Regular Graphs with Four Eigenvalues

Chih-wen Weng
Department of Applied Mathematics
National Chiao Tung University at Hsinchu
June 27, 2007

*A joint work with Tayuan Huang(NCTU), Yu-pei Huang(NCTU), Shu-Chung Liu(NHCUE)

Abstract

Let $\Gamma=(X, R)$ denote a connected k-regular graph with v vertices and four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$. For a vertex $x \in X$, let $k_{2}(x)$ denote the number of vertices at distance 2 from x. We show there exists a rational function $f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)$ in the variables $v, k, \theta_{1}, \theta_{2}, \theta_{3}$ such that for any $x \in X$

$$
k_{2}(x) \geq f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)
$$

Moreover the above equality holds for all $x \in X$ if and only if Γ is distance-regular with diameter 3 .

Abstract

Let $\Gamma=(X, R)$ denote a connected k-regular graph with v vertices and four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$. For a vertex $x \in X$, let $k_{2}(x)$ denote the number of vertices at distance 2 from x. We show there exists a rational function $f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)$ in the variables $v, k, \theta_{1}, \theta_{2}, \theta_{3}$ such that for any $x \in X$

$$
k_{2}(x) \geq f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)
$$

Moreover the above equality holds for all $x \in X$ if and only if Γ is distance-regular with diameter 3 .

Abstract

Let $\Gamma=(X, R)$ denote a connected k-regular graph with v vertices and four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$. For a vertex $x \in X$, let $k_{2}(x)$ denote the number of vertices at distance 2 from x. We show there exists a rational function $f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)$ in the variables $v, k, \theta_{1}, \theta_{2}, \theta_{3}$ such that for any $x \in X$

$$
k_{2}(x) \geq f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)
$$

Moreover the above equality holds for all $x \in X$ if and only if Γ is distance-regular with diameter 3 .

Abstract

Let $\Gamma=(X, R)$ denote a connected k-regular graph with v vertices and four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$. For a vertex $x \in X$, let $k_{2}(x)$ denote the number of vertices at distance 2 from x. We show there exists a rational function $f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)$ in the variables $v, k, \theta_{1}, \theta_{2}, \theta_{3}$ such that for any $x \in X$

$$
k_{2}(x) \geq f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)
$$

Moreover the above equality holds for all $x \in X$ if and only if Γ is distance-regular with diameter 3 .

Outline

We show something more generally and treat the statement in the abstract as a special case.

t-Partially Distance-Regular Graphs

$\Gamma=(X, R)$ is t-PDRG whenever for each $i \leq t$, the i-th distance matrix A_{i} can be written as a polynomial of the adjacency matrix $A=A_{1}$ of degree i; that is $A_{i}=v_{i}(A)$ for some polynomial $v_{i}(x) \in \mathbb{R}[x]$ of degree i.
(Algebraic Definition)

Equivalent Conditions

$\Gamma=(X, R)$ is t-PDRG if and only if for $i \leq t$,

$$
\begin{aligned}
c_{i} & :=\left|\Gamma_{1}(x) \cap \Gamma_{i-1}(y)\right|, \\
a_{i-1} & :=\left|\Gamma_{1}(x) \cap \Gamma_{i-1}(z)\right|, \\
b_{i-1} & :=\left|\Gamma_{1}(x) \cap \Gamma_{i-1}(z)\right|
\end{aligned}
$$

are constants subject to all vertices x, y with $\partial(x, y)=i$ and $\partial(x, z)=i-1$.

(Combinatorial Definition)

c_{i}, a_{i-1}, b_{i-1} are called intersection numbers.

t-Partially Walk-Regular

Γ is t-PWR whenever for each integer $1 \leq i \leq t,\left(A^{i}\right)_{x x}$ is a constant, not depending on $x \in X$.

The Type of a Closed Walk

For a closed walk $x, x_{1}, x_{2}, \ldots, x_{i}, x$ of length $i+1$ with base vertex x, we refer the type of the closed walk to be the sequence $\left\{\partial\left(x, x_{1}\right), \partial\left(x, x_{2}\right), \ldots, \partial\left(x, x_{i}\right)\right\}$.

Counting the Number of Clsoed Walks

The number of closed walks of type

$$
\{1,2,3,3,2,3,2,1\}
$$

base on a fixed vertex is

$$
b_{0} \times b_{1} \times b_{2} \times a_{3} \times c_{3} \times b_{2} \times c_{3} \times c_{2},
$$

provided these intersection numbers are well-defined.

Proposition

Using the above counting we have
Proposition 0.1. If Γ is t-Partially Distance-regular then Γ is $2 t$-Partially Walk-Regular.

The Gosset graph is a distance-regular graph on 56 of diameter 3. A cospetral mate of Gosset graph is obtained by doing "Godsil switching" on edges. This cospectral mate is walk-regular, but not distance-regular.

Question: Can you prove the above proposition algebraically.

Proposition

Using the above counting we have
Proposition 0.2. If Γ is t-Partially Distance-regular then Γ is 2t-Partially Walk-Regular.

The Gosset graph is a distance-regular graph on 56 of diameter 3. A cospetral mate of Gosset graph is obtained by doing " Godsil switching" on edges. This cospectral mate is walk-regular, but not distance-regular.

Question: Can you prove the above proposition algebraically.

Proposition

Using the above counting we have
Proposition 0.3. If Γ is t-Partially Distance-regular then Γ is 2t-Partially Walk-Regular.

The Gosset graph is a distance-regular graph on 56 of diameter 3. A cospetral mate of Gosset graph is obtained by doing " Godsil switching" on edges. This cospectral mate is walk-regular, but not distance-regular.

Question: Can you prove the above proposition algebraically.

Proposition

We also show
Proposition 0.4. The Godsil switching of a walk-regular graph is still walk-regular.

Counting the Closed Walks a little longer

$$
\begin{aligned}
& =\sum_{y \in X}^{\left(A^{2+2}\right)_{x x}}\left(\left(A^{t+1}\right)_{x y}\right)^{2} \\
& =\sum_{i=0}^{t-1} \sum_{y \in \Gamma_{i}(x)}\left(\left(A^{t+1}\right)_{x y}\right)^{2}+\sum_{y \in \Gamma_{L}(x)}\left(A^{t+1}\right)_{x y}^{2}+\sum_{y \in \Gamma_{t+1}(x)}\left(A^{t+1}\right)_{x y}^{2} .
\end{aligned}
$$

The first sum can be determined from intersection numbers if we assume t-PDRG.

Cauchy's Inequality

$$
\begin{aligned}
\sum_{y \in \Gamma_{t}(x)}\left(A^{t+1}\right)_{x y}^{2} & \geq \frac{1}{k_{t}(x)}\left(\sum_{y \in \Gamma_{t}(x)}\left(A^{t+1}\right)_{x y}\right)^{2} \\
\sum_{y \in \Gamma_{t+1}(x)}\left(A^{t+1}\right)_{x y}^{2} & \geq \frac{1}{k_{t+1}(x)}\left(\sum_{y \in \Gamma_{t+1}(x)}\left(A^{t+1}\right)_{x y}\right)^{2}
\end{aligned}
$$

Equality holds iff the numbers $\left(A^{t+1}\right)_{x y}$ is independent of y

Suppose Γ is t-PDRG

$$
k_{t}:=k_{t}(x), s_{1}:=\sum_{i=0}^{t-1} \sum_{y \in \Gamma_{i}(x)}\left(\left(A^{t+1}\right)_{x y}\right)^{2}
$$

can be computed from the intersection numbers
(independent of the choice of $x \in X$), and

$$
s_{2}:=\sum_{y \in \Gamma_{t}(x)}\left(A^{t+1}\right)_{x y}, s_{3}:=\sum_{y \in \Gamma_{t+1}(x)}\left(A^{t+1}\right)_{x y}
$$

can be computed from the intersection numbers and an additional constant $\left(A^{2 t+1}\right)_{x x}$.

Reformulate

Assume Γ is t-PDRG. Then

$$
\left(A^{2 t+2}\right)_{x x} \geq s_{1}+\frac{\left(s_{2}\right)^{2}}{k_{t}}+\frac{\left(s_{3}\right)^{2}}{k_{t+1}(x)}
$$

Theorem

Assume Γ is t-PDRG. Then

$$
k_{t+1}(x) \geq \frac{\left(s_{3}\right)^{2}}{\left(A^{2 t+2}\right)_{x x}-s_{1}-\left(s_{2}\right)^{2} / k_{t}}
$$

Furthermore Γ is $2(t+1)$-PWR and equality holds for each $x \in X$ if and only if Γ is $(t+1)$-PDRG.

Question: Can you prove this theorem algebraically.

Theorem

Assume Γ is t-PDRG. Then

$$
k_{t+1}(x) \geq \frac{\left(s_{3}\right)^{2}}{\left(A^{2 t+2}\right)_{x x}-s_{1}-\left(s_{2}\right)^{2} / k_{t}}
$$

Furthermore Γ is $2(t+1)$-PWR and equality holds for each $x \in X$ if and only if Γ is $(t+1)$-PDRG.

Question: Can you prove this theorem algebraically.

Corollary

Assume Γ is 1-PDRG (i.e. k-regular). Then

$$
k_{2}(x) \geq \frac{\left(k^{2}-k-\left(A^{3}\right)_{x x}\right)^{2}}{\left(A^{4}\right)_{x x}-k^{2}-\left(\left(A^{3}\right)_{x x}\right)^{2} / k} .
$$

Furthermore Γ is 4-PWR and equality holds for each $x \in X$ if and only if Γ is 2-PDRG.

k-Regular Graphs with 4 Eigenvalues

$$
\begin{aligned}
& A^{3}-\left(\theta_{1}+\theta_{2}+\theta_{3}\right) A^{2}+\left(\theta_{2} \theta_{3}+\theta_{3} \theta_{1}+\theta_{1} \theta_{2}\right) A-\theta_{1} \theta_{2} \theta_{3} \\
& =\frac{\left(k-\theta_{1}\right)\left(k-\theta_{2}\right)\left(k-\theta_{3}\right)}{|X|} J . \quad \text { (Hoffman polynomial) }
\end{aligned}
$$

$A_{x x}^{3}$ is determined from eigenvalues and $|X|$.

$$
A J=k J
$$

$A_{x x}^{4}$ is determined from eigenvalues and $|X|$.

k-Regular Graphs with 4 Eigenvalues

$$
\begin{aligned}
& A^{3}-\left(\theta_{1}+\theta_{2}+\theta_{3}\right) A^{2}+\left(\theta_{2} \theta_{3}+\theta_{3} \theta_{1}+\theta_{1} \theta_{2}\right) A-\theta_{1} \theta_{2} \theta_{3} \\
& =\frac{\left(k-\theta_{1}\right)\left(k-\theta_{2}\right)\left(k-\theta_{3}\right)}{|X|} J . \quad \text { (Hoffman polynomial) }
\end{aligned}
$$

$A_{x x}^{3}$ is determined from eigenvalues and $|X|$.

$$
A J=k J
$$

$A_{x x}^{4}$ is determined from eigenvalues and $|X|$.

k-Regular Graphs with 4 Eigenvalues

$$
\begin{aligned}
& A^{3}-\left(\theta_{1}+\theta_{2}+\theta_{3}\right) A^{2}+\left(\theta_{2} \theta_{3}+\theta_{3} \theta_{1}+\theta_{1} \theta_{2}\right) A-\theta_{1} \theta_{2} \theta_{3} \\
& =\frac{\left(k-\theta_{1}\right)\left(k-\theta_{2}\right)\left(k-\theta_{3}\right)}{|X|} J . \quad \text { (Hoffman polynomial) }
\end{aligned}
$$

$A_{x x}^{3}$ is determined from eigenvalues and $|X|$.

$$
A J=k J
$$

$A_{x x}^{4}$ is determined from eigenvalues and $|X|$.

k-Regular Graphs with 4 Eigenvalues

$$
\begin{aligned}
& A^{3}-\left(\theta_{1}+\theta_{2}+\theta_{3}\right) A^{2}+\left(\theta_{2} \theta_{3}+\theta_{3} \theta_{1}+\theta_{1} \theta_{2}\right) A-\theta_{1} \theta_{2} \theta_{3} \\
& =\frac{\left(k-\theta_{1}\right)\left(k-\theta_{2}\right)\left(k-\theta_{3}\right)}{|X|} J . \quad \text { (Hoffman polynomial) }
\end{aligned}
$$

$A_{x x}^{3}$ is determined from eigenvalues and $|X|$.

$$
A J=k J
$$

$A_{x x}^{4}$ is determined from eigenvalues and $|X|$.

Abstract

Let $\Gamma=(X, R)$ denote a connected k-regular graph with v vertices and four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$. For a vertex $x \in X$, let $k_{2}(x)$ denote the number of vertices at distance 2 from x. We show there exists a rational function $f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)$ in the variables $v, k, \theta_{1}, \theta_{2}, \theta_{3}$ such that for any $x \in X$

$$
k_{2}(x) \geq f\left(v, k, \theta_{1}, \theta_{2}, \theta_{3}\right)
$$

Moreover the above equality holds for all $x \in X$ if and only if Γ is distance-regular with diameter 3 .

Conjecture

Assume $\Gamma=(X, R)$ is $2 t$-partially walk-regular, where t is strictly less than the diameter of Γ. Then there exist a function f of spectrums such that

$$
k_{2}(x)+\cdots+k_{t}(x) \geq f
$$

and equality holds for each $x \in X$ iff Γ is t-PDRG.

Thank You

