
$$

By Definition 5.5, $\Omega$ is the union of geodesic paths of the above type, and we conclude every vertex in $\Omega$ has valency $a_{d}+c_{d}$. Now $\Omega$ is weak-geodetically closed by Theorem 4.6. It remains to show $\Omega$ has diameter $d$. This holds, since $\Omega$ is distance-regular by Corollary 5.3 and $\operatorname{diam}_{x}(\Omega)=d$ by (iic). This proves Proposition 5.6.

If we assume $d=2$ and $a_{2} \neq 0$ in Proposition 5.6, we get the following improvement.

Proposition 5.7. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection numbers $c_{2}>1, a_{2} \neq 0$. Then for any subgraph $\Omega$ of $\Gamma$, the following (i)-(ii) are equivalent.
(i) $\Omega$ is weak-geodetically closed with diameter 2 .
(ii) There exists a vertex $x \in \Omega$ that satisfies the following (iia)-(iic).
(iia) $\Omega$ is weak-geodetically closed with respect to $x$.
(iib) $\left|\Omega \cap \Gamma_{1}(x)\right|=a_{2}+c_{2}$.
(iic) $\operatorname{diam}_{x}(\Omega)=2$.
Proof. (i) $\longrightarrow$ (ii). (iia)-(iic) are immediate from Proposition 5.6 (iia)-(iic) (with $d=2$ ).
(ii) $\longrightarrow$ (i). First, we prove $\Omega$ is weak-geodetically closed. To do this, in view of parts (ii), (iii) of Theorem 4.6, it suffices to show $\Omega$ is regular. We show each vertex in $\Omega$ has valency $c_{2}+a_{2}$. Observe by Lemma 2.6(i) that for all $y \in \Omega \cap \Gamma_{2}(x)$,

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{1}(y)\right|=c_{2}+a_{2} \tag{5.11}
\end{equation*}
$$

Observe by Lemma 5.1 that for all $z \in \Omega \cap \Gamma_{1}(x)$,

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{1}(z)\right| \leq c_{2}+a_{2} \tag{5.12}
\end{equation*}
$$

It remains to show equality holds in (5.12) for all $z \in \Omega \cap \Gamma_{1}(x)$. We suppose this is not the case and get a contradiction. Pick $z^{\prime} \in \Omega \cap \Gamma_{1}(x)$ such that $\left|\Omega \cap \Gamma_{1}\left(z^{\prime}\right)\right|$ is minimal and assume

$$
\begin{equation*}
\left|\Omega \cap \Gamma_{1}\left(z^{\prime}\right)\right|<c_{2}+a_{2} \tag{5.13}
\end{equation*}
$$

Claim 1. There exists a vertex $y \in \Omega \cap \Gamma_{2}(x)$ that is not adjacent to $z^{\prime}$.
Proof of Claim 1. If this fails, then $z^{\prime}$ is adjacent to each vertex in $\Omega \cap \Gamma_{2}(x)$. Hence by Lemma 2.3(ii) and the construction, for all $z \in \Omega \cap \Gamma_{1}(x)$,

$$
\begin{aligned}
|\Omega \cap B(z, x)| & =\left|\Omega \cap \Gamma_{1}(z)\right|-c_{1}-a_{1} \\
& \geq\left|\Omega \cap \Gamma_{1}\left(z^{\prime}\right)\right|-c_{1}-a_{1} \\
& =\left|\Omega \cap \Gamma_{2}(x)\right|
\end{aligned}
$$

Then every vertex in $\Omega \cap \Gamma_{1}(x)$ is adjacent to every vertex in $\Omega \cap \Gamma_{2}(x)$. But this is inconsistent with (iib) and $a_{2} \neq 0$. Hence we have Claim 1.

We fix $y, z^{\prime}$ for the rest of this proof. Observe, by (iib), Lemma 2.6(iv),

$$
C(x, y) \cup A(x, y)=\Omega \cap \Gamma_{1}(x)
$$

Now set

$$
\begin{equation*}
\gamma:=\frac{1}{c_{2}} \sum_{z \in C(x, y)}\left|\Omega \cap \Gamma_{1}(z)\right| \tag{5.14}
\end{equation*}
$$

and observe $\gamma$ is the average valency (in $\Omega$ ) of a vertex in $C(x, y)$. Similarly, set

$$
\begin{equation*}
\lambda:=\frac{1}{a_{2}} \sum_{z \in A(x, y)}\left|\Omega \cap \Gamma_{1}(z)\right|, \tag{5.15}
\end{equation*}
$$

and observe $\lambda$ is the average valency (in $\Omega$ ) of a vertex in $A(x, y)$.
Claim 2. $\lambda<a_{2}+c_{2}$.
Proof of Claim 2. This is immediate from (5.12), (5.13), (5.15), and the observation $z^{\prime} \in A(x, y)$.
Now set

$$
\Delta:=\{w \in \Omega \mid \delta(x, w)=2, \delta(y, w) \geq 2\}
$$

Claim 3.

$$
\begin{equation*}
|\Delta| c_{2}+a_{2} c_{2}+c_{2}=c_{2}\left(\gamma-a_{1}-1\right)+a_{2}\left(\lambda-a_{1}-1\right) . \tag{5.16}
\end{equation*}
$$

Proof of Claim 3. Let $e$ denote the number of edges connecting vertices in $\Omega \cap \Gamma_{1}(x)$ to vertices in $\Omega \cap \Gamma_{2}(x)$. We count $e$ in two ways. On the one hand,

$$
\begin{align*}
e & =\left|\Omega \cap \Gamma_{2}(x)\right| c_{2} \\
& =|\Delta \cup A(y, x) \cup\{y\}| c_{2} \\
& =\left(|\Delta|+a_{2}+1\right) c_{2} . \tag{5.17}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
e & =|C(x, y)|\left(\gamma-a_{1}-1\right)+|A(x, y)|\left(\lambda-a_{1}-1\right) \\
& =c_{2}\left(\gamma-a_{1}-1\right)+a_{2}\left(\lambda-a_{1}-1\right) . \tag{5.18}
\end{align*}
$$

Line (5.16) is immediate from (5.17), (5.18), and Claim 3 is proved.
Claim 4.

$$
\begin{equation*}
|\Delta| c_{2}+a_{2} c_{2}+c_{2} \geq c_{2}\left(\gamma-a_{1}-1\right)+a_{2}\left(a_{2}+c_{2}-a_{1}-1\right) \tag{5.19}
\end{equation*}
$$

Proof of Claim 4. Let $f$ denote the number of edges connecting vertices in $\Omega \cap \Gamma_{1}(y)$ to vertices in $\Omega \cap \Gamma_{2}(y)$. Again, we count $f$ in two ways. On the one hand,

$$
\begin{align*}
f & \leq\left|\Omega \cap \Gamma_{2}(y)\right| c_{2} \\
& \leq|\Delta \cup A(x, y) \cup\{x\}| c_{2} \\
& =|\Delta| c_{2}+a_{2} c_{2}+c_{2}, \tag{5.20}
\end{align*}
$$

and on the other hand, using (5.11),

$$
\begin{align*}
f & \geq|C(y, x)|\left(\gamma-a_{1}-1\right)+|A(y, x)|\left(a_{2}+c_{2}-a_{1}-1\right) \\
& =c_{2}\left(\gamma-a_{1}-1\right)+a_{2}\left(a_{2}+c_{2}-a_{1}-1\right) . \tag{5.21}
\end{align*}
$$

(5.19) is immediate from (5.20), (5.21), and Claim 4 is proved.

Now subtracting (5.16) from (5.19), we find

$$
0 \geq a_{2}\left(a_{2}+c_{2}-\lambda\right)
$$

But this is impossible since $a_{2}>0$ by assumption, and $a_{2}+c_{2}-\lambda>0$ by Claim 2. Hence equality holds in (5.12) for all $z \in \Omega \cap \Gamma_{1}(x)$. Now $\Omega$ is regular by (iib), (5.11), so $\Omega$ is weak-geodetically closed by Theorem 4.6. It remains to show $\Omega$ has diameter 2 . This holds, since $\Omega$ is distance-regular by Corollary 5.3, and since $\operatorname{diam}_{x}(\Omega)=2$ by (iic). This proves Proposition 5.7.

## 6. Distance-regular graphs with many weak-geodetically closed subgraphs.

In this section, we obtain our first major result, Theorem 6.4. To describe it, we need a few definitions.

Definition 6.1. Let $\Gamma=(X, R)$ be a graph with diameter $D$, and let $i$ denote an integer $(0 \leq i \leq D)$. Then $\Gamma$ is said to be $i-$ bounded, if for all integers $j$ $(0 \leq j \leq i)$, and for all $x, y \in X$ such that $\delta(x, y)=j, x, y$ are contained in a common weak-geodetically closed subgraph of diameter $j$.

Lemma 6.2. Let $\Gamma=(X, R)$ be a graph with diameter $D \geq 1$. Then the following (i)-(iii) hold.
(i) $\Gamma$ is 0-bounded.
(ii) For each integer $i \quad(1 \leq i \leq D)$, if $\Gamma$ is $i$-bounded then $\Gamma$ is $(i-1)$-bounded.
(iii) Suppose $\Gamma$ is $(D-1)$-bounded. Then $\Gamma$ is $D$-bounded.

Proof. (i)-(iii) are clear from Definition 6.1.
In Theorem 6.4, we obtain a simple criterion for a distance-regular graph $\Gamma$ to be $i$-bounded. We will use the following notation.

Definition 6.3. Let $\Gamma=(X, R)$ be a graph with diameter $D \geq 2$. Pick an integer $i \quad(2 \leq i \leq D)$. By a parallelogram of length $i$ in $\Gamma$, we mean a 4-tuple $x y z w$ of vertices of $X$ such that

$$
\delta(x, y)=\delta(z, w)=1, \quad \delta(x, w)=i
$$

$$
\delta(x, z)=\delta(y, z)=\delta(y, w)=i-1 .
$$

We now state the first main theorem of our paper.
Theorem 6.4. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$, and assume the intersection numbers $c_{2}>1, a_{1} \neq 0$. Pick an integer $i$ $(1 \leq i<D)$. Then the following (i)-(ii) are equivalent.
(i) $\Gamma$ is $i$-bounded.
(ii) $\Gamma$ contains no parallelogram of length $\leq i+1$.

The following Lemma proves Theorem 6.4(i) $\longrightarrow$ (ii).
Lemma 6.5. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$. Pick an integer $i \quad(1 \leq i<D)$. Suppose $\Gamma$ is $i$-bounded. Then $\Gamma$ contains no parallelogram of length $\leq i+1$.

Proof. Suppose $\Gamma$ contains a parallelogram $x y z w$ of some length $j \leq i+1$. Then $\delta(y, z)=j-1 \leq i$. By Definition 6.1, there exists a weak-geodetically closed subgraph $\Omega$ of $\Gamma$ that has diameter $j-1$ and contains $y, z$. Observe $x \in A(y, z)$ and $w \in A(z, y)$, so $x, w \in \Omega$ by Lemma 2.3(ii). But $\delta(x, w)=j$, contradicting our assumption that $\Omega$ has diameter $j-1$. This proves the lemma.

We prove Theorem 6.4 (ii) $\longrightarrow$ (i) by induction on $i$. We deal with the case $i=1$ in Lemma 6.6, the case $i=2$ in Proposition 6.7, prove some general results in Proposition 6.8-Lemma 6.13, and then proceed to the case $i \geq 3$ at the end of this section.

Lemma 6.6. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$. Suppose that $\Gamma$ contains no parallelogram of length 2 . Then $\Gamma$ is 1 -bounded.

Proof. Pick $x, y \in X$ with $\delta(x, y)=1$, and set $\Omega:=A(x, y) \cup\{x, y\} . \Omega$ is a clique of size $a_{1}+2$ since $\Gamma$ contains no parallelograms of length 2 ; in particular, $\Omega$ has diameter 1 . Also $\Omega$ is weak-geodetically closed by Theorem 4.6 , since $\Omega$ is regular and equality holds in (4.12). This proves Lemma 6.6

Our proof of the case $i=2$ in Theorem 6.4 (ii) $\longrightarrow(i)$ is different from our proof for the case $i \geq 3$, also, we can prove it under the assumption $a_{2} \neq 0$ instead of $a_{1} \neq 0$ (One can easily show if $\Gamma$ contains no parallelogram of length 2 then $a_{1} \neq 0$ implies $a_{2} \neq 0$ ). Hence we prove it separately.

Proposition 6.7. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$. Assume that the intersection numbers $c_{2}>1, a_{2} \neq 0$. Suppose that $\Gamma$ contains no parallelogram of length $\leq 3$. Then $\Gamma$ is 2-bounded.

Proof. Pick any vertices $x, y \in X$ with $\delta(x, y)=2$. Let $C$ be the connected component of $\Gamma_{2}(x)$ containing $y$. Set $\Omega:=[x, C]$ as in Definition 5.5. We prove
$\Omega$ is weak-geodetically closed of diameter 2 . To do this, we show $\Omega$ satisfies (iia)-(iic) of Proposition 5.7.

Claim 1. $\Omega$ is weak-geodetically closed with respect to $x$. In particular, (iia) of Proposition 5.7 is satisfied.

Proof of Claim 1. Fix $z \in \Omega$. By Lemma 2.3(ii) and the construction, it suffices to show $A(z, x) \subseteq \Omega$. This clearly holds if $z=x$ or $z \in \Omega \cap \Gamma_{2}(x)$, so assume $z \in \Omega \cap \Gamma_{1}(x)$. Pick $w \in A(z, x)$. By construction, there exists $z^{\prime} \in C$ such that $z \in C\left(z^{\prime}, x\right)$. Observe that $\delta\left(w, z^{\prime}\right)=2$; otherwise $\delta\left(w, z^{\prime}\right)=1$ and $x z w z^{\prime}$ is a parallelogram of length 2 , a contradiction. Pick $w^{\prime} \in C\left(w, z^{\prime}\right) \backslash\{z\}$. Observe that $w^{\prime} \in C\left(z^{\prime}, x\right) \cup A\left(z^{\prime}, x\right)$. Suppose $w^{\prime} \in C\left(z^{\prime}, x\right)$. Then $\delta\left(z, w^{\prime}\right)=2$; otherwise $\delta\left(z, w^{\prime}\right)=1$ and $z^{\prime} z w^{\prime} x$ is a parallelogram of length 2 , a contradiction. But now $w^{\prime} w x z$ is a parallelogram of length 2 , a contradiction. Hence $w^{\prime} \in A\left(z^{\prime}, x\right)$, forcing $w^{\prime} \in C$ by construction. Now $w \in \Omega$ by construction. This proves Claim 1.

Claim 2. For all adjacent vertices $z, z^{\prime} \in C, B(x, z)=B\left(x, z^{\prime}\right)$. In particular, $B(x, w)=B\left(x, w^{\prime}\right)$ for all $w, w^{\prime} \in C$.

Proof of Claim 2. Fix adjacent vertices $z, z^{\prime} \in C$. By symmetry, it suffices to prove $B(x, z) \subseteq B\left(x, z^{\prime}\right)$. Suppose there exists a vertex $p \in B(x, z) \backslash B\left(x, z^{\prime}\right)$. Of course $\delta(x, p)=1, \delta(z, p)=3$ by construction, so $\delta\left(z^{\prime}, p\right)=2$ by the triangular inequality. Now the 4 -tuple $p x z^{\prime} z$ is a parallelogram of length 3 , a contradiction. Hence $B(x, z)=B\left(x, z^{\prime}\right)$. Since $C$ is connected, we have $B(x, w)=B\left(x, w^{\prime}\right)$ for all $w, w^{\prime} \in C$. This proves Claim 2 .

Claim 3. $\left|\Omega \cap \Gamma_{1}(x)\right|=c_{2}+a_{2}$. In particular, (iib) of Proposition 5.7 is satisfied.
Proof of Claim 3. Pick $z \in C$. Then it suffices to show $\Omega \cap \Gamma_{1}(x)=C(x, z) \cup$ $A(x, z)$. By Claim $1, \Omega$ is weak-geodetically closed with respect to $x$. Hence by Lemma 2.6(ii), $C(x, z) \cup A(x, z) \subseteq \Omega \cap \Gamma_{1}(x)$. Since $\Gamma_{1}(x)=C(x, z) \cup A(x, z) \cup$ $B(x, z)$, it remains to show $\Omega \cap B(x, z)=\emptyset$. Suppose there exists $w \in \Omega \cap B(x, z)$. By construction, there exists $w^{\prime} \in C$ such that $w \in C\left(x, w^{\prime}\right)$. But $w \in B(x, z)=$ $B\left(x, w^{\prime}\right)$ by Claim 2, a contradiction. Hence $\Omega \cap B(x, z)=\emptyset$, as desired. This proves Claim 3.

Note that (iic) of Proposition 5.7 is satisfied by the construction. Hence $\Omega$ is weak-geodetically closed with diameter 2 by Proposition 5.7. We now have Proposition 6.7.

Proposition 6.8. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 2$. Assume the intersection numbers $c_{2}>1, a_{2} \neq 0$. Suppose $\Gamma$ contains no parallelogram of length 2 and suppose there exists a weak-geodetically closed subgraph $\Omega$ of diameter 2 . Fix a vertex $x \in \Omega$. Then $\Omega \cap \Gamma_{2}(x)$ is connected.

Proof. Note that $\Omega$ is distance-regular by Corollary 5.3. Suppose that $\Omega \cap \Gamma_{2}(x)$ is not connected. Pick $u, v \in \Omega \cap \Gamma_{2}(x)$ such that there is no path in $\Omega \cap \Gamma_{2}(x)$ connecting $u, v$. Observe $\delta(u, v)=2$, since $\Omega$ has diameter 2 . For each vertex $z \in C(u, v)$, we must have $z \in C(u, x)$, otherwise $\delta(x, z)=2$ and $u, z, v$ is a path in $\Omega \cap \Gamma_{2}(x)$. Hence we have $C(u, v) \subseteq C(u, x)$. Now $C(u, v)=C(u, x)$, since both sets have the same cardinality $c_{2}$. Similarly, we have $C(u, v)=C(v, x)$. Pick $w \in A(u, v)$. Observe $\delta(x, w)=2$, since $w \notin C(u, v)=C(u, x)$. We do not have a path in $\Omega \cap \Gamma_{2}(x)$ connecting $w, v$, otherwise we can extend this path to a path in $\Omega \cap \Gamma_{2}(x)$ connecting $u, v$. By the same argument as above, we have $C(w, v)=C(w, x)=C(v, x)$. Now we have

$$
\begin{aligned}
C(u, v) & =C(v, x) \\
& =C(w, v) .
\end{aligned}
$$

Pick distinct vertices $z, z^{\prime} \in C(u, v)=C(w, v)$. If $\delta\left(z, z^{\prime}\right)=1$ then the 4-tuple $u z z^{\prime} v$ is a parallelogram of length 2 , a contradiction. If $\delta\left(z, z^{\prime}\right)=2$ then the 4-tuple $z u w z^{\prime}$ is a parallelogram of length 2 , another contradiction. Hence we prove $\Omega \cap \Gamma_{2}(x)$ is connected.

Note. Proposition 6.8 tells us that in the case $d=2$ of Proposition 5.6(iic), some $C \subseteq \Gamma_{d}(x)$ is connected. We do not know if this is true in general situation $d>2$.

Lemma 6.9. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 3$. Suppose the intersection numbers $c_{2}>1, a_{2} \neq 0$. Pick an integer $i$ $(2 \leq i<D)$, and suppose $\Gamma$ contains no parallelogram of any length $\leq i+1$. Let $x$ be a vertex of $\Gamma$, and let $\Omega$ be a weak-geodetically closed subgraph of $\Gamma$ with diameter 2. Suppose there exists a vertex $u \in \Omega \cap \Gamma_{i-1}(x)$, and suppose $\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$. Then for all $t \in \Omega$, we have $\delta(x, t)=i-1+\delta(u, t)$.
Proof. We prove this by induction on the integer $i$. The case $i=2$ is immediate from Lemma 2.4(i), so suppose $i>2$. Note that

$$
\Omega \subseteq \Gamma_{i-1}(x) \cup \Gamma_{i}(x) \cup \Gamma_{i+1}(x)
$$

since $\operatorname{diam}(\Omega)=2, \Omega \cap \Gamma_{i-1}(x) \neq \emptyset$, and $\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$. We need to prove $\Omega \cap \Gamma_{1}(u) \subseteq \Gamma_{i}(x)$ and $\Omega \cap \Gamma_{2}(u) \subseteq \Gamma_{i+1}(x)$. It suffices to prove that $\Omega \cap$ $\Gamma_{2}(u) \subseteq \Gamma_{i+1}(x)$, since $\Omega$ is distance-regular with diameter 2 and for each vertex $w \in \Omega \cap \Gamma_{1}(u), w \in C(z, u)$ for some vertex $z \in \Omega \cap \Gamma_{2}(u)$. Suppose that $\Omega \cap \Gamma_{2}(u) \nsubseteq \Gamma_{i+1}(x)$. Since $\Omega \cap \Gamma_{2}(u)$ is connected by Proposition 6.8, and since $\Omega \cap \Gamma_{2}(u) \cap \Gamma_{i+1}(x)=\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$, there exist adjacent vertices $v, v^{\prime} \in \Gamma_{2}(u) \cap \Omega$ such that $v \in \Gamma_{i+1}(x)$ and $v^{\prime} \in \Gamma_{i}(x)$. Pick $x^{\prime} \in C(x, u)$. Then $\delta\left(x^{\prime}, u\right)=i-2$ and $\delta\left(x^{\prime}, v\right)=i$. By induction hypothesis, we have $\delta\left(x^{\prime}, v^{\prime}\right)=i$. Now the 4 -tuple $x x^{\prime} v^{\prime} v$ is a parallelogram of length $i+1$, a contradiction. This proves the lemma.

Corollary 6.10. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 3$. Assume the intersection numbers $c_{2}>1, a_{2} \neq 0$. Pick any integer $i$ $(2 \leq i<D)$, and suppose $\Gamma$ contains no parallelogram of any length $\leq i+1$. Let $x$ be a vertex of $\Gamma$, and let $\Omega$ be a weak-geodetically closed subgraph of diameter 2. If there exist 2 distinct vertices $u, v$ in $\Omega$ such that $\delta(x, u)=\delta(x, v)=i-1$, then $\delta(x, t) \leq i$ for all vertices $t \in \Omega$.

Proof. Suppose this is false. Then $\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$, so $\delta(x, v)=\delta(x, u)+\delta(u, v)$ by Lemma 6.9. Since $\delta(x, v)=\delta(x, u)=i-1$, we have $\delta(u, v)=0$ and hence $u=v$, a contradiction. This proves the corollary.

Definition 6.11. Let $\Gamma=(X, R)$ be a graph with diameter $D \geq 2$. Pick an integer $i \quad(2 \leq i \leq D)$. By a kite of length $i$, we mean a 4 -tuple $x y z w$ of vertices of $\Gamma$ such that $\{x, y, z\}$ is a clique, and $w$ is at distances

$$
\delta(w, x)=i, \quad \delta(w, y)=i-1, \quad \delta(w, z)=i-1
$$

Note. A kite of length 2 is the same thing as a parallelogram of length 2.
Lemma 6.12. Let $\Gamma=(X, R)$ be a graph with diameter $D \geq 2$. Fix an integer $i \quad(2 \leq i \leq D)$. Suppose $\Gamma$ contains no parallelogram of any length $\leq i$. Then $\Gamma$ contains no kite of any length $\leq i$.

Proof. Suppose $\Gamma$ contains a kite of length $\leq i$. Of all these kites, pick a kite $x y z w$ with minimal length $j$. Observe $j \neq 2$, otherwise $x y z w$ is a parallelogram of length 2 . Now pick $a \in C(w, z)$. Note that $\delta(a, z)=j-2$. Observe

$$
\begin{aligned}
\delta(a, y) & \leq \delta(a, z)+\delta(z, y) \\
& =j-2+1 \\
& =j-1,
\end{aligned}
$$

and

$$
\begin{aligned}
\delta(a, y) & \geq \delta(y, w)-\delta(a, w) \\
& =j-1-1 \\
& =j-2,
\end{aligned}
$$

so $\delta(a, y)=j-2$ or $\delta(a, y)=j-1$. If $\delta(a, y)=j-2$, then the 4 -tuple $x y z a$ is a kite of length $j-1$, contradicting our construction, so $\delta(a, y)=j-1$. Now the 4 -tuple wayx is a parallelogram of length $j$, a contradiction. This proves the lemma.

Lemma 6.13. Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 3$. Assume the intersection numbers $c_{2}>1$ and $a_{1} \neq 0$. Pick an integer $i$
$(2 \leq i<D)$, and suppose $\Gamma$ contains no parallelogram of any length $\leq i+1$. Let $x$ be a vertex of $X$, and let $\Omega$ be a weak-geodetically closed subgraph of diameter 2. Set $j:=\max \{\delta(x, w) \mid w \in \Omega\}$, and assume $j \leq i$. Then $\Omega \cap \Gamma_{j}(x)$ is connected.

Proof. Note that $\Omega$ is distance-regular by Corollary 5.3. Since $\Gamma$ contains no parallelogram of length 2 , for any vertex $u \in \Omega, \Omega \cap \Gamma_{1}(u)$ is a disjoined union of cliques of size $a_{1}+1$. Let $l$ denote the number of these cliques in $\Omega \cap \Gamma_{1}(u)$. Suppose $\Omega \cap \Gamma_{j}(x)$ is not connected. Then there exist two vertices $t, s \in \Omega \cap \Gamma_{j}(x)$ such that there is no path in $\Omega \cap \Gamma_{j}(x)$ connecting $t$ and $s$. Note that $\delta(t, s)=2$, since $\operatorname{diam}(\Omega)=2$. Consider the set

$$
N:=\{t\} \cup\left(\Gamma_{j}(x) \cap \Omega \cap \Gamma_{1}(t)\right) .
$$

Claim 1. $|N| \geq 1+l a_{1}$.
Proof of Claim 1. $\Gamma$ contains no kite of length $j$ by Lemma 6.12, , so $\mid K \cap$ $\Gamma_{j-1}(x) \mid \leq 1$ for all maximal cliques $K \subseteq \Omega \cap \Gamma_{1}(t)$. Hence $|K \cap N| \geq a_{1}$ for all maximal cliques $K \subseteq \Omega \cap \Gamma_{1}(t)$. Since there are $l$ such cliques,

$$
\begin{aligned}
|N| & \geq|\{x\}|+l a_{1} \\
& =1+l a_{1}
\end{aligned}
$$

as desired.
Claim 2. $\delta(z, s)=2$ for any $z \in N$.
Proof of Claim 2. $\delta(z, s) \leq 2$, since $\operatorname{diam}(\Omega)=2 . z \neq s$ by construction. Also $\delta(z, s) \neq 1$, otherwise $t, z, s$ is a path in $\Omega \cap \Gamma_{j}(x)$, a contradiction. Hence $\delta(z, s)=2$.

Now consider the set

$$
M:=\bigcup_{z \in N} C(s, z)
$$

Claim 3. $|M| \leq l$.
Proof of Claim 3. Note that $M \subseteq \Omega \cap \Gamma_{1}(s)$ by construction and Lemma 2.3(ii), so there is no vertex in $M$ with distance $j+1$ to $x$. If the distance from $x$ to a vertex in $M$ is $j$, then we find a path in $\Omega \cap \Gamma_{j}(x)$ connecting $t$ and $s$, a contradiction. Thus

$$
M \subseteq \Omega \cap \Gamma_{1}(s) \cap \Gamma_{j-1}(x)
$$

Since $\delta(x, s)=j$ and since $\Gamma$ contains no kite of length $j$ by Lemma 6.12, each maximal clique in $\Omega \cap \Gamma_{1}(s)$ contains at most one vertex in $M$. Hence $|M| \leq l$.

We count the number $e$ of edges between vertices in $N$ and vertices in $M$ in two ways. On the one hand, by Claim 1, we have

$$
\begin{align*}
e & =|N| c_{2} \\
& \geq\left(1+l a_{1}\right) c_{2} \tag{6.1}
\end{align*}
$$

On the other hand, a vertex in $M \cap \Gamma_{1}(t)$ is a adjacent to at most $a_{1}+1$ vertices in $N$, and a vertex in $M \cap \Gamma_{2}(t)$ is adjacent to at most $c_{2}$ vertices in $N$. Observe that $a_{1} c_{2} \geq \max \left\{a_{1}+1, c_{2}\right\}$, since $c_{2}>1$ and $a_{1} \neq 0$. Hence each vertex in $M$ is adjacent to at most $a_{1} c_{2}$ vertices in $N$. Now by Claim 3,

$$
\begin{aligned}
e & \leq|M| a_{1} c_{2} \\
& \leq l a_{1} c_{2},
\end{aligned}
$$

a contradiction to (6.1). This proves the lemma.
Note. Lemma 6.13 is the only place we need the assumption $a_{1} \neq 0$ instead of the assumption $a_{2} \neq 0$.

Proof of Theorem $6.4(\mathbf{i i}) \longrightarrow(\mathbf{i})$. This is by induction on the integer $i$. The cases $i=1$ and $i=2$ hold by Lemma 6.6 and Proposition 6.7, so assume $i \geq 3$. Fix vertices $x, y \in X$ with $\delta(x, y)=i$. Let $C$ be the connected component in $\Gamma_{i}(x)$ containing $y$. Let $\Omega:=[x, C]$ be as in Definition 5.5. We prove $\Omega$ is weak-geodetically closed of diameter $i$. To do this, we show $\Omega$ satisfies (iia)-(iid) of Proposition 5.6.

Claim 1. Let $z, z^{\prime}, w$ be vertices in $X$, with $\delta(x, w) \leq i, z \in C(w, x), z^{\prime} \in A(z, x)$. Then $\delta\left(w, z^{\prime}\right)=2$. Moreover, there exists a vertex $w^{\prime} \in C\left(z^{\prime}, w\right) \cap A(w, x)$.
Proof of Claim 1. By Lemma 6.12, $\Gamma$ contains no kite of length $\leq i$. Now $\delta\left(w, z^{\prime}\right)=2$, otherwise $w z z^{\prime} x$ is a kite of length $\delta(x, w)$. Since $c_{2}>1$, there exists $w^{\prime} \in C\left(z^{\prime}, w\right) \backslash\{z\}$. Note that either $w^{\prime} \in A\left(z^{\prime}, x\right)$ or $w^{\prime} \in A(w, x)$. Suppose $w^{\prime} \in A\left(z^{\prime}, x\right)$. By the induction hypothesis, $x, z^{\prime}$ are contained in a common weak-geodetically closed subgraph $\Omega^{\prime}$ of diameter $\delta\left(x, z^{\prime}\right)$. Observe that by Lemma 2.3(ii), $w^{\prime}, z \in \Omega^{\prime}$ and by Lemma 2.4(ii), $w \in \Omega^{\prime}$. But

$$
\begin{aligned}
\delta(x, w) & =\delta(x, z)+1 \\
& =\delta\left(x, z^{\prime}\right)+1 \\
& >\delta\left(x, z^{\prime}\right)
\end{aligned}
$$

a contradiction. Hence $w^{\prime} \in A(w, x)$.
Claim 2. $\Omega$ is weak-geodetically closed with respect to $x$. In particular, (iia) of Proposition 5.6 is satisfied.

Proof of Claim 2. By Lemma 2.3(ii), it suffices to check $C(z, x) \cup A(z, x) \subseteq \Omega$ for all $z \in \Omega$. If this is not the case, then there is a vertex $z \in \Omega$ such that $C(z, x) \cup A(z, x) \nsubseteq \Omega$. Of all such vertices $z$, we pick one with $\delta(x, z)$ maximum. Observe $\delta(x, z)<i$ by construction, so there is a vertex $w \in \Omega$ such that $z \in C(w, x)$. Pick $z^{\prime} \in C(z, x) \cup A(z, x) \backslash \Omega$. Note that $C(z, x) \subseteq \Omega$ by Definition 5.5, so $z^{\prime} \in A(z, x)$. By Claim 1, there is a vertex $w^{\prime} \in C\left(z^{\prime}, w\right) \cap A(w, x)$. By the choice of $z$ and since $\delta(x, w)>\delta(x, z)$, we have $w^{\prime} \in A(w, x) \subseteq \Omega$. But now $z^{\prime} \in C\left(w^{\prime}, x\right) \subseteq \Omega$, a contradiction.

Claim 3. For all adjacent vertices $z, z^{\prime} \in C, B(x, z)=B\left(x, z^{\prime}\right)$. In particular, $B(x, w)=B\left(x, w^{\prime}\right)$ for all $w, w^{\prime} \in C$.

Proof of Claim 3. Fix adjacent vertices $z, z^{\prime} \in C \subseteq \Gamma_{i}(x)$. By symmetry, it suffices to prove $B(x, z) \subseteq B\left(x, z^{\prime}\right)$. Suppose there exists a vertex $p \in B(x, z) \backslash$ $B\left(x, z^{\prime}\right)$. Of course $\delta(x, p)=1, \delta(z, p)=i+1$ by construction, so $\delta\left(z^{\prime}, p\right)=i$ by the triangular inequality. Now the 4 -tuple $p x z^{\prime} z$ is a parallelogram of length $i+1$, a contradiction. Hence $B(x, z)=B\left(x, z^{\prime}\right)$. Since $C$ is connected, we have $B(x, w)=B\left(x, w^{\prime}\right)$ for all $w, w^{\prime} \in C$. This proves Claim 3.

Claim 4. $\left|\Omega \cap \Gamma_{1}(x)\right|=c_{i}+a_{i}$. In particular, (iib) of Proposition 5.6 is satisfied.
Proof of Claim 4. Pick $z \in C$. Then it suffices to show $\Omega \cap \Gamma_{1}(x)=C(x, z) \cup$ $A(x, z)$. By Claim $2, \Omega$ is weak-geodetically closed with respect to $x$. Hence by Lemma 2.6(ii), $C(x, z) \cup A(x, z) \subseteq \Omega \cap \Gamma_{1}(x)$. Since $\Gamma_{1}(x)=C(x, z) \cup A(x, z) \cup$ $B(x, z)$, it remains to show $\Omega \cap B(x, z)=\emptyset$. Suppose there exists $w \in \Omega \cap B(x, z)$. By construction, there exists $w^{\prime} \in C$ such that $w \in C\left(x, w^{\prime}\right)$. But $w \in B(x, z)=$ $B\left(x, w^{\prime}\right)$ by Claim 3, a contradiction. Hence $\Omega \cap B(x, z)=\emptyset$, as desired. This proves Claim 4.

Claim 5. (iid) of Proposition 5.6 is satisfied.
Proof of Claim 5. Fix $v \in \Omega$ and $z \in X$ such that $z$ is adjacent to two distinct vertices $u, w \in C(v, x)$. We need to prove $z \in \Omega$. Set $j:=\delta(x, v)$. Note $j \leq i$ and $\delta(x, u)=\delta(x, w)=j-1$. Observe that $\delta(z, v) \leq 2$ and $u, w \in \Omega$ by construction. We can assume $z \in B(u, x)$; otherwise $z \in A(u, x) \cup C(u, x) \subseteq \Omega$ by Claim 2, Lemma 2.3(ii), and we are done. Now $\delta(x, z)=j$. We also can assume $\delta(z, v)=$ 2 , otherwise $v=z \in \Omega$ or $z \in A(v, x) \subseteq \Omega$ by Claim 2, Lemma 2.3(ii), and we are done. By the induction hypothesis, $\Gamma$ is $(i-1)$-bounded. Especially, since $i \geq 3$, $\Gamma$ is 2 -bounded. Let $\Omega^{\prime}$ be the weak-geodetically closed subgraph of $\Gamma$ that has diameter 2 and contains $z, v$. Observe that $u, w \in C(z, v) \subseteq \Omega^{\prime}$, and $a_{2} \neq 0$ by Proposition 3.2(ii). Hence by Corollary 6.10, we have $\max \left\{\delta(x, s) \mid s \in \Omega^{\prime}\right\}=j$. Now $\Omega^{\prime} \cap \Gamma_{j}(x)$ is connected by Lemma 6.13. In particular, there is a path in $\Gamma_{j}(x)$ connecting $v, z$. Now by Claim 2 and Lemma 2.3(ii), we see each vertex in this path is in $\Omega$, in particular, $z \in \Omega$. This proves Claim 5 .

Of course, (iic) of Proposition 5.6 is satisfied. Hence $\Omega$ is weak-geodetically closed with diameter $i$ by Proposition 5.6. We complete the proof of Theorem 6.4.

Problem. Can one prove Theorem 6.4(ii) $\longrightarrow$ (i) under the assumption $a_{2} \neq 0$ instead of the assumption $a_{1} \neq 0$ ?

## 7. Distance-regular graphs with the $Q$-polynomial property.

In this section, we consider distance-regular graphs with the $Q$-polynomial property. Theorem 7.2 is our main result. First, we recall the definition of the $Q$-polynomial property. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$ and intersection numbers $p_{i j}^{h} \quad(0 \leq h, i, j \leq D)$. For each integer $i \quad(0 \leq i \leq D)$, the $i$ th distance matrix $A_{i}$ of $\Gamma$ has rows and columns indexed by $X$, and $x, y$ entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1, & \text { if } \delta(x, y)=i \\
0, & \text { if } \delta(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

Then

$$
\begin{align*}
& A_{0}=I  \tag{7.1}\\
& A_{i}^{t}=A_{i} \tag{7.2}
\end{align*} \quad(0 \leq i \leq D), ~ \$
$$

and

$$
\begin{equation*}
A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h} \quad(0 \leq i, j \leq D) \tag{7.3}
\end{equation*}
$$

[2, p127]. By (7.1)-(7.3), the matrices $A_{0}, A_{1}, \cdots, A_{D}$ form a basis for a commutative semi-simple real algebra $M$, known as the Bose-Mesner algebra. By $[1, \mathrm{p} 59, \mathrm{p} 64], M$ has a second basis $E_{0}, E_{1}, \cdots, E_{D}$ such that

$$
\begin{array}{ll}
E_{0}=|X|^{-1} J & \left(J=\text { all } 1^{\prime} \text { s matrix }\right) \\
E_{i} E_{j}=\delta_{i j} E_{i} & (0 \leq i, j \leq D) \\
E_{0}+E_{1}+\cdots+E_{D}=I \\
E_{i}^{t}=E_{i} & (0 \leq i \leq D) \tag{7.7}
\end{array}
$$

The $E_{0}, E_{1}, \cdots, E_{D}$ are known as the primitive idempotents of $\Gamma$, and $E_{0}$ is known as the trivial idempotent.

Let $\circ$ denote entry-wise multiplication of matrices. Then

$$
A_{i} \circ A_{j}=\delta_{i j} A_{i} \quad(0 \leq i, j \leq D)
$$

so $M$ is closed under o. Thus there exists real numbers $q_{i j}^{h} \quad(0 \leq i, j, h \leq D)$ such that

$$
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D)
$$

$\Gamma$ is said to be $Q$-polynomial (with respect to the given ordering $E_{0}, E_{1}, \cdots, E_{D}$ of the primitive idempotents) if for all integers $h, i, j \quad(0 \leq h, i, j \leq D), q_{i j}^{h}=0$ (resp. $q_{i j}^{h} \neq 0$ ) whenever one of $h, i, j$ is greater than (resp. equal to) the sum of the other two. Let $E$ denote any nontrivial primitive idempotent of $\Gamma$. Then $\Gamma$ is said to be $Q$-polynomial with respect to $E$ whenever there exists an ordering $E_{0}, E_{1}=E, E_{2}, \cdots, E_{D}$ of the primitive idempotents of $\Gamma$, with respect to which $\Gamma$ is $Q$-polynomial.

The following is a special kind of $Q$-polynomial distance-regular graph[2, p193].
Definition 7.1. A distance-regular graph $\Gamma$ is said to have classical parameters $(D, b, \alpha, \beta)$ whenever the diameter of $\Gamma$ is $D$, and the intersection numbers of $\Gamma$ satisfy

$$
\begin{gather*}
c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \quad(0 \leq i \leq D)  \tag{7.8}\\
b_{i}=\left(\left[\begin{array}{c}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \quad(0 \leq i \leq D) \tag{7.9}
\end{gather*}
$$

where

$$
\left[\begin{array}{l}
j  \tag{7.10}\\
1
\end{array}\right]:=1+b+b^{2}+\cdots+b^{j-1}
$$

Theorem 7.2. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$ and intersection numbers $c_{2}>1, a_{1} \neq 0$. Assume $\Gamma$ is $Q$-polynomial. Then the following (i)-(viii) are equivalent.
(i) $\Gamma$ contains no parallelogram of any length.
(ii) $\Gamma$ contains no parallelogram of length 2 or 3 .
(iii) $\Gamma$ contains no kite of any length.
(iv) $\Gamma$ contains no kite of length 2 or 3 .
(v) $\Gamma$ has classical parameters $(D, b, \alpha, \beta)$, and either $b<-1$ or $\Gamma$ is a dual polar graph or a Hamming graph.
(vi) $\Gamma$ has classical parameters and contains no kite of length 2.
(vii) $\Gamma$ is $D$-bounded.
(viii) $\Gamma$ is 2-bounded.
(See [1,III.2] and [1, III.6] for definition of Hamming graphs and dual polar graphs).

We now mention a few items of notation, then prove a lemma, and then proceed to the proof of Theorem 7.2.

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$. Suppose $\Gamma$ is $Q$-polynomial with respect to $E$. Then the dual eigenvalues $\theta_{i}^{*} \quad(0 \leq i \leq D)$ are defined by

$$
\begin{equation*}
E=|X|^{-1} \sum_{i=0}^{D} \theta_{i}^{*} A_{i} \tag{7.11}
\end{equation*}
$$

By [6, p384], the dual eigenvalues $\theta_{i}^{*} \quad(0 \leq i \leq D)$ are mutually distinct real numbers.

Set $V=\mathbb{R}^{|X|}$ (column vectors), and view the coordinates of $V$ as being indexed by $X$. For each vertex $x \in X$, set

$$
\begin{equation*}
\hat{x}=(0,0, \cdots, 1,0, \cdots, 0)^{t} \tag{7.12}
\end{equation*}
$$

where 1 is in coordinate $x$. Also, let $\langle$,$\rangle denote the dot product$

$$
\begin{equation*}
\langle u, v\rangle=u^{t} v \quad(u, v \in V) \tag{7.13}
\end{equation*}
$$

Then referring to the primitive idempotent $E$ in (7.11), we compute from (7.7), (7.11)-(7.13) that for all $x, y \in X$,

$$
\begin{equation*}
\langle E \hat{x}, \hat{y}\rangle=|X|^{-1} \theta_{i}^{*} \tag{7.14}
\end{equation*}
$$

where $i=\delta(x, y)$.
Lemma 7.3. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$, and pick any integer $i \quad(2 \leq i \leq D)$. Pick vertices $x, y \in X$ such that $\delta(x, y)=i$, and pick $z \in C(x, y)$. Set

$$
e_{i}:=\mid\{u \mid u \in X, x z u y \text { is a kite of length } i\} \mid,
$$

and

$$
f_{i}:=\mid\{u \mid u \in X, x z u y \text { is a parallelogram of length } i\} \mid .
$$

(i) Suppose $\Gamma$ is $Q$-polynomial with respect to the primitive idempotent

$$
E_{1}=|X|^{-1} \sum_{h=0}^{D} \theta_{h}^{*} A_{h}
$$

Then

$$
\begin{equation*}
f_{i}=\alpha_{i} e_{i}+\beta_{i}, \tag{7.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}=\frac{\theta_{2}^{*}-\theta_{1}^{*}}{\theta_{i}^{*}-\theta_{i-1}^{*}}, \tag{7.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{i}=\frac{1}{\theta_{i}^{*}-\theta_{i-1}^{*}}\left(c_{i}\left(\frac{\left(\theta_{1}^{*}-\theta_{i-1}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{i}^{*}}+\theta_{i}^{*}-\theta_{2}^{*}\right)+c_{i-1}\left(\theta_{i-2}^{*}-\theta_{i}^{*}\right)+\theta_{2}^{*}-\theta_{0}^{*}\right) . \tag{7.17}
\end{equation*}
$$

(ii) Suppose $\Gamma$ has classical parameters $(D, b, \alpha, \beta)$. Then (7.15) holds, where

$$
\begin{gather*}
\alpha_{i}=b^{i-2}  \tag{7.18}\\
\beta_{i}=0 \tag{7.19}
\end{gather*}
$$

Proof. (i) Define

$$
x_{y}^{-}:=\sum_{\substack{u \in X \\ \delta(x, u)=1 \\ \delta(u, y)=i-1}} \hat{u},
$$

and

$$
y_{x}^{-}:=\sum_{\substack{u \in X \\ \delta(y, u)=1 \\ \delta(u, x)=i-1}} \hat{u} .
$$

By Terwilliger[7, Theorem 3.3(vii)], we have

$$
\begin{equation*}
E_{1}\left(x_{y}^{-}-y_{x}^{-}\right)=c_{i} \frac{\theta_{1}^{*}-\theta_{i-1}^{*}}{\theta_{0}^{*}-\theta_{i}^{*}}\left(E_{1} \hat{x}-E_{1} \hat{y}\right) \tag{7.20}
\end{equation*}
$$

so

$$
\begin{equation*}
\left\langle E_{1}\left(x_{y}^{-}-y_{x}^{-}\right), \hat{z}\right\rangle=c_{i} \frac{\theta_{1}^{*}-\theta_{i-1}^{*}}{\theta_{0}^{*}-\theta_{i}^{*}}\left\langle E_{1} \hat{x}-E_{1} \hat{y}, \hat{z}\right\rangle \tag{7.21}
\end{equation*}
$$

Evaluating the inner products in (7.21) using (7.14), we obtain

$$
\begin{align*}
& |X|^{-1}\left(\theta_{0}^{*}+e_{i} \theta_{1}^{*}+\left(c_{i}-1-e_{i}\right) \theta_{2}^{*}-c_{i-1} \theta_{i-2}^{*}-f_{i} \theta_{i-1}^{*}-\left(c_{i}-c_{i-1}-f_{i}\right) \theta_{i}^{*}\right) \\
= & |X|^{-1} c_{i} \frac{\left(\theta_{1}^{*}-\theta_{i-1}^{*}\right)^{2}}{\theta_{0}^{*}-\theta_{i}^{*}} . \tag{7.22}
\end{align*}
$$

Solving (7.22) for $f_{i}$ we obtain (7.15).
(ii) $\mathrm{By}[2, \mathrm{p} 250], \Gamma$ is $Q$-polynomial with respect to a primitive idempotent

$$
E=|X|^{-1} \sum_{h=0}^{D} \theta_{h}^{*} A_{h}
$$

where

$$
\theta_{j}^{*}-\theta_{0}^{*}=\left(\theta_{1}^{*}-\theta_{0}^{*}\right)\left[\begin{array}{l}
j  \tag{7.23}\\
1
\end{array}\right] b^{1-j} \quad(0 \leq j \leq D)
$$

In particular (7.15)-(7.17) hold by (i). Lines (7.18), (7.19) are obtained by eliminating $\theta_{2}^{*}, \theta_{i-1}^{*}, \theta_{i}^{*}$ in (7.16), (7.17) using (7.23), and simplifying using (7.8). This proves Lemma 7.3.

Proof of Theorem 7.2. The equivalence of (iii), (iv), (v) is from [9, Theorem 2.6].
(iv), (v) $\rightarrow(\mathrm{vi})$. This is clear.
(vi) $\rightarrow$ (iii). This immediate from Terwilliger[8, Theorem 2.11(ii)].
(iii), (vi) $\rightarrow$ (i). This is immediate from Lemma 7.3(ii).
(i) $\rightarrow$ (ii). This is clear.
(ii) $\rightarrow$ (iv). This is from Lemma 6.12.

Now we have the equivalence of (i), (ii), (iii), (iv), (v), (vi).
(i) $\rightarrow($ vii). $\Gamma$ is $(D-1)$-bounded by Theorem 6.4 , so $\Gamma$ is D -bounded by Lemma 6.2(iii).
(vii) $\rightarrow$ (viii). This is clear by Lemma 6.2(ii).
(viii) $\rightarrow$ (ii). This is clear by Lemma 6.5.

## REFERENCES

1. E. Bannai, T. Ito, Algebraic Combinatorics: Association Schemes, BenjaminCummings Lecture Note 58. Menlo Park, 1984.
2. A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer Verlag, New York, 1989.
3. A. E. Brouwer, H. A. Wilbrink, The structure of near polygons with quads, Geom. Dedicata 14 (1983), 145-176
4. E. E. Shult, A. Yanushka, Near n-gons and Line Systems, Geom. Dedicata 9 (1980), 1-72.
5. A. A. Ivanov and S. V. Shpectorov, Characterization of the association schemes of Hermitian forms over $G F\left(2^{2}\right)$, Geom. Dedicata, 30 (1989), 2333.
6. P. Terwilliger, The subconstituent algebra of an association scheme, I, J. Alg. Combin. 1, no. 4 (1992), 363-388.
7. P. Terwilliger, A New Inequality for Distance-Regular Graphs, Discrete Mathematics, 137:319-332, 1995.
8. P. Terwilliger, Kite-Free Distance-Regular Graphs, European Journal of Combinatorics, 16(4):405-414, 1995.
9. C. Weng, Kite-Free $P$ - and $Q$-Polynomial Schemes, Graphs and Combinatorics, 11:201-207, 1995.

[^0]:    $\dagger$ Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706.

