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Binary matrix for group testing

1 Let [n] := {1, 2, . . . , n} be a set of items containing a subset
P ⊆ [n], the set of defected item.

2 We want to collect a group {T1, T2, . . . , Tt} of t tests, each
test Ti is a subset of [n] for 1 ≤ i ≤ t.

3 We arrange such a group testing design by the following
binary matrix M.

4 Let M be the t × n binary matrix defined by

Mij =

{
1, j ∈ Ti ;
0, j 6∈ Ti

for 1 ≤ i ≤ t and j ∈ [n].
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The output of a group testing

1 Let P ∈ F n
2 denote the characteristic vector of P ⊆ [n].

2 The map P → P is a bijection from the power set of [n] to F n
2 .

3 We use P ⊆ P′ if P ⊆ P ′, and similar for using other set
notations in vectors.

4 oM(P) :=
⋃
i∈P

Mi = M ? P, where ? is the matrix product by

using Boolean sum to replace addition.

5 oM : F n
2 → F t

2 is called the output function of M.
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Disjunct matrix

1 Note that oM(P ∪ P′) = oM(P) ∪ oM(P′) for P, P ′ ⊆ [n].

2 In particular if P ⊆ P ′′ then oM(P) ⊆ oM(P′′).

3 For W ⊆ F n
2 , M is W -disjunct if oM(P) 6⊆ oM(P′′) for any

P,P′′ ∈W with P 6⊆ P ′′.

4 In the above definition, it suffices to assume |P| = 1.

5 M is d-disjunct if for any d + 1 distinct columns Mi0 , Mi1 ,

. . . , Mid , we have Mi0 6⊆
d⋃

j=1
Mij

Exercise

Show that a d-disjunct matrix is

(
[n]
≤ d

)
-disjunct.

12 / 105



Disjunct matrix

1 Note that oM(P ∪ P′) = oM(P) ∪ oM(P′) for P, P ′ ⊆ [n].

2 In particular if P ⊆ P ′′ then oM(P) ⊆ oM(P′′).

3 For W ⊆ F n
2 , M is W -disjunct if oM(P) 6⊆ oM(P′′) for any

P,P′′ ∈W with P 6⊆ P ′′.

4 In the above definition, it suffices to assume |P| = 1.

5 M is d-disjunct if for any d + 1 distinct columns Mi0 , Mi1 ,

. . . , Mid , we have Mi0 6⊆
d⋃

j=1
Mij

Exercise

Show that a d-disjunct matrix is

(
[n]
≤ d

)
-disjunct.

13 / 105



Disjunct matrix

1 Note that oM(P ∪ P′) = oM(P) ∪ oM(P′) for P, P ′ ⊆ [n].

2 In particular if P ⊆ P ′′ then oM(P) ⊆ oM(P′′).

3 For W ⊆ F n
2 , M is W -disjunct if oM(P) 6⊆ oM(P′′) for any

P,P′′ ∈W with P 6⊆ P ′′.

4 In the above definition, it suffices to assume |P| = 1.

5 M is d-disjunct if for any d + 1 distinct columns Mi0 , Mi1 ,

. . . , Mid , we have Mi0 6⊆
d⋃

j=1
Mij

Exercise

Show that a d-disjunct matrix is

(
[n]
≤ d

)
-disjunct.

14 / 105



Disjunct matrix

1 Note that oM(P ∪ P′) = oM(P) ∪ oM(P′) for P, P ′ ⊆ [n].

2 In particular if P ⊆ P ′′ then oM(P) ⊆ oM(P′′).

3 For W ⊆ F n
2 , M is W -disjunct if oM(P) 6⊆ oM(P′′) for any

P,P′′ ∈W with P 6⊆ P ′′.

4 In the above definition, it suffices to assume |P| = 1.

5 M is d-disjunct if for any d + 1 distinct columns Mi0 , Mi1 ,

. . . , Mid , we have Mi0 6⊆
d⋃

j=1
Mij

Exercise

Show that a d-disjunct matrix is

(
[n]
≤ d

)
-disjunct.

15 / 105



Disjunct matrix

1 Note that oM(P ∪ P′) = oM(P) ∪ oM(P′) for P, P ′ ⊆ [n].

2 In particular if P ⊆ P ′′ then oM(P) ⊆ oM(P′′).

3 For W ⊆ F n
2 , M is W -disjunct if oM(P) 6⊆ oM(P′′) for any

P,P′′ ∈W with P 6⊆ P ′′.

4 In the above definition, it suffices to assume |P| = 1.

5 M is d-disjunct if for any d + 1 distinct columns Mi0 , Mi1 ,

. . . , Mid , we have Mi0 6⊆
d⋃

j=1
Mij

Exercise

Show that a d-disjunct matrix is

(
[n]
≤ d

)
-disjunct.

16 / 105



Decidable matrix

1 Note that oM(P)i = 0 iff P ∩ Ti = ∅ iff P ⊆ Ti .

2 Hence P ⊆
⋂

oM(P)i=0

Ti .

3 For W ⊆ F n
2 , M is W -decidable if P =

⋂
oM(P)i=0

Ti for any

P ∈W .

4 A

(
[n]
d

)
-decidable matrix is called d-decidable.

5 A

(
[n]
≤ d

)
-decidable matrix is called d-decidable.

Exercise

Show that a W -disjunct matrix is W -decidable.

Problem

Find a W -decidable matrix which is not W -disjunct?
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Separable matrix

1 For W ⊆ F n
2 , M is W -separable if the restricted function

oM � W of oM to W is injective.

2 If M is W -separable then for each vector u in the output set
oM(W ) there exists a unique vector P ∈W such that
oM(P) = u, i.e. the set P of positive items can be decoded
from the output vector u.

3 A

(
[n]
≤ d

)
-separable matrix is also called d-separable.

4 A

(
[n]
d

)
-separable matrix is also called d-separable.

Exercise

A W -decidable matrix is W -separable for any W ⊆ F n
2 .
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Relations

'

&

$

%

'
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$
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%

W -disjunct

W -decidable

W -separable

Find the relation between the above three classes of binary
matrices with slightly changing W and possibly adding or deleting
a few rows.
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A property distinguishes decidable matrix from others

Note that for each t × n binary matrix M there exists a unique
maximal WM ⊆ F n

2 such that M is WM -decidable, in fact,
WM = {P ∈ F n

2 | P =
⋂

oM(P)i=0

Ti}.

Problem

Study the map M →WM .
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1-disjunct matrix

Example

A 1-disjunct matrix to detect the infected item 3 from
{1, 2, 3, 4, 5, 6} :

Tests/Items | 1 2 3 4 5 6 oM({3})

one | 1 1 1 0 0 0 → 1
Two | 1 0 0 1 1 0 → 0
Three | 0 1 0 1 0 1 → 0
Four | 0 0 1 0 1 1 → 1



In fact the above 4× 6 matrix M has WM =(
[6]
≤ 1

)
∪ {{3, 5, 6}, {2, 4, 6}, {1, 4, 5}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

32 / 105



1-disjunct matrix

Example

A 1-disjunct matrix to detect the infected item 3 from
{1, 2, 3, 4, 5, 6} :

Tests/Items | 1 2 3 4 5 6 oM({3})

one | 1 1 1 0 0 0 → 1
Two | 1 0 0 1 1 0 → 0
Three | 0 1 0 1 0 1 → 0
Four | 0 0 1 0 1 1 → 1



In fact the above 4× 6 matrix M has WM =(
[6]
≤ 1

)
∪ {{3, 5, 6}, {2, 4, 6}, {1, 4, 5}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

33 / 105



n-disjunct matrix

Example

For t = n the t × n identity matrix I is F n
2 -disjunct.

In applying to a group testing, we need the number t of tests is
smaller than the number n of items, otherwise we would rather test
the items one by one.

34 / 105



n-disjunct matrix

Example

For t = n the t × n identity matrix I is F n
2 -disjunct.

In applying to a group testing, we need the number t of tests is
smaller than the number n of items, otherwise we would rather test
the items one by one.

35 / 105



Nontrivial M

An t × n binary matrix is nontrivial if t < n.

Example

Let q be a prime power. The affine plane F 2
q over Fq has q2 points

and q2 + q lines. Since any line has q points and any two lines
intersect at most 1 point, the points of a line can not be covered
by the union of other q − 1 lines. Hence the points-lines incidence
matrix M is (q − 1)-disjunct matrix, and it is nontrivial since
n = q2 + q > q2 = t.

Problem

For each positive integer q find a nontrivial (q − 1)-disjunct matrix
with t = q2.

The first q which is not a prime power is when q = 6.
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Affine plane and projective plane

1 In general for any positive integer r , prime power or not, we
can define affine plane using the language of designs.

2 A projective plane of order r is a 2-(r2 + r + 1, r + 1, 1) design.

3 An affine plane of order r is a 2-(r2, r , 1) design.

4 It is known that there is a projective plane of order r if and
only if there is an affine plane of order r .

5 The points and lines structure in F 2
q gives an affine plane of

order q when q is a prime power.

6 The existence of finite projective planes of other orders is an
open question.

7 The case r = 6 has been ruled out by Bruck-Ryser-Chowla
theorem.

8 The next case r = 10 has been ruled out by massive computer
calculations.

9 There is nothing more known, in particular r = 12 is still open.
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Nontrivial 5-disjunct matrix with 36 rows

Since there is no affine plane of order 6, we must find some other
way to construct a nontrivial 5-disjunct matrix with 36 rows.

In the following we will give a system to construct nontrivial
d-disjunct matrices including the above case.

Note that if there exists a nontrivial d-disjunct matrix with
(d + 1)2 − 1 rows then EFF’s conjecture is false. See page 29 of
the book ”Pooling Designs and nonadaptive group testing” by
Ding-Zhu Du and Frank K. Hwang for a description of EFF’s
conjecture.
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A 36× 37 5-disjunct matrix
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Forward difference property

1 Let q be a prime power and m ≥ q be an integer.

2 Let Fq := {0, a0, a1, . . . , ap−2} denote the finite field of q
elements, where a is a generator of the cyclic multiplication
group F ∗q := Fq − {0}.

3 Let Zm := {0, 1, . . . , m − 1} be the addition group of integers
modulo m. We use the order of integers to order the elements
in Zm, e.g. 0 < 1.

4 A subset T ⊆ Zm × Fq is said to have the forward difference
distinct property in Zm × Fq if the set

DT := {(j , y)− (i , x) | (i , x), (j , y) ∈ T with i < j}

consists of |T |(|T |−1)
2 elements.

56 / 105



Forward difference property

1 Let q be a prime power and m ≥ q be an integer.

2 Let Fq := {0, a0, a1, . . . , ap−2} denote the finite field of q
elements, where a is a generator of the cyclic multiplication
group F ∗q := Fq − {0}.

3 Let Zm := {0, 1, . . . , m − 1} be the addition group of integers
modulo m. We use the order of integers to order the elements
in Zm, e.g. 0 < 1.

4 A subset T ⊆ Zm × Fq is said to have the forward difference
distinct property in Zm × Fq if the set

DT := {(j , y)− (i , x) | (i , x), (j , y) ∈ T with i < j}

consists of |T |(|T |−1)
2 elements.

57 / 105



Forward difference property

1 Let q be a prime power and m ≥ q be an integer.

2 Let Fq := {0, a0, a1, . . . , ap−2} denote the finite field of q
elements, where a is a generator of the cyclic multiplication
group F ∗q := Fq − {0}.

3 Let Zm := {0, 1, . . . , m − 1} be the addition group of integers
modulo m. We use the order of integers to order the elements
in Zm, e.g. 0 < 1.

4 A subset T ⊆ Zm × Fq is said to have the forward difference
distinct property in Zm × Fq if the set

DT := {(j , y)− (i , x) | (i , x), (j , y) ∈ T with i < j}

consists of |T |(|T |−1)
2 elements.

58 / 105



Forward difference property

1 Let q be a prime power and m ≥ q be an integer.

2 Let Fq := {0, a0, a1, . . . , ap−2} denote the finite field of q
elements, where a is a generator of the cyclic multiplication
group F ∗q := Fq − {0}.

3 Let Zm := {0, 1, . . . , m − 1} be the addition group of integers
modulo m. We use the order of integers to order the elements
in Zm, e.g. 0 < 1.

4 A subset T ⊆ Zm × Fq is said to have the forward difference
distinct property in Zm × Fq if the set

DT := {(j , y)− (i , x) | (i , x), (j , y) ∈ T with i < j}

consists of |T |(|T |−1)
2 elements.

59 / 105



The Set mTq

Let mTq ⊆ Zm × Fq be defined by

mTq = {(i , ai ) | i ∈ Zm, 0 ≤ i ≤ q − 1}.

0̀ 1̀ 2̀ · · ·
`

q̀ − 1 m̀ − 1· · ·

...

`
a0

`
a1

`
a2

`
aq−2

s s s

s

s

mTq
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A preview of the finial result

0̀ 1̀ 2̀ · · ·
` `
q − 1 q̀ m̀ − 1· · ·

...

`
a0

`
a1

`
a2

`
aq−2

s

s s s

s

ss s s

s

s

ss ss∞

Lines in Zm × (Fq ∪ {∞})
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The Set 5T5

For q = 5, a = 2,

5T5 = {(0, 1), (1, 2), (2, 4), (3, 3), (4, 1)}

and

D5T5 = { (1, 1), (1, 2), (1, 4), (1, 3)

(2, 3), (2, 1), (2, 2)

(3, 2), (3, 4)

(4, 0) }.

Since |D5T5 | = 10, the set 5T5 has the forward difference distinct
property in Z5 × F5.
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Difference Property

A subset T ⊆ Zm × Fq is said to have the difference distinct
property in Zm × Fq if the set −DT ∪ DT consists of |T |(|T | − 1)
elements.

From the structure of DmTq we find (0, x) 6∈ −DmTq ∪DmTq for any
x ∈ Fq. This property will be used later.
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Non-example

We have seen

D5T5 = { (1, 1), (1, 2), (1, 4), (1, 3)

(2, 3), (2, 1), (2, 2)

(3, 2), (3, 4)

(4, 0) }.

Hence

−D5T5 = { (4, 4), (4, 3), (4, 1), (4, 2)

(3, 2), (3, 4), (3, 3)

(2, 3), (2, 1)

(1, 0) }.

Since | − D5T5 ∪ D5T5 | = 16 6= 20, the set 5T5 does not have the
difference distinct property in Z5 × F5.
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Embedding

For positive integers n < m, the set Zn can be viewed as a subset
of Zm in the usual way. Hence we have Zn × Fq ⊆ Zm × Fq.

In
this setting, again

D6T5 = D5T5 = { (1, 1), (1, 2), (1, 4), (1, 3)

(2, 3), (2, 1), (2, 2)

(3, 2), (3, 4)

(4, 0) }.

Hence considering as the negative in Z6 × F5, we have

−D6T5 = { (5, 4), (5, 3), (5, 1), (5, 2)

(4, 2), (4, 4), (4, 3)

(3, 3), (3, 1)

(2, 0) }.

Since | − D6T5 ∪ D6T5 | = 20 now, the set 6T5 has the difference
distinct property in Z6 × F5.
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Problem

Determine the prime power integer q such that with a suitable
choice of a generator a ∈ Fq, the set q+1Tq has the difference
distinct property in Zq+1 × Fq.

By direct computing by hands, we find the above statement is true
for q = 2, 4, 5 and is false for q = 3, 7 (First two primes in 4k + 3
form).

Example

Note that

4T3 = {(0, 1), (1, 2), (2, 1)},
D4T3 = {(1, 1), (1, 2), (2, 0)},

− D4T3 = {(3, 2), (3, 1), (2, 0)}.

Hence the set 4T3 does not have the difference distinct property in
Z4 × F3.
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mTq has the forward difference distinct property

Theorem

The set mTq has the forward difference distinct property in
Zm × Tq.

Proof.

Suppose for 0 ≤ i < j ≤ q − 1 we have j − i = c and aj − ai = d .
Note that 1 ≤ c ≤ q − 1. If c = q − 1 then j = q − 1 and i = 0. If
c 6= q − 1 then ai = d/(aj−i − 1) = d/(ac − 1) and j = c + i . In
each case the pair (i , ai ), (j , aj) is unique determined by the
element (c , d) ∈ Zm × Fq.
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2q−1Tq has the difference distinct property

Theorem

For m ≥ 2q − 1, the set mTq has the difference distinct property in
Zm × Tq.

Proof.

By the theorem in the last page we have
|DmTq | = | − DmTq | = q(q − 1)/2. The first coordinate of an
element in D2q−1Tq runs from 1 to q − 1, and the first coordinate
of an element in −D2q−1Tq from m + 1− q to m − 1. The
assumption m ≥ 2q − 1 implies −D2q−1Tq ∩ D2q−1Tq = ∅.
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Lines with any two intersecting in at most a point

Theorem

Suppose that mTq ⊆ Zm × Fq has the difference distinct property
in Zm × Fq. Set B = {u +m Tq | u ∈ Zm × Fq}. Then |L ∩ L′| ≤ 1
for any distinct L, L′ ∈ B.

Proof.

Routine.

An element in B is called a line and an element in Zm× Fq is called
a point. Note that there are mq lines and mq points, and a line
has q = |T | points with q different first coordinates. Apparently
more lines can be added to B still having the conclusion of the
above theorem, for example, adding vertical lines to B.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B = {u +m Tq | u ∈ Zm × Fq} intersect at at most one point.

Since (0, x) 6∈ −DmTq ∪DmTq , we have L ∩ ((0, x) + L) = ∅ for any
nonzero x ∈ Fq and L ∈ B. Then B is partitioned into m classes
with each class consisting of parallel lines (non-intersecting lines).
We add a common point (i ,∞) to each line in a parallel class
where i ∈ Zm is not appearing in the first coordinate of any points
of the line and i − 1 appearing in some point of the line. This
forms a new set B′ of Lines with underground point set
Zm × (Fq ∪ {∞}). Note that any two distinct lines in B′ intersect
in at most one point too.
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Vertical Lines and infinite line

Set Vi = {(i , j) | j ∈ Fq ∪ {∞} } for 0 ≤ i ≤ m − 1, and Vi is
called the ith vertical line. Set H = {(i ,∞) | 0 ≤ i ≤ q} (here
assuming m > q), and H is called an infinite line.

Set B′′ := B′ ∪ {H, V0, V1, . . . , Vm−1}. Then
|Zm × (Fq ∪ {∞})| = m(q + 1) and |B′′| = m(q + 1) + 1.
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Conclusion

Suppose that mTq ⊆ Zm × Fq has the difference distinct property
in Zm × Fq, for example in the case m ≥ 2q − 1 or m = q + 1 = 6.

Let M be the incidence matrix of Zm × (Fq ∪ {∞}) and B′′. Then
M is a nontrivial q-disjunct matrix with m(q + 1) rows.
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A Review of our result
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Lines in Zm × (Fq ∪ {∞})
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The end

Thank you for your attention.
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