# $D$-bounded distance-regular graphs 

Chih-wen Weng<br>(with Yu-pei Huang, Yeh-jong Pan)<br>Department of Applied Mathematics, National Chiao Tung University

November 10, 2009

## Notations

We always assume $\Gamma=(X, R)$ is a connected graph with diameter $D$.

## Notations

We always assume $\Gamma=(X, R)$ is a connected graph with diameter $D$. For $x \in X$,

$$
\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\} .
$$

## Distance-Regular Graphs

$\Gamma=(X, R)$ is distance-regular if and only if for $i \leq D$,

$$
\begin{aligned}
c_{i} & :=|C(x, y)| \\
a_{i} & :=|A(x, y)| \\
b_{i} & :=|B(x, y)|
\end{aligned}
$$

are constants subject to all vertices $x, y$ with $\partial(x, y)=i$, where $C(x, y)=\Gamma_{1}(x) \cap \Gamma_{i-1}(y), A(x, y)=\Gamma_{1}(x) \cap \Gamma_{i}(y)$ and $B(x, y)=\Gamma_{1}(x) \cap \Gamma_{i+1}(y)$.

$$
\partial(x, y)=i
$$



## $\partial(x, y)=i$

$y$


Note that $a_{i}+b_{i}+c_{i}=b_{0}$ and $k:=b_{0}$ is the valency of $\Gamma$.

A distance-regular graph is also called a $P$-polynomial scheme which is an important and interesting mathematical object, and also plays the role as an underlying combinatorial structure of Coding Theory, Design Theory and Group Theory.

## Examples: Hamming Graphs $H(D, 2)$

Set $F_{2}=\{0,1\}, X=F_{2}^{D}$, and

$$
R=\{u v \mid u, v \in X \text { differ in exact one cordinate }\} .
$$

## Examples: Hamming Graphs $H(D, 2)$

Set $F_{2}=\{0,1\}, X=F_{2}^{D}$, and

$$
R=\{u v \mid u, v \in X \text { differ in exact one cordinate }\} .
$$

Then $\Gamma=(X, R)$ is a distance-regular graph of diameter $D$.

## Examples: Hamming Graphs $H(D, 2)$

Set $F_{2}=\{0,1\}, X=F_{2}^{D}$, and

$$
R=\{u v \mid u, v \in X \text { differ in exact one cordinate }\} .
$$

Then $\Gamma=(X, R)$ is a distance-regular graph of diameter $D$. $\Gamma$ is called the Hamming graph $H(D, 2)$.

## Examples: Hamming Graphs $H(D, 2)$

Set $F_{2}=\{0,1\}, X=F_{2}^{D}$, and

$$
R=\{u v \mid u, v \in X \text { differ in exact one cordinate }\} .
$$

Then $\Gamma=(X, R)$ is a distance-regular graph of diameter $D$. $\Gamma$ is called the Hamming graph $H(D, 2) . H(2,2)$ is a square and $H(3,2)$ is a cube.

## Examples: Johnson Graphs $J(n, D), 2 D \leq n$

$$
\begin{aligned}
& \text { Set }[n]=\{1,2, \ldots, n\}, X=\binom{[n]}{D} \text { (the set of } D \text {-subsets of }[n] \text { ) and } \\
& \qquad R=\{u v|u, v \in X,|u \cap v|=D-1\} .
\end{aligned}
$$

## Examples: Johnson Graphs $J(n, D), 2 D \leq n$

Set $[n]=\{1,2, \ldots, n\}, X=\binom{[n]}{D}$ (the set of $D$-subsets of $[n]$ ) and

$$
R=\{u v|u, v \in X,|u \cap v|=D-1\} .
$$

Then $\Gamma=(X, R)$ is a distance-regular graph of diameter $D$.

## Examples: Johnson Graphs $J(n, D), 2 D \leq n$

Set $[n]=\{1,2, \ldots, n\}, X=\binom{[n]}{D}$ (the set of $D$-subsets of $[n]$ ) and

$$
R=\{u v|u, v \in X,|u \cap v|=D-1\} .
$$

Then $\Gamma=(X, R)$ is a distance-regular graph of diameter $D$. $\Gamma$ is called the Johnson graph $J(n, D)$.

Recall that a sequence $x, z, y$ of vertices of $\Gamma$ is geodetic whenever

$$
\partial(x, z)+\partial(z, y)=\partial(x, y)
$$

where $\partial$ is the distance function of $\Gamma$.

Recall that a sequence $x, z, y$ of vertices of $\Gamma$ is geodetic whenever

$$
\partial(x, z)+\partial(z, y)=\partial(x, y)
$$

where $\partial$ is the distance function of $\Gamma$. A sequence $x, z, y$ of vertices of $\Gamma$ is weak-geodetic whenever

$$
\partial(x, z)+\partial(z, y) \leq \partial(x, y)+1
$$

Recall that a sequence $x, z, y$ of vertices of $\Gamma$ is geodetic whenever

$$
\partial(x, z)+\partial(z, y)=\partial(x, y)
$$

where $\partial$ is the distance function of $\Gamma$. A sequence $x, z, y$ of vertices of $\Gamma$ is weak-geodetic whenever

$$
\partial(x, z)+\partial(z, y) \leq \partial(x, y)+1
$$



Definition. A subset $\Delta \subseteq X$ is weak-geodetically closed if for any weak-geodetic sequence $x, z, y$ of $\Gamma$,

$$
x, y \in \Delta \Longrightarrow z \in \Delta .
$$

Weak-geodetically closed subgraphs are called strongly closed subgraphs in some literature. If a weak-geodetically closed subgraph $\Delta$ of diameter $d$ is regular then it has valency $a_{d}+c_{d}=b_{0}-b_{d}$, where $a_{d}, c_{d}, b_{0}, b_{d}$ are intersection numbers of $\Gamma$. Furthermore $\Delta$ is distance-regular with intersection numbers $a_{i}(\Delta)=a_{i}(\Gamma)$ and $c_{i}(\Delta)=c_{i}(\Gamma)$ for $1 \leq i \leq d$.


Definition. $\Gamma$ is said to be $i$-bounded whenever for all $x, y \in X$ with $\partial(x, y) \leq i$, there is a regular weak-geodetically closed subgraph of diameter $\partial(x, y)$ which contains $x$ and $y$.

Note that a ( $D-1$ )-bounded distance-regular graph is clear to be $D$-bounded. The properties of $D$-bounded distance-regular graphs were studied in [-, D-bounded distance-regular graphs, European Journal of Combinatorics, 18(1997), 211-229], and these properties were used in the classification of classical distance-regular graphs of negative type [-, Classical distance-regular graphs of negative type, J. Combin. Theory Ser. B, 76(1999), 93-116].

Note that a ( $D-1$ )-bounded distance-regular graph is clear to be $D$-bounded. The properties of $D$-bounded distance-regular graphs were studied in [-, D-bounded distance-regular graphs, European Journal of Combinatorics, 18(1997), 211-229], and these properties were used in the classification of classical distance-regular graphs of negative type [-, Classical distance-regular graphs of negative type, J. Combin. Theory Ser. B, 76(1999), 93-116].

To state our main theorem we need more definitions.

## A parallelogram of length $i$

A 4-tuple $x y w z$ of vertices in $X$ is a parallelogram of length $i$ if $\partial(x, y)=\partial(w, z)=1, \partial(x, w)=\partial(y, w)=\partial(w, z)=i-1$ and $\partial(x, z)=i$.

## A parallelogram of length $i$

A 4-tuple $x y w z$ of vertices in $X$ is a parallelogram of length $i$ if $\partial(x, y)=\partial(w, z)=1, \partial(x, w)=\partial(y, w)=\partial(w, z)=i-1$ and $\partial(x, z)=i$.


## A parallelogram of length $i$

A 4-tuple xywz of vertices in $X$ is a parallelogram of length $i$ if $\partial(x, y)=\partial(w, z)=1, \partial(x, w)=\partial(y, w)=\partial(w, z)=i-1$ and $\partial(x, z)=i$.


Note that if $c_{i}=1$ then there is no parallelogram of length $i$.

## A kite of length $i$

A 4-tuple $x y w z$ of vertices in $X$ is a kite of length $i$ if $\partial(x, y)=\partial(x, w)=\partial(y, w)=1, \partial(w, z)=\partial(y, z)=i-1$ and $\partial(x, z)=i$.

## A kite of length $i$

A 4-tuple $x y w z$ of vertices in $X$ is a kite of length $i$ if $\partial(x, y)=\partial(x, w)=\partial(y, w)=1, \partial(w, z)=\partial(y, z)=i-1$ and $\partial(x, z)=i$.


## A kite of length $i$

A 4-tuple $x y w z$ of vertices in $X$ is a kite of length $i$ if $\partial(x, y)=\partial(x, w)=\partial(y, w)=1, \partial(w, z)=\partial(y, z)=i-1$ and $\partial(x, z)=i$.


Note that if $c_{i}=1$ or $a_{1}=0$ then there is no kite of length $i$.

## A parallelogram of length 2 or a kite of length $2\left(K_{1,2,1}\right)$

INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS

## A parallelogram of length 2 or a kite of length $2\left(K_{1,2,1}\right)$



Main Theorem. Let 「 denote a distance-regular graph with diameter $D \geq 3$. Suppose the intersection number $a_{2} \neq 0$. Fix an integer $2 \leq d \leq D-1$. Then the following two conditions (i), (ii) are equivalent:
(i) $\Gamma$ is $d$-bounded.
(ii) 「 contains no parallelograms of any length up to $d+1$ and $b_{1}>b_{2}$.

Main Theorem. Let 「 denote a distance-regular graph with diameter $D \geq 3$. Suppose the intersection number $a_{2} \neq 0$. Fix an integer $2 \leq d \leq D-1$. Then the following two conditions (i), (ii) are equivalent:
(i) $\Gamma$ is $d$-bounded.
(ii) 「 contains no parallelograms of any length up to $d+1$ and $b_{1}>b_{2}$.


Use $\Omega(x) \subset \Delta(x)$ to obtain $b_{0}-b_{1}=|\Omega(x)|<|\Delta(x)|=b_{0}-b_{2}$.

## The Proof of $d$-bounded $\Rightarrow$ no parallelogram



If a parallelogram of length $d+1$ exists as shown above, then $x, y, z, w \in \Delta(x, w)$, but $\partial(x, z)=d+1>d=\operatorname{diameter}(\Delta(x, w))$.

To prove the other direction " No parallelogram $\Rightarrow d$-bounded," let's try first to find the nonexistence of many other configurations from the nonexistence of parallelogram.

## Lemma

If $\Gamma$ contains no parallelogram of any length up to $d+1$ then $\Gamma$ contains no kite of any length up to $d+1$.

## Lemma

If $\Gamma$ contains no parallelogram of any length up to $d+1$ then $\Gamma$ contains no kite of any length up to $d+1$.

Proof. If there exists a kite xywz of smallest length $3 \leq i \leq d+1$.


## Lemma

If $\Gamma$ contains no parallelogram of any length up to $d+1$ then $\Gamma$ contains no kite of any length up to $d+1$.

Proof. If there exists a kite xywz of smallest length $3 \leq i \leq d+1$.


## Lemma

If $\Gamma$ contains no parallelogram of any length up to $d+1$ then $\Gamma$ contains no kite of any length up to $d+1$.

Proof. If there exists a kite xywz of smallest length $3 \leq i \leq d+1$.


Pick $u$ with $\partial(u, z)=1$ and $\partial(y, u)=i-2$. Then xwuz is a parallelogram of length $i$, a contradiction.

Throughout the talk, we always assume that $\Gamma$ does not contain parallelogram of any length up to $d+1$.

## Non-existence configurations



$$
i-1
$$

## Non-existence configurations



$$
i-1 \quad \circ \quad z
$$

Sketch of Proof. Find minimal $i$ that the above configuration exists.

## Non-existence configurations



$$
i-1 \quad{ } \quad \begin{aligned}
& z \\
& \\
& \\
&
\end{aligned}
$$

Sketch of Proof. Find minimal $i$ that the above configuration exists.
(1) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v) \subseteq \Gamma_{1}(z) \cap \Gamma_{i-2}(w)$.

## Non-existence configurations



$$
i-1 \quad \circ z
$$

Sketch of Proof. Find minimal $i$ that the above configuration exists.
(1) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v) \subseteq \Gamma_{1}(z) \cap \Gamma_{i-2}(w)$.
(2) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v)=\Gamma_{1}(z) \cap \Gamma_{i-2}(w)$ by finiteness theorem (both sets have size $\left.c_{i-1}\right)$.

## Non-existence configurations



$$
i-1 \quad \circ \quad z
$$

Sketch of Proof. Find minimal $i$ that the above configuration exists.
(1) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v) \subseteq \Gamma_{1}(z) \cap \Gamma_{i-2}(w)$.
(2) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v)=\Gamma_{1}(z) \cap \Gamma_{i-2}(w)$ by finiteness theorem (both sets have size $\left.c_{i-1}\right)$.
(3) Similarly, $\Gamma_{1}(z) \cap \Gamma_{i-2}(u)=\Gamma_{1}(z) \cap \Gamma_{i-2}(y)$.

## Non-existence configurations



$$
i-1 \quad \circ \quad z
$$

Sketch of Proof. Find minimal $i$ that the above configuration exists.
(1) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v) \subseteq \Gamma_{1}(z) \cap \Gamma_{i-2}(w)$.
(2) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v)=\Gamma_{1}(z) \cap \Gamma_{i-2}(w)$ by finiteness theorem (both sets have size $\left.c_{i-1}\right)$.
(3) Similarly, $\Gamma_{1}(z) \cap \Gamma_{i-2}(u)=\Gamma_{1}(z) \cap \Gamma_{i-2}(y)$.
(4) Show $\Gamma_{1}(z) \cap \Gamma_{i-2}(v)=\Gamma_{1}(z) \cap \Gamma_{i-2}(y)$ to have a contradiction.

## Non-existence configurations



## Non-existence configurations



## Proof.

## Non-existence configurations



## Proof. Skip

## Non-existence configurations

distance to $x$
$0 \quad \ldots . . \quad i-1 \quad i \quad i+1 \quad i+2$


From the nonexistence of many configurations, we can show


We need a theory to reduce the load of the proof.

Definition. Assume $x \in \Delta \subseteq X$.. The subset $\Delta$ is weak-geodetically closed with respect to $x$ if for any weak-geodetic sequence $x, z, y$ of $\Gamma$,

$$
x, y \in \Delta \Longrightarrow z \in \Delta .
$$

## Theorem

Let $\Gamma$ be a distance-regular graph with diameter $D \geq 3$. Let $\Omega$ be a regular subgraph of $\Gamma$ with valency $\gamma$ and set $d:=\min \left\{i \mid \gamma \leq c_{i}+a_{i}\right\}$. Then the following (i),(ii) are equivalent.
(i) $\Omega$ is weak-geodetically closed with respect to at least one vertex $x \in \Omega$.
(ii) $\Omega$ is weak-geodetically closed with diameter $d$.

In this case $\gamma=c_{d}+a_{d}$.

## Theorem

Let $\Gamma$ be a distance-regular graph with diameter $D \geq 3$. Let $\Omega$ be a regular subgraph of $\Gamma$ with valency $\gamma$ and set $d:=\min \left\{i \mid \gamma \leq c_{i}+a_{i}\right\}$. Then the following (i),(ii) are equivalent.
(i) $\Omega$ is weak-geodetically closed with respect to at least one vertex $x \in \Omega$.
(ii) $\Omega$ is weak-geodetically closed with diameter $d$.

In this case $\gamma=c_{d}+a_{d}$.
([Theorem 4.6 in —, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics, 14(1998), 275-304])

## The construction

## Definition

For any vertex $x \in X$ and any subset $\Pi \subseteq X$, define $[x, \Pi]$ to be the set
$\left\{v \in X \mid\right.$ there exists $y^{\prime} \in \Pi$, such that the sequence $x, v, y^{\prime}$ is geodetic $\}$.
For any $x, y \in X$ with $\partial(x, y)=d$, set

$$
\Pi_{x y}:=\left\{y^{\prime} \in \Gamma_{d}(x) \mid B(x, y)=B\left(x, y^{\prime}\right)\right\}
$$

and

$$
\Delta(x, y)=\left[x, \Pi_{x y}\right] .
$$



We shall prove that for any vertices $x, y \in X$ with $\partial(x, y)=d$ the following statements $W_{d}, R_{d}$ hold.
$\left(W_{d}\right) \Delta(x, y)$ is weak-geodetically closed with respect to $x$, and $\left(R_{d}\right)$ the subgraph induced on $\Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

We shall prove that for any vertices $x, y \in X$ with $\partial(x, y)=d$ the following statements $W_{d}, R_{d}$ hold.
$\left(W_{d}\right) \Delta(x, y)$ is weak-geodetically closed with respect to $x$, and $\left(R_{d}\right)$ the subgraph induced on $\Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

To prove $W_{d}$ in the case $c_{2}>1$, we use induction on $d$ and induction on $d-\partial(x, z)$ to show $v \in \Delta(x, y)$ for any $z \in \Delta(x, y)$ and $v \in A(z, x)$ in the following picture.


We shall prove that for any vertices $x, y \in X$ with $\partial(x, y)=d$ the following statements $W_{d}, R_{d}$ hold.
$\left(W_{d}\right) \Delta(x, y)$ is weak-geodetically closed with respect to $x$, and $\left(R_{d}\right)$ the subgraph induced on $\Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

To prove $W_{d}$ in the case $c_{2}>1$, we use induction on $d$ and induction on $d-\partial(x, z)$ to show $v \in \Delta(x, y)$ for any $z \in \Delta(x, y)$ and $v \in A(z, x)$ in the following picture.


We shall prove that for any vertices $x, y \in X$ with $\partial(x, y)=d$ the following statements $W_{d}, R_{d}$ hold.
$\left(W_{d}\right) \Delta(x, y)$ is weak-geodetically closed with respect to $x$, and $\left(R_{d}\right)$ the subgraph induced on $\Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

To prove $W_{d}$ in the case $c_{2}>1$, we use induction on $d$ and induction on $d-\partial(x, z)$ to show $v \in \Delta(x, y)$ for any $z \in \Delta(x, y)$ and $v \in A(z, x)$ in the following picture.


We shall prove that for any vertices $x, y \in X$ with $\partial(x, y)=d$ the following statements $W_{d}, R_{d}$ hold.
$\left(W_{d}\right) \Delta(x, y)$ is weak-geodetically closed with respect to $x$, and $\left(R_{d}\right)$ the subgraph induced on $\Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

To prove $W_{d}$ in the case $c_{2}>1$, we use induction on $d$ and induction on $d-\partial(x, z)$ to show $v \in \Delta(x, y)$ for any $z \in \Delta(x, y)$ and $v \in A(z, x)$ in the following picture.


In the case $c_{2}=1$ to prove $W_{d}$ is more difficult with the following diagram involved.


In the case $c_{2}=1$ to prove $W_{d}$ is more difficult with the following diagram involved.


The idea is to show $B(x, s)=B(x, u)$ and use this to show $s \in \Delta(x, y)$. Then $v \in \Delta(x, y)$ by the construction.

Precisely, we need to show the following.

## Proposition

For any vertices $x, y \in X$ with $\partial(x, y)=d$ and for any vertex $z \in \Delta(x, y) \cap \Gamma_{i}(x)$, where $1 \leq i \leq d$, we have the following (i), (ii).
(i) $A(z, x) \subseteq \Delta(x, y)$.
(ii) For any vertex $w \in \Gamma_{i}(x) \cap \Gamma_{2}(z)$ with $B(x, w)=B(x, z)$, we have $w \in \Delta(x, y)$.
In particular $\left(W_{d}\right)$ holds.

Precisely, we need to show the following.

## Proposition

For any vertices $x, y \in X$ with $\partial(x, y)=d$ and for any vertex $z \in \Delta(x, y) \cap \Gamma_{i}(x)$, where $1 \leq i \leq d$, we have the following (i), (ii).
(i) $A(z, x) \subseteq \Delta(x, y)$.
(ii) For any vertex $w \in \Gamma_{i}(x) \cap \Gamma_{2}(z)$ with $B(x, w)=B(x, z)$, we have $w \in \Delta(x, y)$.
In particular $\left(W_{d}\right)$ holds.

The proof is quite technical. To prove (i) we need (ii) to help. The nonexistence of many configurations listed before is used in the proof of (ii).

The following proves $R_{d}$.

## Proposition

For any vertices $x, y \in X$ with $\partial(x, y)=d, \Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

The following proves $R_{d}$.

## Proposition

For any vertices $x, y \in X$ with $\partial(x, y)=d, \Delta(x, y)$ is regular with valency $a_{d}+c_{d}$.

## Proof.

(Sketch) Since each vertex in $\Delta=\Delta(x, y)$ appears in a sequence of vertices $x=x_{0}, x_{1}, \ldots, x_{d}$ in $\Delta$, where $\partial\left(x, x_{j}\right)=j, \partial\left(x_{j-1}, x_{j}\right)=1$ for $1 \leq j \leq d$, and $x_{d} \in \Pi_{x y}$, it suffices to show

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i}\right) \cap \Delta\right|=a_{d}+c_{d} \tag{1}
\end{equation*}
$$

for $1 \leq i \leq d-1$. We show (1) holds for $i=0, d$, and for each integer $1 \leq i \leq d$, we use $W_{d}$ to show

$$
\left|\Gamma_{1}\left(x_{i-1}\right) \backslash \Delta\right| \leq\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| .
$$

$$
A\left(x_{\mathrm{i}_{1}-1}, z\right)
$$




## Thank you for your attention.

Download this paper:
http://jupiter.math.nctu.edu.tw/ ~weng/papers/Dbounded_10_26_2009.pdf

