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Notations

We always assume Γ = (X ,R) is a connected graph with diameter D.

For
x ∈ X ,

Γi (x) := {y ∈ X | ∂(x , y) = i}.
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Distance-Regular Graphs

Γ = (X ,R) is distance-regular if and only if for i ≤ D,

ci := |C (x , y)|
ai := |A(x , y)|,
bi := |B(x , y)|

are constants subject to all vertices x , y with ∂(x , y) = i , where
C (x , y) = Γ1(x) ∩ Γi−1(y), A(x , y) = Γ1(x) ∩ Γi (y) and
B(x , y) = Γ1(x) ∩ Γi+1(y).
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∂(x , y) = i

dy dx��
��

��
����
��

ci

ai

bi

Note that ai + bi + ci = b0 and k := b0 is the valency of Γ.
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A distance-regular graph is also called a P-polynomial scheme which is an
important and interesting mathematical object, and also plays the role as
an underlying combinatorial structure of Coding Theory, Design Theory
and Group Theory.
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Examples: Hamming Graphs H(D, 2)

Set F2 = {0, 1}, X = FD
2 , and

R = {uv | u, v ∈ X differ in exact one cordinate}.

Then Γ = (X ,R) is a distance-regular graph of diameter D. Γ is called the
Hamming graph H(D, 2). H(2, 2) is a square and H(3, 2) is a cube.
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Examples: Johnson Graphs J(n, D), 2D ≤ n

Set [n] = {1, 2, . . . , n}, X =

(
[n]
D

)
(the set of D-subsets of [n]) and

R = {uv | u, v ∈ X , |u ∩ v | = D − 1}.

Then Γ = (X ,R) is a distance-regular graph of diameter D. Γ is called the
Johnson graph J(n,D).

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 8 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Examples: Johnson Graphs J(n, D), 2D ≤ n

Set [n] = {1, 2, . . . , n}, X =

(
[n]
D

)
(the set of D-subsets of [n]) and

R = {uv | u, v ∈ X , |u ∩ v | = D − 1}.

Then Γ = (X ,R) is a distance-regular graph of diameter D.

Γ is called the
Johnson graph J(n,D).

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 8 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Examples: Johnson Graphs J(n, D), 2D ≤ n

Set [n] = {1, 2, . . . , n}, X =

(
[n]
D

)
(the set of D-subsets of [n]) and

R = {uv | u, v ∈ X , |u ∩ v | = D − 1}.

Then Γ = (X ,R) is a distance-regular graph of diameter D. Γ is called the
Johnson graph J(n,D).

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 8 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Recall that a sequence x , z , y of vertices of Γ is geodetic whenever

∂(x , z) + ∂(z , y) = ∂(x , y),

where ∂ is the distance function of Γ.

A sequence x , z , y of vertices of Γ
is weak-geodetic whenever

∂(x , z) + ∂(z , y) ≤ ∂(x , y) + 1.

dx dz
   

   
    d d y
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Definition. A subset ∆ ⊆ X is weak-geodetically closed if for any
weak-geodetic sequence x , z , y of Γ,

x , y ∈ ∆ =⇒ z ∈ ∆.
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Weak-geodetically closed subgraphs are called strongly closed subgraphs in
some literature. If a weak-geodetically closed subgraph ∆ of diameter d is
regular then it has valency ad + cd = b0 − bd , where ad , cd , b0, bd are
intersection numbers of Γ. Furthermore ∆ is distance-regular with
intersection numbers ai (∆) = ai (Γ) and ci (∆) = ci (Γ) for 1 ≤ i ≤ d .
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%

dy dx��
��
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����
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cd
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bd

∆
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Definition. Γ is said to be i-bounded whenever for all x , y ∈ X with
∂(x , y) ≤ i , there is a regular weak-geodetically closed subgraph of
diameter ∂(x , y) which contains x and y .
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Note that a (D − 1)-bounded distance-regular graph is clear to be
D-bounded. The properties of D-bounded distance-regular graphs were
studied in [—, D-bounded distance-regular graphs, European Journal of
Combinatorics, 18(1997), 211-229], and these properties were used in the
classification of classical distance-regular graphs of negative type [—,
Classical distance-regular graphs of negative type, J. Combin. Theory Ser.
B, 76(1999), 93-116].

To state our main theorem we need more definitions.
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A parallelogram of length i

A 4-tuple xywz of vertices in X is a parallelogram of length i if
∂(x , y) = ∂(w , z) = 1, ∂(x ,w) = ∂(y ,w) = ∂(w , z) = i − 1 and
∂(x , z) = i .
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i − 1
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d d
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Note that if ci = 1 then there is no parallelogram of length i .
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A kite of length i

A 4-tuple xywz of vertices in X is a kite of length i if
∂(x , y) = ∂(x ,w) = ∂(y ,w) = 1, ∂(w , z) = ∂(y , z) = i − 1 and
∂(x , z) = i .

x d
yd

w
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��

��

HHH
HH

dhhhhhhhhhhhhh
hhhh

(((((((((((((((((

z

1 i − 1

Note that if ci = 1 or a1 = 0 then there is no kite of length i .
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A parallelogram of length 2 or a kite of length 2 (K1,2,1)
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Main Theorem. Let Γ denote a distance-regular graph with diameter
D ≥ 3. Suppose the intersection number a2 6= 0. Fix an integer
2 ≤ d ≤ D − 1. Then the following two conditions (i), (ii) are equivalent:

(i) Γ is d-bounded.

(ii) Γ contains no parallelograms of any length up to d + 1 and b1 > b2.

d d d
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Ω

�
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�
�
�

x

∆(x)

Use Ω(x) ⊂ ∆(x) to obtain b0 − b1 = |Ω(x)| < |∆(x)| = b0 − b2.
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The Proof of d-bounded ⇒ no parallelogram

d

�
�

�
�

�
��

1

@
@
@
@
@
@@

d

d
�
�
�
�
�
��

1

d d

dd

y z

wx

'

&

$

%
∆(x ,w)

If a parallelogram of length d + 1 exists as shown above, then
x , y , z ,w ∈ ∆(x ,w), but ∂(x , z) = d + 1 > d = diameter(∆(x ,w)).
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To prove the other direction ”No parallelogram ⇒ d-bounded,” let’s try
first to find the nonexistence of many other configurations from the
nonexistence of parallelogram.
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Lemma

If Γ contains no parallelogram of any length up to d + 1 then Γ contains
no kite of any length up to d + 1.

Proof. If there exists a kite xywz of smallest length 3 ≤ i ≤ d + 1.
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HHH
HH
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hhhh
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z

1 i − 1

ud

Pick u with ∂(u, z) = 1 and ∂(y , u) = i − 2. Then xwuz is a parallelogram
of length i , a contradiction.

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 20 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Lemma

If Γ contains no parallelogram of any length up to d + 1 then Γ contains
no kite of any length up to d + 1.

Proof. If there exists a kite xywz of smallest length 3 ≤ i ≤ d + 1.

x d
yd

w
d

��
�
��

HHH
HH

dhhhhhhhhhhhhh
hhhh

(((((((((((((((((

z

1 i − 1

ud

Pick u with ∂(u, z) = 1 and ∂(y , u) = i − 2. Then xwuz is a parallelogram
of length i , a contradiction.

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 20 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Lemma

If Γ contains no parallelogram of any length up to d + 1 then Γ contains
no kite of any length up to d + 1.

Proof. If there exists a kite xywz of smallest length 3 ≤ i ≤ d + 1.

x d
yd

w
d

��
�
��

HHH
HH

dhhhhhhhhhhhhh
hhhh

(((((((((((((((((

z

1 i − 1

ud

Pick u with ∂(u, z) = 1 and ∂(y , u) = i − 2. Then xwuz is a parallelogram
of length i , a contradiction.

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 20 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Lemma

If Γ contains no parallelogram of any length up to d + 1 then Γ contains
no kite of any length up to d + 1.

Proof. If there exists a kite xywz of smallest length 3 ≤ i ≤ d + 1.

x d
yd

w
d

��
�
��

HHH
HH

dhhhhhhhhhhhhh
hhhh

(((((((((((((((((

z

1 i − 1

ud

Pick u with ∂(u, z) = 1 and ∂(y , u) = i − 2. Then xwuz is a parallelogram
of length i , a contradiction.

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan) (Dep. of A. Math., NCTU)D-bounded distance-regular graphs November 10, 2009 20 / 37



INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

Throughout the talk, we always assume that Γ does not contain
parallelogram of any length up to d + 1.
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Non-existence configurations

x d
yd

w
d
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d z
1 i − 1

ud
vd

Sketch of Proof. Find minimal i that the above configuration exists.

1 Show Γ1(z) ∩ Γi−2(v) ⊆ Γ1(z) ∩ Γi−2(w).

2 Show Γ1(z) ∩ Γi−2(v) = Γ1(z) ∩ Γi−2(w) by finiteness theorem (both
sets have size ci−1).

3 Similarly, Γ1(z) ∩ Γi−2(u) = Γ1(z) ∩ Γi−2(y).

4 Show Γ1(z) ∩ Γi−2(v) = Γ1(z) ∩ Γi−2(y) to have a contradiction.
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Sketch of Proof. Find minimal i that the above configuration exists.

1 Show Γ1(z) ∩ Γi−2(v) ⊆ Γ1(z) ∩ Γi−2(w).

2 Show Γ1(z) ∩ Γi−2(v) = Γ1(z) ∩ Γi−2(w) by finiteness theorem (both
sets have size ci−1).

3 Similarly, Γ1(z) ∩ Γi−2(u) = Γ1(z) ∩ Γi−2(y).

4 Show Γ1(z) ∩ Γi−2(v) = Γ1(z) ∩ Γi−2(y) to have a contradiction.
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Non-existence configurations
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distance to x

0 i − 1 i i + 1 i + 2
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From the nonexistence of many configurations, we can show
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We need a theory to reduce the load of the proof.
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Definition. Assume x ∈ ∆ ⊆ X .. The subset ∆ is weak-geodetically
closed with respect to x if for any weak-geodetic sequence x , z , y of Γ,

x , y ∈ ∆ =⇒ z ∈ ∆.
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Theorem

Let Γ be a distance-regular graph with diameter D ≥ 3. Let Ω be a regular
subgraph of Γ with valency γ and set d := min{i | γ ≤ ci + ai}. Then the
following (i),(ii) are equivalent.

(i) Ω is weak-geodetically closed with respect to at least one vertex
x ∈ Ω.

(ii) Ω is weak-geodetically closed with diameter d.

In this case γ = cd + ad . �

([Theorem 4.6 in —, Weak-geodetically closed subgraphs in
distance-regular graphs, Graphs and Combinatorics, 14(1998), 275-304])
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The construction

Definition

For any vertex x ∈ X and any subset Π ⊆ X , define [x ,Π] to be the set

{v ∈ X | there exists y ′ ∈ Π, such that the sequence x , v , y ′ is geodetic }.

For any x , y ∈ X with ∂(x , y) = d , set

Πxy := {y ′ ∈ Γd(x) | B(x , y) = B(x , y ′)}

and
∆(x , y) = [x ,Πxy ].
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We shall prove that for any vertices x , y ∈ X with ∂(x , y) = d the
following statements Wd , Rd hold.

(Wd) ∆(x , y) is weak-geodetically closed with respect to x , and

(Rd) the subgraph induced on ∆(x , y) is regular with valency ad + cd .

To prove Wd in the case c2 > 1, we use induction on d and induction on
d − ∂(x , z) to show v ∈ ∆(x , y) for any z ∈ ∆(x , y) and v ∈ A(z , x) in
the following picture.

x d
z
ddv d

u

dw
A
A
A
A

d w
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In the case c2 = 1 to prove Wd is more difficult with the following diagram
involved.

x d
z
ddv d

u

dw
A
A
A
A

d
�
�

s

The idea is to show B(x , s) = B(x , u) and use this to show s ∈ ∆(x , y).
Then v ∈ ∆(x , y) by the construction.
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Precisely, we need to show the following.

Proposition

For any vertices x , y ∈ X with ∂(x , y) = d and for any vertex
z ∈ ∆(x , y) ∩ Γi (x), where 1 ≤ i ≤ d , we have the following (i), (ii).

(i) A(z , x) ⊆ ∆(x , y).

(ii) For any vertex w ∈ Γi (x) ∩ Γ2(z) with B(x ,w) = B(x , z), we have
w ∈ ∆(x , y).

In particular (Wd) holds.

The proof is quite technical. To prove (i) we need (ii) to help. The
nonexistence of many configurations listed before is used in the proof of
(ii).
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The following proves Rd .

Proposition

For any vertices x , y ∈ X with ∂(x , y) = d , ∆(x , y) is regular with valency
ad + cd .

Proof.

(Sketch) Since each vertex in ∆ = ∆(x , y) appears in a sequence of
vertices x = x0, x1, . . . , xd in ∆, where ∂(x , xj) = j , ∂(xj−1, xj) = 1 for
1 ≤ j ≤ d , and xd ∈ Πxy , it suffices to show

|Γ1(xi ) ∩∆| = ad + cd (1)

for 1 ≤ i ≤ d − 1. We show (1) holds for i = 0, d , and for each integer
1 ≤ i ≤ d , we use Wd to show

|Γ1(xi−1) \∆| ≤ |Γ1(xi ) \∆|.
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Thank you for your attention.

Download this paper:

http://jupiter.math.nctu.edu.tw/∼weng/papers/Dbounded 10 26 2009.pdf
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