Korea-Japan Workshop on Algebra and Combinatorics

The flipping puzzle on a simple graph

Chih-wen Weng
(with Hau-wen Huang)

Department of Applied Mathematics, National Chiao Tung University, Taiwan

2009/2/10

Hau-wen Huang

Flipping Puzzle

Let $X=(V, E)$ be a finite simple connected graph with $|V|=n$. A configuration of X is an assignment $f: V \longrightarrow\{0,1\}$, and is viewed as a column vector indexed by V.
$0=$ white, $1=$ black

A Move in the Puzzle

A move is to select one vertex $v \in V$ having black state in the configuration f and then change those states of all neighbors of v to become a new configuration. This is the flipping puzzle on X.

Example of a Configuration

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right) .
$$

A Move by Selecting Vertex 2

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=?
$$

New Configuration after the Move

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right)
$$

Feigning Move

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=?
$$

No Effect after a Feigning Move

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Flipping Classes

- Two configurations are equivalent if one is obtained from the other by a move
- An orbit of configurations is called a flipping class

History

- When X is Dynkin Diagram, a configuration is called a Vogan diagram with identity graph involution.
- Each Vogan diagram corresponds to a real simple Lie algebra.
- Equivalent Vogan diagrams represent the same real simple Lie algebra.

Problem

For each graph X , determine its flipping classes

Previous Results

Flipping classes of Dynkin Diagrams and extended Dynkin diagrams are determined by Meng-Kiat Chuah and Chu-Chin Hu in 2004[4], 2006[5]

Other Graphs that Flipping Classes Are Completely Determined

- A graph with n vertices which contains an induced path of $n-1$ vertices (H. Huang and ---2008[2])
- Line graphs (Wu[8], H. Huang and --2008[3])

The Number of Flipping classes in a Tree with perfect matching

If X is a tree with a perfect matching, not a path, then there are exactly 3 flipping classes (Hau-wen Huang, preprint).

Open Problem

Determine the flipping classes of X when X is a chessboard.

Maximum-orbit-weight

For $u \in F_{2}^{n}$, let $w(u)$ denotes the Hamming weight of u, and for an flipping class O of $X, w(O):=\min \{w(u) \mid u \in O\}$ is called the weight of the flipping class O. The number

$$
M(X):=\max \{w(O) \mid O \in \mathcal{P}\}
$$

is called the maximum-orbit-weight of the graph S.

Borel-de Siebenthal Theorem

If X is a Dynkin diagram then $M(X)=1$.

Recent Results of $\mathrm{M}(\mathrm{X})$

X. Wang, Y. Wu [6] and H. Wu, G. J. Chang [7] independently show $M(X) \leq\lceil\ell / 2\rceil$ if X is a tree with ℓ leaves.
Y . Wu discovers that if X is the line graph of a simple graph Γ, then there is a close connection between $M(X)$ and the edge isoperimetric number of $\Gamma[8]$.
$M(X)=1$ if X is a tree with a perfect matching (Hua-wen Huang, preprint).

Open Problem

Determine all graphs X with $M(X)=1$.

Variations of Flipping Puzzle

- σ-game (also can move on a white vertex)
- σ-plus-game (the state of selected vertex is also switched)
- Reeder's puzzle (dual version)

Associate a Move with a Matrix

For $s \in V$, we associate a matrix $\mathbf{s} \in \operatorname{Mat}_{n}\left(F_{2}\right)$, denoted by the bold type of s, as

$$
\mathbf{s}_{u v}= \begin{cases}1, & \text { if } u=v, \text { or } v=s \text { and } u v \in E \\ 0, & \text { else }\end{cases}
$$

where $u, v \in V$.

Matrix Associated with Move 2

 (Revisited)

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right)
$$

Flipping Group of X

Lemma

For $s \in V$, \mathbf{s} is an involution; that is, $\mathbf{s}^{2}=I$, the identity matrix. In particular, $\mathbf{s} \in \mathrm{GL}_{n}\left(F_{2}\right)$.

Definition

Let \mathbf{W} denote the subgroup of $\mathrm{GL}_{n}\left(F_{2}\right)$ generated by the set $\{\mathbf{s} \mid s \in V\} . \mathbf{W}$ is referring to the flipping group of X.

- Flipping group is a matrix group.
- Are there any objects related to flipping groups?

Coxeter Group of a graph X

Let $X=(V, E)$ be a finite simple connected graph. For $s, s^{\prime} \in V$, set

$$
m\left(s, s^{\prime}\right)= \begin{cases}3, & \text { if } s s^{\prime} \in E ; \\ 2, & \text { if } s \neq s^{\prime}, s s^{\prime} \notin E ; \\ 1, & \text { if } s=s^{\prime}\end{cases}
$$

A (simple laced) Coxeter group associated with X is a group $W=W(V, m)$ with the finite set V as generators subject only to the relations $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=1$ for $s, s^{\prime} \in V$.

Notation Reminding

W is the Coxeter group of X and the bold type \mathbf{W} is the flipping group of X. For a vertex s in V, the bold type \mathbf{s} in \mathbf{W} associated with the move by selecting s.

Another Matrix associated with a vertex in V

Let $X=(V, E)$ be a simple connected graph with $|V|=n$. For $s \in V$ define an $n \times n$ matrix \widetilde{s} over \mathbb{R} by

$$
\widetilde{s}_{u v}= \begin{cases}-1, & \text { if } u=v=s ; \\ 1, & \text { if } u=v \neq s, \text { or } u=s \text { and } u v \in E ; \\ 0, & \text { else. }\end{cases}
$$

The coefficients of \widetilde{s} are in fact in \mathbb{Z}.

Geometric Representation W

Then the map $s \rightarrow \widetilde{s}$ extends to a faithful representation of
Coxeter group W into $n \times n$ matrices over \mathbb{R}.
(p. 113 in Humphreys's book "Reflection Groups and Coxeter Groups.")

It turns out that $\widetilde{s}(\bmod 2)$ is the transpose of \boldsymbol{s}.

Irreducible Graphs

We say a graph X is irreducible (resp. reducible) if $\operatorname{det}(A)=1$ (resp. $\operatorname{det}(A)=0$) in F_{2}, where A is the adjacency matrix of X.

Results on the Flipping Group W

1 The center $Z(\mathbf{W})$ of \mathbf{W} is trivial (Huang, -[1]).
$2 W / Z(W)$ is isomorphic to \mathbf{W} if X is an Dynkin diagram; moreover $|Z(W)|=1$ or 2 (Huang, -[1]).
3 Among all n-vertex graphs, each of which contains an induced ($n-1$)-vertex path, there are at most $n-1$ flipping groups up to isomorphism (Huang, -[2]).
4 W is irreducible iff X is irreducible (preprint).
5 If X is reducible, then \mathbf{W} is not completely reducible (preprint).
б \mathbf{W} is isomorphic to the symmetric group S_{n} when X is the line graph of a tree with n vertices (2009 Y . Wu[8]).

Results on the Flipping Group W

If X is the line graph of a graph with m edges and n vertices, then \mathbf{W} is isomorphic to

$$
\begin{aligned}
& (\mathbb{Z} / 2 \mathbb{Z})^{(n-1)(m-n+1)} \rtimes S_{n} \text { if } n \text { is odd; } \\
& (\mathbb{Z} / 2 \mathbb{Z})^{(n-2)(m-n+1)} \rtimes S_{n} \text { if } n \text { is even }
\end{aligned}
$$

Idea in the Study

- We choose a nice set of new basis (simple basis) such the moves on this set like permutations of the set.

Simple Basis of a Path

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)\right\}
$$

The simple bases of line graphs:

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\right\}
$$

Problems for Further Study

- For any graph X, what is the possible choice of a simple basis of X ?
- Classify all flipping groups.
- Determine the minimum number of moves from a given configuration to another.
- Determine the minimum number of length when an element in the flipping group is written as a product of moves.
- Study the links between flipping puzzle and its variations.

Peferences

- [1] Hau-wen Huang and Chih-wen Weng, Combinatorial representations of Coxeter groups over a field of two elements, arXiv:0804.2150, 14 Apr., 2008.
- [2] Hau-wen Huang and Chih-wen Weng, The flipping puzzle of a graph, arXiv:0808.2104, 15 Aug., 2008.
- [3] Hau-wen Huang and Chih-wen Weng, The flipping group of a line graph, arXiv:0809.4399, 25 Sep., 2008.
- [4] Meng-Kiat Chuah and Chu-Chin Hu, Equivalence classes of Vogan diagrams, Journal of Algebra, 279(2004), 22--37.
- [5] Meng-Kiat Chuah and Chu-Chin Hu, Extended Vogan diagrams, Journal of Algebra, 301(2006), 112--147.
- [6] Xinmao Wang and Yaokun Wu, Minimum light number of lit-only \$Isigma\$-game on a tree, Theoretical Computer Science\} 381 (2007) \{292--300\}.
- [7] Hsin-Jung Wu and Gerard J. Chang, A study on equivalence classes of painted graphs, Master Thesis, NTU, Taiwan, 2006.
- [8] Yaokun Wu, Lit-only sigma game on a line graph, European Journal of Combinatorics\}, 30 (2009) 84--95.

Thank You for Your Attention

