More Examples of Pooling Spaces

Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University
June 28, 2005

d-disjunct matrix

d-disjunct matrix

Definition 0.1. An $n \times t$ matrix M over $\{0,1\}$ is
d-disjunct if $d<t$ and for any one column j and any other d columns $j_{1}, j_{2}, \ldots, j_{d}$, there exists a row i such that $M_{i j}=1$ and $M_{i j_{s}}=0$ for $s=1,2, \ldots, d$.

d-disjunct matrix

Definition 0.1. An $n \times t$ matrix M over $\{0,1\}$ is
d-disjunct if $d<t$ and for any one column j and any other d columns $j_{1}, j_{2}, \ldots, j_{d}$, there exists a row i such that $M_{i j}=1$ and $M_{i j_{s}}=0$ for $s=1,2, \ldots, d$.
Example 0.2. A 2-disjunct matrix $M=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

Relation to Pooling Design

Relation to Pooling Design

A 4×6 1-disjunct matrix to detect the infected item \mathbf{C} from $\{A, B, \mathbf{C}, D, E, F\}$:
$\left(\begin{array}{ccccccccc}\text { Tests/Items } & A & B & \mathbf{C} & D & E & F & & \text { Output } \\ \text { One } & 1 & 1 & 1 & 0 & 0 & 0 & \rightarrow & 1 \\ \text { Two } & 1 & 0 & 0 & 1 & 1 & 0 & \rightarrow & 0 \\ \text { Three } & 0 & 1 & 0 & 1 & 0 & 1 & \rightarrow & 0 \\ \text { Four } & 0 & 0 & 1 & 0 & 1 & 1 & \rightarrow & 1\end{array}\right)$

Relation to Pooling Design (conti.)

Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct matrix works for finding the defected items.

Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct matrix works for finding the defected items.

Why?

Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct matrix works for finding the defected items.

Why?
Reason 1. All the subsets of the set of items with size at most d have different outputs.

Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct matrix works for finding the defected items.
Why?
Reason 1. All the subsets of the set of items with size at most d have different outputs.

Reason 2. The tests with 0 outputs determine all the non-infected items.

Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct matrix works for finding the defected items.

Why?
Reason 1. All the subsets of the set of items with size at most d have different outputs.

Reason 2. The tests with 0 outputs determine all the non-infected items.

Reason 3. The infected columns of are exactly those columns contained in the output vector (view vectors as subsets of $[n]$).

Construct d-disjunct matrices

Construct d-disjunct matrices

Theorem 0.3. (Macula 1996) Let $[m]:=\{1,2, \ldots, m\}$.
The incident matrix $W_{d k}$ of d-subsets and k-subsets of
$[m]$ is an $\binom{m}{d} \times\binom{ m}{k} d$-disjunct matrix.

The subsets of $[m]$ when $m=4$

The subsets of $[m]$ when $m=4$

5-a
$W_{d, k}$ when $m=4$

$W_{d, k}$ when $m=4$

$$
\left(\begin{array}{ccccccc}
\frac{2-\text { subsets }}{1-\text { subsets }} & (12) & (13) & (14) & (23) & (24) & (34) \\
(1) & 1 & 1 & 1 & 0 & 0 & 0 \\
(2) & 1 & 0 & 0 & 1 & 1 & 0 \\
(3) & 0 & 1 & 0 & 1 & 0 & 1 \\
(4) & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

(d,s)-disjunct matrix

(d,s)-disjunct matrix

Definition 0.4. An $n \times t$ matrix M over $\{0,1\}$ is
(d, s)-disjunct if $d<t$ and for any one column j and any other d columns $j_{1}, j_{2}, \ldots, j_{d}$, there exist s rows
$i_{1}, i_{2}, \ldots, i_{s}$ such that $M_{i_{u} j}=1$ and $M_{i_{u} j_{v}}=0$ for
$u=1,2, \ldots, s$ and $v=1,2, \ldots, d$.
(d,s)-disjunct matrix
Definition 0.4. An $n \times t$ matrix M over $\{0,1\}$ is
(d, s)-disjunct if $d<t$ and for any one column j and any other d columns $j_{1}, j_{2}, \ldots, j_{d}$, there exist s rows
$i_{1}, i_{2}, \ldots, i_{s}$ such that $M_{i_{u} j}=1$ and $M_{i_{u} j_{v}}=0$ for
$u=1,2, \ldots, s$ and $v=1,2, \ldots, d$.

A (d, s)-disjunct matrix can be used to construct a pooling design that can find the set of defected item of size at most d with $\left\lfloor\frac{s-1}{2}\right\rfloor$ errors allowed in the output.

As an error-correcting code

As an error-correcting code

Remark 0.5. Let M be an $n \times t(d, s)$-disjunct matrix over $\{0,1\}$. Let C denote the set consisting of all the boolean sum of at most d columns of M. Then $C \subseteq F_{2}^{n}$ has cardinality $\binom{t}{0}+\binom{t}{1}+\cdots+\binom{t}{d}$ and minimum distance s.

Decoding algorithm

Decoding algorithm

Theorem 0.6. (Huang and Weng 2003) Let M be an
$n \times t(d, s)$-disjunct matrix over $\{0,1\}$. Suppose the output vector O has at most $\left\lfloor\frac{s-1}{2}\right\rfloor$ errors. Then a column of M with at most $\left\lfloor\frac{s-1}{2}\right\rfloor$ elements not in O is an infected column.

Example of (d, s)-disjunct matrix

Example of (d, s)-disjunct matrix

Theorem 0.7. (Huang and Weng 2004) Macula's
d-disjunct matrix $W_{d k}$ is $(d-1, k-d+1)$-disjunct.

Posets

Posets

Definition 0.8. A poset P is ranked if there exists a function rank : $P \rightarrow \mathbb{N} \cup\{0\}$ such that for all elements $x, y \in P$,

$$
y \text { covers } x \Rightarrow \operatorname{rank}(x)-\operatorname{rank}(y)=1
$$

Let P_{i} denote the elements of $\operatorname{rank} i$ in $P . P$ is atomic if each elements w is the least upper bound of the set $P_{1} \cap\{y \leq w \mid y \in P\}$.

Pooling Spaces

Pooling Spaces

Definition 0.9. A pooling space is a ranked poset P that the for each element $w \in P$ the subposet induced on $w^{+}:=\{y \geq w \mid y \in P\}$ is atomic.

A Nonexample of Pooling Spaces

A Nonexample of Pooling Spaces

Every interval in P is atomic, but P is not a pooling space.
d-disjunct matrices in Pooling Spaces

d-disjunct matrices in Pooling Spaces

Theorem 0.10. (Huang and Weng 2004) Let P be a pooling space. Then the incident matrix $P_{d k}$ of rank d elements P_{d} and rank k elements P_{k} is a d-disjunct matrix. In fact, $P_{d k}$ is $\left(d^{\prime}, s_{d^{\prime}}\right)$-disjunct matrix for some large integer $s_{d^{\prime}}$ depending on $d^{\prime} \leq d$ and P.

Examples of Pooling Spaces

Examples of Pooling Spaces

Hamming matroids, the attenuated spaces, quadratic polar spaces, alternating polar spaces, quadratic polar spaces (two types), Hermitian polar spaces (two types). These are called quantum matroids.

More Examples of Pooling Spaces

More Examples of Pooling Spaces

1. All the partitions of a finite set X ordered by refinement;

More Examples of Pooling Spaces

1. All the partitions of a finite set X ordered by refinement;
2. Fix a graph G. The partitions of the vertices of G with connected blocks, ordered by refinement.

More Examples of Pooling Spaces

1. All the partitions of a finite set X ordered by refinement;
2. Fix a graph G. The partitions of the vertices of G with connected blocks, ordered by refinement.

Note. 1 is the special case of 2 with G the complete graph.

Connected partitions of the 4-cycle

Connected partitions of the 4-cycle

17-a

Combinatorial Geometry

Definition 0.11. A combinatorial geometry is a pair (X, \mathcal{F}) where X is a set of points and where \mathcal{F} is a family of subsets of X called flats such that
(1) \mathcal{F} is closed under intersection;
(2) $\emptyset, X,\{x\} \in \mathcal{F}$ for all $x \in X$;
(3) For $E \in \mathcal{F}, E \neq X$, the flats that cover E in \mathcal{F} partition the remaining points.

Combinatorial Geometry is a Pooling Space

Theorem 0.12. Let P be a combinatorial geometry. Then (P, \subseteq) is a pooling space.

The end

The end

Thank You!

