The degree pairs of a graph

Chih－wen Weng

joint work with 黃喻培，黃苓芸，劉家安

Department of Applied Mathematics，National Chiao Tung University

Section A，10：30－11：00，June 30， 2015

Let G be a simple connected graph with vertex set $V G=\{1,2, \ldots, n\}$ and edge set $E G$ ．Let d_{i} and m_{i} be the degree and average 2－degree of the vertex $i \in V G$ respectively，define as follows．

$$
\begin{aligned}
d_{i} & :=\left|G_{1}(i)\right|, \\
m_{i} & :=\frac{1}{d_{i}} \sum_{j i \in E G} d_{j},
\end{aligned}
$$

where $G_{1}(i)$ means the set $\{j \in V G \mid j i \in E G\}$ of neighbors of i ．

2015 on Graph Theory and Combinatorics \＆Eighth Cross－strait Conference on GC

The sequence of degree pairs $\left(d_{i}, m_{i}\right)$

Figure：Two graphs whose sequences of degree pairs $\left(d_{i}, m_{i}\right)$ are different．

The pair $\left(d_{i}, m_{i}\right)$

Figure：Two graphs have the same sequence of degree pairs．

Motivation

A graph G is k－regular if $d_{i}=k$ for all vertices $i \in V G$ ，and is pseudo k－regular if $m_{i}=k$ for all vertices $i \in V G$ ．

Motivation

In a two－side communication network，a node i of course knows the number d_{i} of nodes which are adjacent to i ．

A node i might not know exactly how may nodes adjacent to each of its neighbors，but has rough idea of the mean number m_{i} of neighbors of its adjacent nodes．

Motivation

The pair $\left(d_{i}, m_{i}\right)$ appears often in the study of maximum eigenvalue $\ell_{1}(G)$ of the Laplacian matrix $L=D-A$ associated with G ．
（i）In 1998，Merris gave the following bound［6］：

$$
\ell_{1}(G) \leq \max _{i \in V G}\left\{d_{i}+m_{i}\right\}
$$

（ii）Also in 1998，Li and Zhang gave the following bound［5］：

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{\frac{d_{i}\left(d_{i}+m_{i}\right)+d_{j}\left(d_{j}+m_{j}\right)}{d_{i}+d_{j}}\right\}
$$

（iii）In 2001，Li and Pan gave the following bound［4］：

$$
\ell_{1}(G) \leq \max _{i \in V G}\left\{\sqrt{2 d_{i}\left(d_{i}+m_{i}\right)}\right\} .
$$

（iv）In 2004，Das gave the following bound［2］：

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{\frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4 m_{i} m_{j}}}{2}\right\}
$$

Motivation

（v）Also in 2004，Zhang gave the following bounds［7］：
（va）

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{2+\sqrt{d_{i}\left(d_{i}+m_{i}-4\right)+d_{j}\left(d_{j}+m_{j}-4\right)+4}\right\} .
$$

（vb）

$$
\ell_{1}(G) \leq \max _{i \in V G}\left\{d_{i}+\sqrt{d_{i} m_{i}}\right\} .
$$

（vc）

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{\sqrt{d_{i}\left(d_{i}+m_{i}\right)+d_{j}\left(d_{j}+m_{j}\right)}\right\}
$$

Motivation

For this moment，we rearrange the vertices of G by $1,2, \cdots, n$ such that $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$ ．Let $a_{1}(G)$ is the maximum eigenvalue of adjacency matrix A associated with G ．Then
（i）$a_{1}(G) \leq m_{1}$ ．（A simple application of Perron－Frobenius Theorem）
（ii）（2011，Chen，Pan and Zhang［1］）Let $a:=\max \left\{d_{i} / d_{j} \mid 1 \leq i, j \leq n\right\}$ ． Then

$$
a_{1}(G) \leq \frac{m_{2}-a+\sqrt{\left(m_{2}+a\right)^{2}+4 a\left(m_{1}-m_{2}\right)}}{2}
$$

（iii）（2014，Huang and Weng［3］）For any $b \geq \max \left\{d_{i} / d_{j} \mid i j \in E G\right\}$ and $1 \leq \ell \leq n$ ，

$$
a_{1}(G) \leq \frac{m_{\ell}-b+\sqrt{\left(m_{\ell}+b\right)^{2}+4 b \sum_{i=1}^{l-1}\left(m_{i}-m_{\ell}\right)}}{2}
$$

This talk emphasizes more on combinatorics than linear algebra．
It is easy for a graph（resp．a pair of prime numbers）to generate its sequence of degree pairs（resp．its product），but much harder for the reverse．

Can we determine which graphs G to have the prescribed sequence of the pairs $\left(d_{i}(G), m_{i}(G)\right)=\left(d_{i}, m_{i}\right)$ ．

$$
\binom{d_{i}}{m_{i}}=\left(\begin{array}{ccccc}
3 & 2 & 2 & 2 & 1 \\
\frac{5}{3} & \frac{5}{2} & \frac{5}{2} & 2 & 3
\end{array}\right), \quad\left(\begin{array}{ccccc}
3 & 2 & 2 & 2 & 1 \\
2 & \frac{5}{2} & \frac{5}{2} & 2 & 2
\end{array}\right)
$$

Figure：Two graphs uniquely determined by their sequences of degree pairs．

A feasible condition

Lemma 0.1
$\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2}$.
Proof．

Another feasible condition

Like a property of degree sequence，we have the following．

Lemma 0.2

There are even number of odd values $d_{i} m_{i}$ among $i \in V G$ ．

Proof．

Since $\sum_{i \in V G} d_{i}$ is even，there are even number of odd d_{i} ，and so does d_{i}^{2} ． Hence $\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2}$ is even．

Corollary 0.3

$$
\sum_{i \in V G} m_{i}^{2} \geq \sum_{i \in V G} d_{i}^{2}
$$

with equality iff $m_{i}=d_{i}=k$ for all i.

Proof．

$$
\left(\sum_{i \in V G} d_{i}^{2}\right)\left(\sum_{i \in V G} m_{i}^{2}\right) \geq\left(\sum_{i \in V G} d_{i} m_{i}\right)^{2}=\left(\sum_{i \in V G} d_{i}^{2}\right)^{2}
$$

and equality iff $m_{i}=c d_{i}$ ，where $c=1$ by the above lemma．This is also equivalent to that all neighbors of a vertex of minimum degree k also have degree k ．

Degrees give hints of graph properties，e．g．$\sum_{i \in V G} d_{i}=2|E G|$ ．
Degree pairs give more of the graph structure．

Proposition 0.4

If $\max _{i \in V G} d_{i} m_{i} \geq n$ then the graph has girth at most 4 ．

Proof．

If the graph has girth at least 5 then

$$
n-1=|V G|-1 \geq\left|G_{1}(i)\right|+\left|G_{2}(i)\right|=d_{i} m_{i}
$$

for any $i \in V G$ ．

$$
\begin{gathered}
\binom{d_{i}}{m_{i}}=\left(\begin{array}{ccccc}
3 & 2 & 2 & 2 & 1 \\
\frac{5}{3} & \frac{5}{2} & \frac{5}{2} & 2 & 3
\end{array}\right), \quad\left(\begin{array}{ccccc}
3 & 2 & 2 & 2 & 1 \\
2 & \frac{5}{2} & \frac{5}{2} & 2 & 2
\end{array}\right) \\
\\
\bullet \bullet
\end{gathered}
$$

Figure：Two graphs uniquely determined by their sequence of degree pairs．

$$
\max d_{i} m_{i} \geq 5=n \quad \Rightarrow \quad \exists K_{3} \text { or } C_{4} .
$$

Let G^{2} be the square of G ，i．e．

$$
V G^{2}=V G \text { and } E G^{2}=\{x y \mid d(x, y) \leq 2\}
$$

The coloring of G^{2} applies to solve data aggregation problem and collision avoidance problem in a wireless sensor network G ．

Using probability method，we have the following．

Proposition 0.5

$$
\alpha\left(G^{2}\right) \leq \sum_{i \in V G} \frac{1}{1+d_{i} m_{i}}
$$

where $\alpha\left(G^{2}\right)$ is the independence number of the square of G ．

Proof．

If a vertex is picked equally in random then the probability of a vertex i appears before those vertices in $G_{1}(i) \cap G_{2}(i)$ is $\left(1+\left|G_{i}(i)\right|+\left|G_{2}(i)\right|\right)^{-1}$ ． Hence the expected size of a set consisting of these i is $\sum_{i \in V G}\left(1+\left|G_{i}(i)\right|+\left|G_{2}(i)\right|\right)^{-1}$ ，which is at least $\sum_{i \in V G} \frac{1}{1+d_{i} m_{i}}$ ．

A technical but useful proposition．

Proposition 0.6

$$
d_{i} \leq m_{i}\left(m_{j}-1\right)+1
$$

for any j with $j i \in E G$ and $d_{j} \leq m_{i}$ ．Moreover the above equality holds iff $d_{j}=m_{i}$ and all neighbors of j have degree 1 except the neighbor i of j ．

Proof．

Pick j such that $j i \in E G$ and $d_{j} \leq m_{i}$ ．Then $d_{j} m_{j} \geq d_{i}+\left(d_{j}-1\right) \cdot 1$ ．Hence

$$
m_{i}\left(m_{j}-1\right)+1 \geq d_{j}\left(m_{j}-1\right)+1 \geq d_{j} .
$$

We now turn to the study of pseudo k－regular graph，i．e．$m_{i}=k$ for all k ．

Pseudo 2－regular graph and pseudo 3－regular graphs

2015 on Graph Theory and Combinatorics \＆Eighth Cross－strait Conference on GC

Pseudo k－regular graphs for $k=3,4,5$

We try to find some theories for pseudo k－regular graphs．

From the definition of pseudo k－regular graphs，$k \in \mathbb{Q}$ ，but indeed we have the following．

Proposition 0.7
If G is pseudo k－regular then $k \in \mathbb{N}$ ．

Proof．

Let A be the adjacency matrix of G ，and note that

$$
\left(d_{1}, d_{2}, \ldots, d_{n}\right) A=k\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

Being a zero of the characteristic polynomial of A, k is an algebraic integer． Since k is also a positive rational number，k is indeed a positive integer．\square

It is natural to ask when a pseudo k－regular graph attains the maximum number of edges when the order n of a graph is given．

Theorem 0.8

A pseudo k－regular graph has at most nk／2 edges，and the maximum is obtained iff the graph is regular．

Proof．

From

$$
2 k|E G|=\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2} \geq\left(\sum_{i \in V G} d_{i}\right)^{2} / n=4|E G|^{2} / n,
$$

we have $|E G| \leq n k / 2$ and equality is obtained iff d_{i} is a constant．

The next is to ask when a pseudo k－regular graph attains the minimal number of edges when the order n of a graph is given．

Definition 0.9

Let T_{k} be the tree of order $k^{3}-k^{2}+k+1$ whose root has degree $k^{2}-k+1$ and each neighbor of the root has $k-1$ children as leafs．

Figure：The tree T_{2} ．
Figure：The tree T_{3} ．

The first two cases of pseudo k－regular graphs are easy to settle．

Lemma 0.10

If G is connected pseudo 1－regular then G is K_{2} ．

Lemma 0.11

If G is connected pseudo 2－regular then G is a cycle or T_{2} ．

Proof．

Note that $\Delta(G)=2$ or 3 ，and the first implies that G is a cycle and the latter implies that $G=T_{2}$ ．

We shall study the connected pseudo k－regular graphs of order n which attain the minimum number of edges，i．e．pseudo k－regular trees if it exists．

We also want to find a connected pseudo k－regular graph of order n whose maximum degree is maximal among all connected pseudo k－regular graph of order n ．

It turns out that both problems have the same graph as their solutions．

The following is a technical but useful proposition．
Lemma 0.12

$$
d_{i} \leq m_{i}\left(m_{j}-1\right)+1
$$

for any j with $j i \in E G$ and $d_{j} \leq m_{i}$ ．Moreover the above equality holds iff $d_{j}=m_{i}$ and all neighbors of j have degree 1 except the neighbor i of j ．

Proof．

Pick j such that $j i \in E G$ and $d_{j} \leq m_{i}$ ．Then $d_{j} m_{j} \geq d_{i}+\left(d_{j}-1\right) \cdot 1$ ．Hence

$$
m_{i}\left(m_{j}-1\right)+1 \geq d_{j}\left(m_{j}-1\right)+1 \geq d_{j}
$$

Theorem 0.13

Let G be a connected graph with $m_{i} \leq k$（for example G is a pseudo k－regular graph）for all $i \in V G$ ，where $k \in \mathbb{N}$ ．Then

$$
\Delta(G) \leq k^{2}-k+1
$$

Moreover the following（i）－（iv）are equivalent．
（i）$\Delta(G)=k^{2}-k+1$ ．
（ii）G is the tree T_{k} ．
（iii）G is a pseudo k－regular tree．
（iv）G has a vertex j such that $d_{j}=m_{j}=k$ and all neighbors of j have degree 1 with one exception．

Proof of the Theorem 0.13

Choose i such that $d_{i}=\Delta(G)$ ．Then by Lemma 0.12 ，
$\Delta(G)=d_{i} \leq m_{i}\left(m_{j}-1\right)+1=k^{2}-k+1$ for any j with $j i \in E G$ and $d_{j} \leq m_{i}$ ．Moreover $\Delta(G)=k^{2}-k+1$ iff $d_{j}=m_{j}=m_{i}=k$ and $d_{z}=1$ for all neighbors $z \neq i$ of j ．Hence（i）and（ii）are equivalent．

The implications of $(\mathrm{ii}) \Rightarrow$（iii）and（iii）$\Rightarrow$（iv）are clear．
Assume that（iv）holds，and let i be the unique neighbor of j with degree $d_{i} \neq 1$ ．Then $k^{2}=d_{j} m_{j}=(k-1)+d_{i}$ to conclude that $d_{i}=k^{2}-k+1$ ．By the first statement of the theorem，$\Delta(G)=k^{2}-k+1$ ．This proves（i）．\square

Let G be a pseudo k－regular graph．
The unique neighbor of a vertex of degree 1 of course has degree k in G ．
We have seen in the previous proof that any neighbor of a vertex of degree $k^{2}-k+1$ also has degree k in G ．

We are interested in what other vertices have their neighbors of the same degree k ．

Lemma 0.14

Let G be a pseudo k－regular graph．Let ij be an edge with $2 \leq d_{j}<k$ ． Then

$$
2 \leq d_{i} \leq k^{2}-3 k+4
$$

with the second equality iff all neighbors of j except i have degree $d_{j}=2$ ．

Proof．

（i）is clear．
Note that $d_{i} \neq 1$ ，otherwise $d_{j}=k$ ，a contradiction．Indeed $d_{z} \neq 1$ for any neighbors z of j ．Hence

$$
d_{i}+2\left(d_{j}-1\right) \leq d_{j} m_{j}=d_{j} k
$$

Hence

$$
d_{i} \leq d_{j}(k-2)+2 \leq k^{2}-3 k+4
$$

Corollary 0.15

Let G be a pseudo k－regular graph of order n with a vertex of degree $d_{i} \geq k^{2}-3 k+5$ ．Then
（i）Every neighbor j of i has degree $d_{j}=k$ ；
（ii）The order of G is at least

$$
f(k):=\left\lceil\left(5 k^{4}-31 k^{3}+94 k^{2}-140 k+100\right) / k^{2}\right\rceil .
$$

Note that for $k=3, k^{2}-3 k+5=5$ and $f(3)=11$ ．

Proof

（i）From Lemma 0．14（i）$d_{j} \neq 1$ ，and from Lemma 0.14 （ii）$d_{j} \geq k$ ．This is true for all neighbors j of i ．Hence $d_{j}=k$ ．

Proof

（ii）From $\sum_{w \in V G} d_{w}^{2}=\sum_{w \in G} d_{w} m_{w}$ ，

$$
d_{i}^{2}+d_{i} k^{2}+\sum_{w \notin\{i\} \cup G_{1}(i)} d_{w}^{2}=k d_{i}+k^{2} d_{i}+\sum_{w \notin\{i\} \cup G_{1}(i)} k d_{w} .
$$

Hence

$$
\begin{aligned}
k^{4}-7 k^{3}+22 k^{2}-35 k+25 & \leq \sum_{w \notin\{i\} \cup G_{1}(i)} d_{w}\left(k-d_{w}\right) \\
& \leq\left(\frac{k}{2}\right)^{2}\left(n-1-\left(k^{2}-3 k+5\right)\right) .
\end{aligned}
$$

The family \mathcal{E}_{k} of pseudo k－regular graphs

Let \mathcal{E}_{k} be a family of graphs constructed as the following．Firstly pick a bipartite $(k-1)$－regular graph of order $2(2 k-1)$ with bipartition $X \cup Y$ ， where $|X|=|Y|=2 k-1$ ．Then add a new vertex connecting to all vertices of X ．One can check that graphs in \mathcal{E}_{k} are pseudo k－regular of order $4 k-1$ with maximum degree $2 k-1$ ．

$(k-1)$－regular

Figure：The graphs in \mathcal{E}_{k} ．

From Corollary 0.15 （ii），we know a pseudo 3 －regular graph with maximum degree at least 5 has at least $f(3)=11$ vertices．All the graphs in \mathcal{E}_{3} are extremal for this property．

References

［1］Y．Chen and R．Pan，and X．Zhang，Two sharp upper bounds for the signless Laplacian spectral radius of graphs，Discrete Mathematics，Algorithms and Applications，3（2011），185－191．
國［2］K．C．Das，A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs，Linear Algebra and its Applications， 376（2004），173－186．
R［3］Y．P．Huang and C．W．Weng，Spectral radius and average 2－degree sequence of a graph，Discrete Mathematics，Algorithms and Applications，6（2014）．
［4］J．S．Li and Y．L．Pan，De Caen＇s inequality and bounds on the largest Laplacian eigenvalue of a graph，Linear Algebra and its Applications，328（2001），153－160．
［［5］J．S．Li and X．D．Zhang，On Laplacian eigenvalues of a graph，Linear Algebra and its Applications，285（1998），305－307．
（6）［6］R．Merris，A note on Laplacian graph eigenvalues，Linear Algebra and its Applications，285（1998），33－35．
［7］X．D．Zhang，Two sharp upper bounds for the Laplacian eigenvalues，Linear Algebra and its Applications，376（2004），207－213．

Thank you for your attention．

