Spectral Radius and Degree Sequence of a Bipartite Graph

Chih-wen Weng
Department of Applied Mathematics
National Chiao Tung University

December 7, 2013

Joint work with: Chia-an Liu

The graphs G we considered here are always bipartite.

The adjacency matrix $A=\left(a_{i j}\right)$ of G is a binary square matrix with rows and columns indexed by the vertex set $V G$ of G such that for any $i, j \in V G$, $a_{i j}=1$ if i, j are adjacent in G.

The eigenvalues of $A=A(G)$ give clues of the structure of G.

Can you hear the shape of a drum?

Motivation

Let $\rho(G)$ denote the largest eigenvalue of $A=A(G) . \rho(G)$ is called the spectral radius of G.

It is well-known that

$$
\rho(G) \leq \sqrt{e}
$$

where e is the number of edges in G. Moreover if G is connected the the above equality holds iff G is complete bipartite.

We will consider this problem on percolated bipartite graphs.

Example $(\rho(G)<\sqrt{e}=\sqrt{5})$

Definition

Let $\mathcal{K}(p, q, e)$ denote the family of e-edge subgraphs of the complete bipartite graph $K_{p, q}$ with p and q vertices in the partite sets (See $\mathcal{K}(3,4,5)$ below).

- -

Conjecture 1

In 2008, Amitava Bhattacharya, Shmuel Friedland, and Uri N. Peled proposed the following conjecture.

Conjecture 1

Let $2 \leq p \leq q, 1<e<p q$ be integers. An extremal graph that solves

$$
\max _{G \in \mathcal{K}(p, q, e)} \rho(G)
$$

is obtained from a complete bipartite graph by adding one vertex and a corresponding number of edges.

Example $\mathcal{K}(3,4,5)$

Two different classes of extremal graphs

Let $K_{p, q}^{[e]}\left(\right.$ resp. $\left.K_{p, q}^{\{e\}}\right)$ denote the graph which is obtained from the complete graph $K_{p, q}$ by deleting $p q-e$ edges incident on a common vertex in the partite set whose order is at most (resp. at least) the order of other partite. Thus $K_{p, p}^{[e]}=K_{p, p}^{\{e\}}$.

$K_{2,3}^{\{5\}}$

$K_{2,4}^{[5]}$

Conjecture 2

In 2010, Yi-Fan Chen, Hung-Lin Fu, In-Jae Kim, Eryn Stehr and Brendon Watts proposed the following conjecture as a refinement of Conjecture 1.

Conjecture 2
Suppose $p q-e<\min (p, q)$. Then for $G \in \mathcal{K}(p, q, e)$,

$$
\rho(G) \leq \rho\left(K_{p, q}^{\{e\}}\right) .
$$

The condition $p q-e<\min (p, q)$ ensures that G is connected.

Notations

Assume that G has degree sequences $d_{1} \geq d_{2} \geq \cdots \geq d_{p}$ and $d_{1}^{\prime} \geq d_{2}^{\prime} \geq \cdots \geq d_{q}^{\prime}$ according to the two parts respectively.

$$
\begin{aligned}
& d_{1}=4, d_{2}=1 \\
& d_{1}^{\prime}=2, d_{2}^{\prime}=1, d_{3}^{\prime}=1, d_{4}^{\prime}=1
\end{aligned}
$$

$K_{2,4}^{[5]}$

The number $\phi_{s, t}$

For $1 \leq s \leq p$ and $1 \leq t \leq q$, set

$$
\phi_{s, t}:=\sqrt{\frac{X_{s, t}+\sqrt{X_{s, t}^{2}-4 Y_{s, t}}}{2}},
$$

where

$$
\begin{aligned}
& X_{s, t}=d_{s} d_{t}^{\prime}+\sum_{i=1}^{s-1}\left(d_{i}-d_{s}\right)+\sum_{j=1}^{t-1}\left(d_{j}^{\prime}-d_{t}^{\prime}\right), \\
& Y_{s, t}=\sum_{i=1}^{s-1}\left(d_{i}-d_{s}\right) \cdot \sum_{j=1}^{t-1}\left(d_{j}^{\prime}-d_{t}^{\prime}\right) .
\end{aligned}
$$

Bipartite Sum

Let H, H^{\prime} be two bipartite graphs with given ordered bipartitions $V H=X \cup Y$ and $V H^{\prime}=X^{\prime} \cup Y^{\prime}$. The the bipartite sum $H+H^{\prime}$ of H and H^{\prime} with respect to the given ordered bipartitions $V H=X \cup Y$ and $V H^{\prime}=X^{\prime} \cup Y^{\prime}$ is the graph obtained from H and H^{\prime} and adding an edge between x and y for each pair $(x, y) \in X \times Y \cup X^{\prime} \times Y$.

$$
\begin{aligned}
K_{1,2}+K_{2,3} & =K_{3,5} \\
C_{6}+C_{6} & =K_{6,6}-\text { perfect matching. }
\end{aligned}
$$

Theorem 1

For $1 \leq s \leq p$ and $1 \leq t \leq q$,

$$
\rho(G) \leq \phi_{s, t}
$$

Moreover, if G is connected then the above equality holds iff there exists nonnegative integers $s^{\prime}<s$ and $t^{\prime}<t$ and a bipartite biregular graph H of bipartition orders $p-s^{\prime}$ and $q-t^{\prime}$ respectively such that $G=K_{s^{\prime}, t^{\prime}}+H$.

Revisit $\phi_{s, t}$

Recall

$$
\phi_{s, t}:=\sqrt{\frac{X_{s, t}+\sqrt{X_{s, t}^{2}-4 Y_{s, t}}}{2}},
$$

where

$$
\begin{aligned}
& X_{s, t}=d_{s} d_{t}^{\prime}+\sum_{i=1}^{s-1}\left(d_{i}-d_{s}\right)+\sum_{j=1}^{t-1}\left(d_{j}^{\prime}-d_{t}^{\prime}\right), \\
& Y_{s, t}=\sum_{i=1}^{s-1}\left(d_{i}-d_{s}\right) \cdot \sum_{j=1}^{t-1}\left(d_{j}^{\prime}-d_{t}^{\prime}\right) .
\end{aligned}
$$

Remark

(i) $\phi_{1,1}=\sqrt{d_{1} d_{1}^{\prime}}$ (a known result).
(ii) $\phi_{p, q}=\sqrt{\frac{2 e+\left(q-d_{p}\right)\left(p-d_{q}^{\prime}\right)-p q+\sqrt{\left(p d_{p}+q d_{q}^{\prime}-d_{p} d_{q}\right)^{2}-4(p q-e) d_{p} d_{q}^{\prime}}}{2}}$ (too
complicate!).

The case $d_{p}=d_{q}^{\prime}=0$

$$
\begin{aligned}
& \phi_{p, q} \\
= & \sqrt{\frac{2 e+\left(q-d_{p}\right)\left(p-d_{q}^{\prime}\right)-p q+\sqrt{\left(p d_{p}+q d_{q}^{\prime}-d_{p} d_{q}^{\prime}\right)^{2}-4(p q-e) d_{p} d_{q}^{\prime}}}{2}} \\
= & \sqrt{e} .
\end{aligned}
$$

It is the known result mentioned in the beginning.

It turns out that if $d_{q}^{\prime}<p$ then

$$
\frac{\partial \phi_{p, q}\left(d_{p}, d_{q}^{\prime}\right)}{\partial d_{p}}<0
$$

and if $d_{p}<q$ then

$$
\frac{\partial \phi_{p, q}\left(d_{p}, d_{q}^{\prime}\right)}{\partial d_{q}^{\prime}}<0
$$

Almost complete bipartite

A graph is almost $K_{p, q}$ if it is a connected graph obtained from $L_{p, q}$ by deleting an edge $x y$ and some edges incidence with x or with y.

Hence an almost $K_{p, q}$ graph satisfies

$$
\left(q-d_{p}\right)+\left(p-d_{q}^{\prime}\right)=(p q-e)+1
$$

Since there are only $p q-e$ almost $K_{p, q}$ graphs with a prescribed number e of edges, and their spectral radius $\phi_{p, q}\left(d_{p}, d_{q}\right)$ can be simplified by the formula $\left(q-d_{p}\right)+\left(p-d_{q}^{\prime}\right)=p q-e+1$, the following lemma is obtained by algebraic computation.

Lemma

If G is almost $K_{p, q}$. Then

$$
\phi(G) \leq \phi\left(k_{p, q}^{\{e\}}\right) .
$$

We prove Conjecture 2 without any assumption.

Theorem 2

For $G \in \mathcal{K}(p, q, e)$,

$$
\rho(G) \leq \rho\left(K_{s, t}^{\{e\}}\right)
$$

for some positive integers $s \leq p$ and $t \leq q$.

Proof of Theorem 2.

Induction on $p+q$, so we can assume $d_{p}, d_{q}^{\prime}>0$.

Step 1

Indeed if for those $G \in \mathcal{K}(p, q, e)$ with $d_{p}=0$, we might treat as $G \in \mathcal{K}(p-1, q, e)$, and choose $s^{\prime} \leq p-1$ and $t^{\prime} \leq q$ such that

$$
\rho(G) \leq \rho\left(K_{s^{\prime}, t^{\prime}}^{\{e\}}\right) .
$$

Similarly choose $s^{\prime \prime} \leq p, t^{\prime \prime} \leq q-1$ for $d_{q}^{\prime}=0$.

Step 2

By using the property that

$$
\frac{\partial \phi_{p, q}\left(d_{p}, d_{q}^{\prime}\right)}{d_{p}}<0
$$

we can move the edge $p q^{\prime}$ to become a new edge $i q^{\prime}$ (so d_{p} is decreased) to increase the spectral radius if $i q^{\prime}$ is not an edge in the beginning for $1 \leq i \leq p-1$. We also can move an edge $p j^{\prime}$ to a new edge $i k^{\prime}$ provided that $i k^{\prime}$ is not an edge for $1 \leq i \leq p-1$ and $1 \leq k \leq q-1$. Similarly for the other part.

Hence we can assume G is almost $K_{p, q}$.

Step 3

By Lemma, we can pick $s^{\prime \prime \prime} \leq p$ and $t^{\prime \prime \prime} \leq q$ such that

$$
\rho(G) \leq \rho\left(K_{s^{\prime \prime \prime}}^{\{e\}}, t^{\prime \prime \prime \prime}\right) .
$$

Let $(s, t) \in\left\{\left(s^{\prime}, t^{\prime}\right),\left(s^{\prime \prime}, t^{\prime \prime}\right),\left(s^{\prime \prime \prime}, t^{\prime \prime \prime}\right)\right\}$ such that $\rho\left(K_{s, t}^{\{e\}}\right)$ is the maximum.

In order to prove Theorem 1, we need to quote a theorem.

Perron-Frobenius Theorem

If M is a nonnegative $n \times n$ matrix with largest eigenvalue $\rho(M)$ and row-sums $r_{1}, r_{2}, \ldots, r_{n}$, then

$$
\rho(M) \leq \max _{1 \leq i \leq n} r_{i} .
$$

Furthermore, if M is irreducible then the equality holds if and only if the row-sums of M are all equal.

Idea of the proof of Theorem 1

Let

$$
A=\left(\begin{array}{cc}
0 & B_{p \times q} \\
B_{q \times p}^{T} & 0
\end{array}\right)
$$

be the adjacency matrix of G. Then

$$
A^{2}=\left(\begin{array}{cc}
B B^{T} & 0 \\
0 & B^{T} B
\end{array}\right)
$$

has maximal eigenvalue $\rho(G)^{2}$.

Applying Perron-Frobenius Theorem to

$$
U^{-1} A^{2} U
$$

where

$$
U=\operatorname{diag}(\underbrace{x_{1}, \cdots, x_{s-1}, 1, \cdots, 1}_{p}, \underbrace{x_{1}^{\prime}, \cdots, x_{t-1}^{\prime}, 1, \cdots, 1}_{q})
$$

with carefully chosen of variables x_{i} and x_{j}^{\prime}.

Example $(\rho(G)<\sqrt{e}=\sqrt{5})$

Example for $e=11$

$$
11=2 \times 5+1=3 \times 3+2
$$

$$
\begin{gathered}
\rho\left(K_{2,6}^{\{11\}}\right)=\rho\left(K_{2,6}^{[11]}\right)=\sqrt{\frac{11+\sqrt{101}}{2}} \\
\rho\left(K_{3,4}^{\{11\}}\right)=\rho\left(K_{3,4}^{[11]}\right)=\sqrt{\frac{11+\sqrt{97}}{2}} .
\end{gathered}
$$

Example for $e=13$

$$
\begin{aligned}
& 13=2 \times 6+1=3 \times 4+1 . \\
& \rho\left(K_{2,7}^{\{13\}}\right)=\frac{\sqrt{26+2 \sqrt{145}}}{2}, \\
& \rho\left(K_{3,5}^{\{13\}}\right)=\frac{\sqrt{13}+\sqrt{137}}{2} .
\end{aligned}
$$

Example for $e=19$

$$
19=2 \times 9+1=3 \times 6+1=4 \times 4+3 .
$$

$$
\begin{aligned}
& \rho\left(K_{2,10}^{\{19\}}\right)=\sqrt{\frac{19+\sqrt{361}}{2}}, \\
& \rho\left(K_{3,7}^{\{19\}}\right)=\sqrt{\frac{19+\sqrt{313}}{2}}, \\
& \rho\left(K_{4,5}^{\{19\}}\right)=\sqrt{\frac{19+\sqrt{313}}{2}} .
\end{aligned}
$$

Conjecture

The bipartite graph whose spectral radius attains

$$
\max _{G \in \mathcal{K}(p, q, e)} \rho(G)
$$

is $K_{s, t}^{\{e\}}$ ，where $s+t$ attains the maximal value

$$
\max \left\{s^{\prime}+t^{\prime} \mid s^{\prime} t^{\prime}-e=\min \left\{s^{\prime \prime} t^{\prime \prime}-e\right\}\right\}
$$

among $1 \leq s^{\prime}, s^{\prime \prime} \leq p, 1 \leq t^{\prime}, t^{\prime \prime} \leq q$ ，and $e \leq s^{\prime} t^{\prime}, s^{\prime \prime} t^{\prime \prime}$ ．

一圖愈接近兩部份差異大的二部圖愈能得到大的直譜半徑

Thanks for your attention.

