Spectral Radius and Degree Sequence of a Bipartite Graph

Chih-wen Weng

Department of Applied Mathematics National Chiao Tung University

December 7, 2013

Joint work with: Chia-an Liu

The graphs G we considered here are always bipartite.

The adjacency matrix $A = (a_{ij})$ of G is a binary square matrix with rows and columns indexed by the vertex set VG of G such that for any $i, j \in VG$, $a_{ij} = 1$ if i, j are adjacent in G.

The eigenvalues of A = A(G) give clues of the structure of G.

Can you hear the shape of a drum?

Motivation

Let $\rho(G)$ denote the largest eigenvalue of A = A(G). $\rho(G)$ is called the spectral radius of G.

It is well-known that

$$\rho(\mathbf{G}) \leq \sqrt{\mathbf{e}},$$

where e is the number of edges in G. Moreover if G is connected the the above equality holds iff G is complete bipartite.

We will consider this problem on percolated bipartite graphs.

Example ($\rho(G) < \sqrt{e} = \sqrt{5}$)

Definition

Let $\mathcal{K}(p, q, e)$ denote the family of *e*-edge subgraphs of the complete bipartite graph $\mathcal{K}_{p,q}$ with *p* and *q* vertices in the partite sets (See $\mathcal{K}(3, 4, 5)$ below).

Conjecture 1

In 2008, Amitava Bhattacharya, Shmuel Friedland, and Uri N. Peled proposed the following conjecture.

Conjecture 1

Let $2 \le p \le q$, 1 < e < pq be integers. An extremal graph that solves

 $\max_{\textit{G} \in \mathcal{K}(\textit{p},\textit{q},\textit{e})} \rho(\textit{G})$

is obtained from a complete bipartite graph by adding one vertex and a corresponding number of edges.

Example $\mathcal{K}(3, 4, 5)$

 $\sqrt{3}$

 $\frac{1+\sqrt{5}}{2}$

 $\mathbf{2}$

 $\frac{\sqrt{6}+\sqrt{2}}{2}$

Two different classes of extremal graphs

Let $\mathcal{K}_{p,q}^{[e]}$ (resp. $\mathcal{K}_{p,q}^{\{e\}}$) denote the graph which is obtained from the complete graph $\mathcal{K}_{p,q}$ by deleting pq - e edges incident on a common vertex in the partite set whose order is at most (resp. at least) the order of other partite. Thus $\mathcal{K}_{p,p}^{[e]} = \mathcal{K}_{p,p}^{\{e\}}$.

Conjecture 2

In 2010, Yi-Fan Chen, Hung-Lin Fu, In-Jae Kim, Eryn Stehr and Brendon Watts proposed the following conjecture as a refinement of Conjecture 1.

Conjecture 2 Suppose $pq - e < \min(p, q)$. Then for $G \in \mathcal{K}(p, q, e)$, $\rho(G) \le \rho\left(\mathcal{K}_{p,q}^{\{e\}}\right)$.

The condition $pq - e < \min(p, q)$ ensures that G is connected.

Notations

Assume that G has degree sequences $d_1 \ge d_2 \ge \cdots \ge d_p$ and $d'_1 \ge d'_2 \ge \cdots \ge d'_q$ according to the two parts respectively.

$$d_1 = 4, d_2 = 1$$

 $d_1 = 2, d_2 = 1, d_3 = 1, d_4 = 1.$

The number $\phi_{s,t}$

For $1 \leq s \leq p$ and $1 \leq t \leq q$, set

$$\phi_{s,t} := \sqrt{\frac{X_{s,t} + \sqrt{X_{s,t}^2 - 4Y_{s,t}}}{2}},$$

where

$$\begin{aligned} X_{s,t} = & d_s d_t' + \sum_{i=1}^{s-1} (d_i - d_s) + \sum_{j=1}^{t-1} (d_j' - d_t'), \\ Y_{s,t} = & \sum_{i=1}^{s-1} (d_i - d_s) \cdot \sum_{j=1}^{t-1} (d_j' - d_t'). \end{aligned}$$

Bipartite Sum

Let H, H' be two bipartite graphs with given ordered bipartitions $VH = X \cup Y$ and $VH' = X' \cup Y'$. The the bipartite sum H + H' of H and H'with respect to the given ordered bipartitions $VH = X \cup Y$ and $VH' = X' \cup Y'$ is the graph obtained from H and H' and adding an edge between x and y for each pair $(x, y) \in X \times Y' \cup X' \times Y$.

$$K_{1,2} + K_{2,3} = K_{3,5}$$

 $C_6 + C_6 = K_{6,6} - perfect matching.$

Theorem 1

For $1 \leq s \leq p$ and $1 \leq t \leq q$,

 $\rho(\mathbf{G}) \leq \phi_{\mathbf{s},\mathbf{t}}.$

Moreover, if G is connected then the above equality holds iff there exists nonnegative integers s' < s and t' < t and a bipartite biregular graph H of bipartition orders p - s' and q - t' respectively such that $G = K_{s',t'} + H$.

$\begin{array}{l} {\sf Revisit} \ \phi_{{\it s},t} \\ {\sf Recall} \end{array}$

$$\phi_{s,t} := \sqrt{\frac{X_{s,t} + \sqrt{X_{s,t}^2 - 4Y_{s,t}}}{2}},$$

where

$$X_{s,t} = d_s d'_t + \sum_{i=1}^{s-1} (d_i - d_s) + \sum_{j=1}^{t-1} (d'_j - d'_t),$$
$$Y_{s,t} = \sum_{i=1}^{s-1} (d_i - d_s) \cdot \sum_{j=1}^{t-1} (d'_j - d'_t).$$

Remark

$$\begin{array}{l} (i) \ \phi_{1,1} = \sqrt{d_1 d_1'} \ (a \ \text{known result}). \\ (ii) \ \phi_{p,q} = \sqrt{\frac{2e + (q - d_p)(p - d_q') - pq + \sqrt{(pd_p + qd_q' - d_pd_q)^2 - 4(pq - e)d_pd_q'}}{2}} \ (too \ \text{complicate!}). \end{array}$$

(Dep. of A. Math., NCTU)

The case
$$d_p = d'_q = 0$$

$$\begin{split} & \phi_{p,q} \\ = & \sqrt{\frac{2e + (q - d_p)(p - d'_q) - pq + \sqrt{(pd_p + qd'_q - d_pd'_q)^2 - 4(pq - e)d_pd'_q}}{2}} \\ = & \sqrt{e}. \end{split}$$

It is the known result mentioned in the beginning.

It turns out that if $d_q^\prime < p$ then

$$\frac{\partial \phi_{\mathbf{p},\mathbf{q}}(\mathbf{d}_{\mathbf{p}},\mathbf{d}'_{\mathbf{q}})}{\partial \mathbf{d}_{\mathbf{p}}} < 0,$$

and if $d_p < q$ then

$$\frac{\partial \phi_{\mathbf{p},\mathbf{q}}(\mathbf{d}_{\mathbf{p}},\mathbf{d}_{\mathbf{q}}')}{\partial \mathbf{d}_{\mathbf{q}}'} < 0.$$

A graph is almost $K_{p,q}$ if it is a connected graph obtained from $L_{p,q}$ by deleting an edge xy and some edges incidence with x or with y.

Hence an almost $K_{p,q}$ graph satisfies

$$(q - d_p) + (p - d'_q) = (pq - e) + 1.$$

Since there are only pq - e almost $K_{p,q}$ graphs with a prescribed number e of edges, and their spectral radius $\phi_{p,q}(d_p, d_q)$ can be simplified by the formula $(q - d_p) + (p - d'_q) = pq - e + 1$, the following lemma is obtained by algebraic computation.

Lemma

If G is almost $K_{p,q}$. Then

 $\phi(G) \le \phi(k_{p,q}^{\{e\}}).$

We prove Conjecture 2 without any assumption.

Theorem 2 For $G \in \mathcal{K}(p, q, e)$, $\rho(G) \le \rho\left(K_{s,t}^{\{e\}}\right)$ for some positive integers $s \le p$ and $t \le q$.

Proof of Theorem 2.

Induction on p + q, so we can assume $d_p, d'_q > 0$.

Step 1

Indeed if for those $G \in \mathcal{K}(p, q, e)$ with $d_p = 0$, we might treat as $G \in \mathcal{K}(p-1, q, e)$, and choose $s' \leq p-1$ and $t' \leq q$ such that

$$\rho(\mathbf{G}) \le \rho\left(\mathbf{K}_{\mathbf{s}',\mathbf{t}'}^{\{\mathbf{e}\}}\right)$$

Similarly choose $s'' \le p, t'' \le q-1$ for $d'_q = 0$.

Step 2

By using the property that

$$\frac{\partial \phi_{\mathbf{p},\mathbf{q}}(\mathbf{d}_{\mathbf{p}},\mathbf{d}_{\mathbf{q}}')}{\mathbf{d}_{\mathbf{p}}} < 0,$$

we can move the edge pq' to become a new edge iq' (so d_p is decreased) to increase the spectral radius if iq' is not an edge in the beginning for $1 \le i \le p-1$. We also can move an edge pj' to a new edge ik' provided that ik' is not an edge for $1 \le i \le p-1$ and $1 \le k \le q-1$. Similarly for the other part.

Hence we can assume G is almost $K_{p,q}$.

By Lemma, we can pick $s''' \leq p$ and $t''' \leq q$ such that

$$\rho(\mathbf{G}) \leq \rho\left(\mathbf{K}_{\mathbf{s}''',\mathbf{t}'''}^{\{\mathbf{e}\}}\right).$$

Let $(s, t) \in \{(s', t'), (s'', t''), (s''', t''')\}$ such that $\rho\left(K_{s,t}^{\{e\}}\right)$ is the maximum.

In order to prove Theorem 1, we need to quote a theorem.

Perron-Frobenius Theorem

If *M* is a nonnegative $n \times n$ matrix with largest eigenvalue $\rho(M)$ and row-sums r_1, r_2, \ldots, r_n , then

$$\rho(M) \leq \max_{1 \leq i \leq n} r_i.$$

Furthermore, if M is irreducible then the equality holds if and only if the row-sums of M are all equal.

Idea of the proof of Theorem 1

Let

$$A = \left(\begin{array}{cc} 0 & B_{p \times q} \\ B_{q \times p}^T & 0 \end{array}\right)$$

be the adjacency matrix of G. Then

$$A^2 = \left(\begin{array}{cc} BB^T & 0\\ 0 & B^TB \end{array}\right)$$

has maximal eigenvalue $\rho(G)^2$.

Applying Perron-Frobenius Theorem to

$$U^{-1}A^2U,$$

where

$$U = diag(\underbrace{x_1, \cdots, x_{s-1}, 1, \cdots, 1}_{p}, \underbrace{x'_1, \cdots, x'_{t-1}, 1, \cdots, 1}_{q})$$

with carefully chosen of variables x_i and x'_i .

Example ($\rho(G) < \sqrt{e} = \sqrt{5}$)

Example for e = 11

$$11 = 2 \times 5 + 1 = 3 \times 3 + 2,$$

$$\begin{split} \rho(\mathcal{K}_{2,6}^{\{11\}}) &= \rho(\mathcal{K}_{2,6}^{[11]}) = \sqrt{\frac{11 + \sqrt{101}}{2}}, \\ \rho(\mathcal{K}_{3,4}^{\{11\}}) &= \rho(\mathcal{K}_{3,4}^{[11]}) = \sqrt{\frac{11 + \sqrt{97}}{2}}. \end{split}$$

Example for e = 13

$$13 = 2 \times 6 + 1 = 3 \times 4 + 1.$$

$$\begin{split} \rho(\mathsf{K}_{2,7}^{\{13\}}) = & \frac{\sqrt{26 + 2\sqrt{145}}}{2}, \\ \rho(\mathsf{K}_{3,5}^{\{13\}}) = & \frac{\sqrt{13} + \sqrt{137}}{2}. \end{split}$$

Example for e = 19

$$19 = 2 \times 9 + 1 = 3 \times 6 + 1 = 4 \times 4 + 3.$$

$$\begin{split} \rho(\mathcal{K}_{2,10}^{\{19\}}) = &\sqrt{\frac{19 + \sqrt{361}}{2}},\\ \rho(\mathcal{K}_{3,7}^{\{19\}}) = &\sqrt{\frac{19 + \sqrt{313}}{2}},\\ \rho(\mathcal{K}_{4,5}^{\{19\}}) = &\sqrt{\frac{19 + \sqrt{313}}{2}}. \end{split}$$

Conjecture

The bipartite graph whose spectral radius attains

 $\max_{\textit{G} \in \mathcal{K}(\textit{p},\textit{q},\textit{e})} \rho(\textit{G})$

is $K_{s,t}^{\{e\}}$, where s + t attains the maximal value

$$\max\{s' + t' \mid s't' - e = \min\{s''t'' - e\}\},\$$

among $1 \leq s', s'' \leq p, 1 \leq t', t'' \leq q$, and $e \leq s't', s''t''$.

一圖愈接近兩部份差異大的二部圖愈能得到大的直譜半徑

Thanks for your attention.