On bipartite graphs analog of the Brualdi-Hoffman conjecture

Chih-wen Weng
(joint work with Yen-Jen Cheng and Feng-Lei Fan)

Department of Applied Mathematics
National Chiao Tung University
August 3, 2018

Spectral radius

When C is a real square matrix, the spectral radius $\rho(C)$ is defined as

$$
\rho(C):=\max \{|\lambda| \mid \lambda \text { is an eigenvalue of } C\},
$$

where $|\lambda|$ is the magnitude of complex number λ.

When C is nonnegative, $\rho(C)$ is known to be an eigenvalue of C.

A snapshot of our main method

The following is well known from the majorization-monotone property of spectral radii of nonnegative matrices :

$$
\rho\left(\begin{array}{ll|l}
2 & 2 & 1 \\
0 & 3 & 2 \\
\hline 1 & 2 & 1
\end{array}\right) \geq \rho\left(\begin{array}{ll|l}
2 & 1 & 1 \\
0 & 3 & 1 \\
\hline 1 & 2 & 1
\end{array}\right)=\rho\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=4 .
$$

Our main result implies

$$
\rho\left(\begin{array}{ll|l}
2 & 2 & 1 \\
0 & 3 & 2 \\
\hline 1 & 2 & 1
\end{array}\right) \geq \rho\left(\begin{array}{ll|l}
2 & 1 & 2 \\
0 & 3 & 2 \\
\hline 1 & 2 & 1
\end{array}\right)=\rho\left(\begin{array}{ll}
3 & 2 \\
3 & 1
\end{array}\right)=2+\sqrt{7} .
$$

(One column exception is allowed in majorization-monotone property if the row-sums of two matrices are unchanged.)

Dual result

$$
\begin{aligned}
& \rho\left(\begin{array}{lll|ll|ll}
2 & 1 & 3 & 3 & 3 & 12 & 0 \\
4 & 2 & 1 & 4 & 2 & 6 & 4 \\
2 & 3 & 1 & 4 & 1 & 8 & 3 \\
\hline 3 & 5 & 3 & 1 & 1 & 3 & 4 \\
5 & 6 & 1 & 1 & 0 & 3 & 3 \\
\hline 0 & 2 & 1 & 2 & 2 & 6 & 0 \\
2 & 2 & 0 & 2 & 1 & 1 & 4
\end{array}\right) \quad \text { (same row-sums sequenc } \\
\leq & \rho\left(\begin{array}{ccc|c|cc}
2 & 2 & 3 & 3 & 3 & 12 \\
\hline & 2 & 1 & 4 & 2 & 6 \\
5 \\
2 & 3 & 2 & 4 & 2 & 8 \\
\hline 4 & 5 & 3 & 1 & 1 & 3 \\
\hline 5 & 6 & 1 & 1 & 1 & 3 \\
\hline 1
\end{array}\right)=\rho\left(\begin{array}{ccc}
7 & 6 & 11 \\
12 & 2 & 6 \\
4 & 4 & 5
\end{array}\right) \approx 18.69
\end{aligned}
$$

Outline

0 . Introduction

1. The non-complete bipartite graph with e edges which has the maximum spectral radius
2. The (non-complete) bipartite graph with e edges and bi-order p, q which has the maximum spectral radius
3. Spectral bounds of a nonnegative matrix

Notations

Let G denote a graph with $e=e(G)$ edges without isolated vertices. Let $A=A(G)$ be the adjacency matrix of G. The spectral radius $\rho(G)$ of G be the spectral radius of A.

Example

$$
\begin{aligned}
& G \\
& A=A(G)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& e=e(G)=2, \rho(G)=\rho(A)=\sqrt{2} .
\end{aligned}
$$

Spectral radii and graph invariants

Let G be a graph of order n and size e with diameter D, minimum degree δ, maximum degree Δ, average degree \bar{d}, clique number ω and dominating number γ. The following are well-known in the spectral graph theory.

- $\delta \leq \bar{d} \leq \rho(G) \leq \Delta$
- $\omega \geq \frac{n}{n-\rho(G)}$
- $(n-1)^{\frac{1}{D}} \leq \rho(G)<\Delta-\frac{1}{n D}$
- If G is triangle-free, then $\rho(G) \leq \sqrt{e}$

Brualdi-Hoffman Conjecture (1976)

Conjecture
If $\binom{d}{2}<e \leq\binom{ d+1}{2}$, the graph with the maximum spectral radius consists of the complete graph K_{d} to which a new vertex of degree $e-\binom{d}{2}$ is added, together with probably some isolated vertices.

Rowlinson proved this conjecture in 1988.

From now on, we assume G is bipartite with e edges.
A. Bhattacharya, S. Friedland, and U.N. Peled show the following. Theorem (BFP 2008)

$$
\rho(G) \leq \sqrt{e(G)}
$$

with equality iff G is a complete bipartite graph with possible some isolated vertices.

$$
\begin{aligned}
& e(G)=12 \\
& \rho(G)=\sqrt{12}
\end{aligned}
$$

Outline

0 . Introduction

1. The non-complete bipartite graph with e edges which has the maximum spectral radius
2. The (non-complete) bipartite graph with e edges and bi-order p, q which has the maximum spectral radius
3. Spectral bounds of a nonnegative matrix

Define

$$
\begin{aligned}
& K_{s, t}^{-}:=K_{s, t}-\{\overline{s t}\}, \\
& K_{s, t}^{+}:=K_{s, t}+\left\{\overline{s(t+1)^{\prime}}\right\} \quad(2 \leq s \leq t) .
\end{aligned}
$$

Example:

$$
K_{2,3}^{-}=K_{2,2}^{+}
$$

Value of $\rho(G)$ when e is fixed

Moreover we find

$$
\begin{array}{lll}
e=s t-1, s \searrow, t \nearrow & \Rightarrow & \rho\left(K_{s, t}^{-}\right) \nearrow, \\
e=s t+1, s \searrow, t \nearrow & \Rightarrow & \rho\left(K_{s, t}^{+}\right) \nearrow,
\end{array}
$$

Extremal graphs

Theorem

If G has maximum spectral radius among bipartite non-complete graphs with e edges then

e	$(e-1, e+1)$	G
odd		$K_{2, t}^{-}$
even	(prime,not prime)	$K_{s, t}^{-}$with $s \geq 2$ the least
even	(not prime,prime)	$K_{s, t}^{+}$with $s \geq 2$ the least
even	(not prime,not prime) neither primes case	$K_{s, t}^{-}$with $s \geq 2$ the least or $K_{s, t}^{+}$with $s \geq 2$ the least
even	(prime,prime) twin primes case	unknown (no $K_{s t}^{ \pm}$with $s \geq 2$)

Numerical comparisons of the neither primes case

In the case that $e \leq 100$ is even and neither $e-1$ nor $e+1$ is a prime, we determine which G of $K_{s, t}^{-}$with $s \geq 2$ the least and $K_{s^{\prime}, t^{\prime}}^{+}$ with $s^{\prime} \geq 2$ the least has larger eigenvalue, where $e=s t-1=s^{\prime} t^{\prime}+1$.

e	$\rho\left(K_{s, t}^{-}\right)$	$\rho\left(K_{s^{\prime}, t^{\prime}}^{+}\right)$	winner
26	$\sqrt{13+3 \sqrt{17}}$	$\sqrt{13+\sqrt{149}}$	-
34	$\sqrt{17+\sqrt{265}}$	$\sqrt{17+\sqrt{267}}$	+
50	$\sqrt{25+\sqrt{593}}$	$\sqrt{25+\sqrt{583}}$	-
56	$\sqrt{28+\sqrt{748}}$	$\sqrt{28+\sqrt{740}}$	-
64	$\sqrt{32+\sqrt{976}}$	$\sqrt{32+\sqrt{982}}$	+
76	$\sqrt{38+\sqrt{1384}}$	$\sqrt{38+\sqrt{1394}}$	+
86	$\sqrt{43+\sqrt{1813}}$	$\sqrt{43+\sqrt{1781}}$	-
92	$\sqrt{46+\sqrt{2096}}$	$\sqrt{46+\sqrt{2078}}$	-
94	$\sqrt{47+\sqrt{2137}}$	$\sqrt{47+\sqrt{2147}}$	+

A theorem for twin primes case

Let $\rho(e)$ denote the maximum $\rho(G)$ of a bipartite non-complete graph G with e edges.

Theorem
If $e \geq 4$ then $(e-1, e+1)$ is a pair of twin primes if and only if

$$
\rho(e)<\sqrt{\frac{e+\sqrt{e^{2}-4(e-1-\sqrt{e-1})}}{2}} .
$$

Outline

0 . Introduction

1. The non complete bipartite graph with e edges which has the maximum spectral radius
2. The (non-complete) bipartite graph with e edges and bi-order p, q which has the maximum spectral radius
3. Spectral bounds of a nonnegative matrix

$\mathcal{K}(p, q, e)$ and $\mathcal{K}_{0}(p, q, e)$

Definition

(i) $\mathcal{K}(p, q, e)$ is the family of subgraphs of $K_{p, q}$ with e edges without isolated vertices which are not complete bipartite graphs
(ii) $\mathcal{K}_{0}(p, q, e)$ is the subset of $\mathcal{K}(p, q, e)$ such that each graph in the subset is obtained from a complete bipartite graph by adding one vertex and a corresponding number of edges.
$\mathcal{K}(3,4,5), \mathcal{K}_{0}(3,4,5)$ and $\rho(G)$

BFP Conjecture for $\mathcal{K}(p, q, e)$

The following is a bipartite graphs analogue of Brualdi-Hoffman conjecture proposed by Bhattacharya, Friedland and Peled.

BFP Conjecture for $\mathcal{K}(p, q, e)$
If $G \in \mathcal{K}(p, q, e)$ such that $\rho(G)=\max _{H \in \mathcal{K}(p, q, e)} \rho(H)$ and $\mathcal{K}_{0}(p, q, e) \neq \emptyset$, then $G \in \mathcal{K}_{0}(p, q, e)$.

Example

$$
p=2, q=4, e=5
$$

Some previous results

Theorem (Bhattacharya, Friedland and Peled 2008)
BFP Conjecture for $\mathcal{K}(p, q, e)$ holds for $e=s t-1$ for s, t satisfying $2 \leq s \leq p \leq t \leq t+(t-1) /(s-1)$.

Theorem (Liu and Weng, 2015)
BFP Conjecture for $\mathcal{K}(p, q, e)$ holds for $e>p q-\min (p, q)$.

Remark
The is no proper complete bipartite subgraph of $K_{p, q}$ with $e>p q-\min (p, q)$ edges.

A slight improvement

If $e \in\{s t-1, s t+1 \mid s \leq p, t \leq q\}$, then $K_{s, t}^{-} \in \mathcal{K}_{0}(p, q, e)$ or $K_{s, t}^{+} \in \mathcal{K}_{0}(p, q, e)$. The following theorem is an immediate consequence.

Theorem
BFP Conjecture for $\mathcal{K}(p, q, e)$ holds with

$$
e \in\{s t-1, s t+1 \mid s \leq p, t \leq q\}
$$

The graph G_{D}

For a sequence D of positive integers in nonincreasing order, one can define the bipartite graph G_{D} with bipartition $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{d_{1}}\right\}$ such that

$$
E\left(G_{D}\right)=\left\{x_{i} y_{j} \mid 1 \leq i \leq p, 1 \leq j \leq d_{i}\right\} .
$$

Example
For $D=(4,2,2,1,1)$ or $D=(5,3,1,1)$, we have the isomorphic graph G_{D}.

$$
G_{(4,2,2,1,1)}=G_{(5,3,1,1)}
$$

Disproof of the BFP conjecture

Proposition
If $q>p+2 \geq 5$ then BFP Conjecture for $\mathcal{K}(p, q, p(q-1))$ is false.
Proof.
With sequences

$$
\begin{aligned}
& D_{1}=(q, q-1, \ldots, q-1, q-2) \\
& D_{2}=(q, q, \ldots, q, q-p)
\end{aligned}
$$

$G_{D_{1}}, G_{D_{2}} \in \mathcal{K}(p, q, p(q-1))$ and $\mathcal{K}_{0}\left(p, q, p(q-1)=\left\{G_{D_{2}}\right\}\right.$. By direct computation, $\rho\left(G_{D_{2}}\right)<\rho\left(G_{D_{1}}\right)$.

$\mathcal{C}(p, q, e)$

From now on the complete bipartite graphs will be included in our consideration.

Definition
(i) $\mathcal{C}(p, q, e)$ is the family of subgraphs of $K_{p, q}$ with e edges without isolated vertices.
(ii) $\mathcal{C}_{0}(p, q, e)$ is the subset of $\mathcal{C}(p, q, e)$ such that each graph in the subset is a complete bipartite graph or a graph obtained from a complete bipartite graph by adding one vertex and a corresponding number of edges.

Weak BFP Conjecture

We propose the following conjecture.

Weak BFP Conjecture for $\mathcal{C}(p, q, e)$
If $G \in \mathcal{C}(p, q, e)$ such that $\rho(G)=\max _{H \in \mathcal{C}(p, q, e)} \rho(H)$, then
$G \in \mathcal{C}_{0}(p, q, e)$.

$e \geq p q-\max (p, q)$ or $p \leq 5$

We have the following two theorems.
Theorem
If $e \geq p q-\max (p, q)$ then the weak BFP Conjecture for $\mathcal{C}(p, q, e)$ is true.

Theorem
If $\min (p, q) \leq 5$ then the weak BFP conjecture for $\mathcal{C}(p, q, e)$ is true.

The proofs of the above two Theorems employ some new sharp upper bounds of the spectral radii of nonnegative matrices which will be the last part of my talk.

Outline

0 . Introduction

1. The non-complete bipartite graph with e edges which has the maximum spectral radius
2. The (non-complete) bipartite graph with e edges and bi-order p, q which has the maximum spectral radius
3. Spectral bounds of a nonnegative matrix

Motivation

A bipartite graph G has adjacency matrix of the block form

$$
A(G)=\left(\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right) .
$$

Then

$$
A^{2}=\left(\begin{array}{cc}
B B^{T} & O \\
O & B^{T} B
\end{array}\right) .
$$

Since $B B^{T}$ and $B^{\top} B$ have the same spectral radius,

$$
\rho^{2}(G)=\rho\left(B B^{T}\right)=\rho\left(B^{\top} B\right) .
$$

Because $B B^{T}$ is no longer a binary matrix, we need spectral theory for general nonnegative matrices C.

Motivation

Let C and C^{\prime} be two $n \times n$ nonnegative matrix. It is well-known as a consequence of Perron-Frobenius Theorem that

$$
C \leq C^{\prime} \Rightarrow \rho(C) \leq \rho\left(C^{\prime}\right) .
$$

Moreover if C is irreducible then $\rho(C)=\rho\left(C^{\prime}\right)$ if and only if $C=C^{\prime}$.

We might expect to find another matrix C^{\prime} such there are many C related to C^{\prime} in some way and $\rho(C) \leq \rho\left(C^{\prime}\right)$. Moreover we expect the matrix C with $\rho(C)=\rho\left(C^{\prime}\right)$ is not unique.

Matrix notation

For a matrix M and a subset α of the set of row indices and a subset β of the set of column indices, we use $M[\alpha \mid \beta]$ to denote the submatrix of M which restricts the positions in $\alpha \times \beta$.
Example

$$
\begin{aligned}
& M=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \\
\Rightarrow & M[[4] \mid[3]]=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), M[\{4\} \mid[4]]=(1,1,0,0),
\end{aligned}
$$

where $[n]:=\{1,2, \ldots, n\}$.

Rooted matrix

An $m \times n$ matrix $C^{\prime}=\left(c_{i j}^{\prime}\right)$ is rooted if

$$
\begin{aligned}
c_{i j}^{\prime} & \geq c_{n j}^{\prime} \quad \text { for } 1 \leq i \leq m \text { and } 1 \leq j \leq n-1, \text { and } \\
r_{i}^{\prime}:=\sum_{j=1}^{n} c_{i j}^{\prime} & \geq r_{n}^{\prime}:=\sum_{j=1}^{n} c_{n j}^{\prime} \quad \text { for } 1 \leq i \leq m-1 .
\end{aligned}
$$

Example
The matrix

$$
C^{\prime}=\left(\begin{array}{ccc}
6 & 6 & -1 \\
8 & 2 & 0 \\
5 & 2 & 0
\end{array}\right)
$$

with row-sum vector $\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)^{T}=(11,10,7)^{T}$, which is a rooted vector.

$\rho_{r}\left(C^{\prime}\right)$

Remark

As a rooted matrix C^{\prime} is not always nonnegative, $\rho\left(C^{\prime}\right)$ is not necessary to be the largest real eigenvalue of C^{\prime}. Let $\rho_{r}\left(C^{\prime}\right)$ denote the largest real eigenvalue of C^{\prime} (Its existence is proved).

A comment on rooted matrix

Remark

C^{\prime} is nonnegative $\Rightarrow\left(\begin{array}{ll}C^{\prime} & 0 \\ u & a\end{array}\right)$ is rooted and $\rho\left(C^{\prime}\right)=\rho\left(\begin{array}{ll}C^{\prime} & 0 \\ u & a\end{array}\right)$
for suitable chosen of row vector $u \geq 0$ and scalar $a \leq 0$ to have 0 row-sum in the last row.

Construct C from C

From an $n \times n$ matrix $C=\left(c_{i j}\right)$, we construct another $n \times n$ matrix $C^{\prime}=\left(c_{i j}^{\prime}\right)$ that satisfies
(i) $C[[n] \mid[n-1]] \leq C^{\prime}[[n] \mid[n-1]]$;
(ii) $r_{i}:=\sum_{j=1}^{n} c_{i j} \leq r_{i}^{\prime}:=\sum_{j=1}^{n} c_{i j}^{\prime} \quad$ for $1 \leq i \leq n$;
(iii) $C^{\prime}+k l$ is rooted for some k;
(iv) $C^{\prime}[\{n\} \mid[n-1]]>0$.

Example

$$
C=\left(\begin{array}{lll}
3 & 6 & 2 \\
8 & 1 & 1 \\
5 & 5 & 0
\end{array}\right), \quad C^{\prime}=\left(\begin{array}{ccc}
6 & 6 & -1 \\
8 & 2 & 0 \\
5 & 5 & 0
\end{array}\right)
$$

A restricted form of our main method

Theorem
With the notation from the last page, we have

$$
\rho(C) \leq \rho_{r}\left(C^{\prime}\right)
$$

The set K

To study the case of equality $\rho(C)=\rho\left(C^{\prime}\right)$ of the theorem in the last page, we need information of the eigenvector $V^{\prime}=\left(V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{n}^{\prime}\right)^{T}$ (known to be positive and rooted) of C^{\prime} for $\rho_{r}\left(C^{\prime}\right)$ and the set

$$
K=\left\{j \mid V_{j}^{\prime}>V_{n}\right\}
$$

An easier way to find K

$$
\text { Let } \begin{aligned}
K_{1} & =\left\{i \mid r_{i}^{\prime}>r_{n}^{\prime}\right\}, \quad \text { and when } K_{t} \text { is defined, let } \\
K_{t+1} & =\left\{i \notin \bigcup_{s \leq t} K_{s} \mid c_{i j}^{\prime}>c_{n j}^{\prime} \text { for some } j \in \bigcup_{s \leq t} K_{s}\right\} .
\end{aligned}
$$

Lemma
If $r_{i}^{\prime}>0$ for $1 \leq i \leq n-1$ then

$$
\begin{cases}K=\emptyset, & \text { if } K_{1}=\emptyset ; \\ K=\bigcup_{s=1}^{\infty} K_{s} & \text { otherwise }\end{cases}
$$

The equality part of the theorem

Theorem
With the notation in the last few pages, if C is irreducible and
$r_{i}^{\prime}>0$ for $1 \leq i \leq n-1$, then $\rho(C)=\rho_{r}\left(C^{\prime}\right)$ if and only if

$$
\begin{aligned}
r_{i} & =r_{i}^{\prime} \quad \text { for } 1 \leq i \leq n \\
c_{i j}^{\prime} & =c_{i j} \quad \text { for } 1 \leq i \leq n \text { and } j \in K .
\end{aligned}
$$

$$
\left(c_{i j} \text { is free if } j \notin K .\right)
$$

A non-example holds

$\rho\left(\begin{array}{ccc|cc|cc}2 & 1 & 3 & 3 & 3 & 12 & 0 \\ 4 & 2 & 1 & 4 & 2 & 6 & 4 \\ 2 & 3 & 1 & 4 & 1 & 8 & 3 \\ \hline 3 & 5 & 3 & 1 & 1 & 3 & 4 \\ 5 & 6 & 1 & 1 & 0 & 3 & 3 \\ \hline 0 & 2 & 1 & 2 & 2 & 6 & 0 \\ 2 & 2 & 0 & 2 & 1 & 1 & 4\end{array}\right) \leq \rho\left(\begin{array}{ccc|cc|cc}2 & 2 & 3 & 3 & 3 & 12 & -1 \\ 4 & 2 & 1 & 4 & 2 & 6 & 5 \\ 2 & 3 & 2 & 4 & 2 & 8 & 3 \\ \hline 4 & 5 & 3 & 1 & 1 & 3 & 3 \\ 5 & 6 & 1 & 1 & 1 & 3 & 3 \\ \hline 1 & 2 & 1 & 2 & 2 & 6 & -1 \\ 2 & 2 & 0 & 2 & 2 & 1 & 4\end{array}\right)$

Although the matrix on the right violates some pieces of the assumptions in C^{\prime}, the above inequality still holds.

The matrix C after equitable quotient matters

$$
\begin{aligned}
& \rho\left(\begin{array}{lll|ll|ll}
2 & 1 & 3 & 3 & 3 & 12 & 0 \\
4 & 2 & 1 & 4 & 2 & 6 & 4 \\
2 & 3 & 1 & 4 & 1 & 8 & 3 \\
\hline 3 & 5 & 3 & 1 & 1 & 3 & 4 \\
5 & 6 & 1 & 1 & 0 & 3 & 3 \\
\hline 0 & 2 & 1 & 2 & 2 & 6 & 0 \\
2 & 2 & 0 & 2 & 1 & 1 & 4
\end{array}\right) \quad \text { (same row-sums sequenc } \\
\leq & \rho\left(\begin{array}{lll|l|ll}
2 & 2 & 3 & 3 & 3 & 12 \\
\hline & 2 & 1 & 4 & 2 & 6 \\
5 \\
2 & 3 & 2 & 4 & 2 & 8 \\
\hline 4 & 5 & 3 & 1 & 1 & 3 \\
\hline 5 & 6 & 1 & 1 & 1 & 3 \\
\hline
\end{array}\right)=\rho\left(\begin{array}{ccc}
7 & 6 & 11 \\
12 & 2 & 6 \\
4 & 4 & 5
\end{array}\right) \approx 18.69
\end{aligned}
$$

Applications

In the following few pages, we shall provide some applications of the inequality $\rho(C) \leq \rho_{r}\left(C^{\prime}\right)$.

The matrices C attaining the equality can be characterized, but for simplicity, we omit the discussion here.

Realization a result of Xing Duan and Bo Zhou

Theorem
Let $C=\left(c_{i j}\right)$ be a nonnegative $n \times n$ matrix with row-sums
$r_{1} \geq r_{2} \geq \cdots \geq r_{n}$ and $d:=\max _{i} c_{i i}, f:=\max _{i \neq j} c_{i j}$. Then for $1 \leq \ell \leq n$,

$$
\rho(C) \leq \frac{r_{\ell}+d-f+\sqrt{\left(r_{\ell}-d+f\right)^{2}+4 f \sum_{i=1}^{\ell-1}\left(r_{i}-r_{\ell}\right)}}{2}
$$

Proof.

$$
C^{\prime}=\left(\begin{array}{ccccc}
d & f & \cdots & f & r_{1}-(\ell-2) f-d \\
f & d & & f & r_{2}-(\ell-2) f-d \\
\vdots & & \ddots & \vdots & \vdots \\
f & f & \cdots & d & r_{\ell-1}-(\ell-2) f-d \\
f & f & \cdots & f & r_{\ell}-(\ell-1) f
\end{array}\right)_{\ell \times \ell}
$$

A little generalization

Theorem
Let $C=\left(c_{i j}\right)$ be a nonnegative $n \times n$ matrix with row-sums
$r_{1} \geq r_{2} \geq \cdots \geq r_{n}$ and $d \geq \max _{1 \leq i \leq \ell-1} c_{i i}, f \geq \max _{1 \leq i \neq j \leq \ell-1} c_{i j}$.
Then for $1 \leq \ell \leq n$,

$$
\rho(C) \leq \frac{r_{\ell}+d-f+\sqrt{\left(r_{\ell}-d+f\right)^{2}+4 f \sum_{i=1}^{\ell-1}\left(r_{i}-r_{\ell}\right)}}{2}
$$

Proof.

$$
C^{\prime}=\left(\begin{array}{ccccc}
d & f & \cdots & f & r_{1}-(\ell-2) f-d \\
f & d & & f & r_{2}-(\ell-2) f-d \\
\vdots & & \ddots & \vdots & \vdots \\
f & f & \cdots & d & r_{\ell-1}-(\ell-2) f-d \\
f & f & \cdots & f & r_{\ell}-(\ell-1) f
\end{array}\right)_{\ell \times \ell} .
$$

A theorem of Richard Stanley in 1987

Theorem
Let $C=\left(c_{i j}\right)$ be an $n \times n$ symmetric $(0,1)$ matrix with zero trace.
Let the number of 1 's of C be $2 e$. Then

$$
\rho(C) \leq \frac{-1+\sqrt{1+8 e}}{2}
$$

Proof.
Use $2 e=\sum_{i=1}^{n} r_{n}$ and

$$
C=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & r_{1}-(n-1) \\
1 & 0 & \ddots & 1 & r_{2}-(n-1) \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 0 & r_{n}-(n-1) \\
1 & 1 & \cdots & 1 & -n
\end{array}\right)
$$

A generalization to nonnegative matrices

Theorem
Let $C=\left(c_{i j}\right)$ be an $n \times n$ nonnegative matrix. Let m be the sum of entries, and $d \geq \max _{i} c_{i i}, f \geq \max _{i \neq j} c_{i j}$. Then

$$
\rho(C) \leq \frac{d-f+\sqrt{(d-f)^{2}+4 f m}}{2}
$$

Proof.
Use $m=\sum_{i=1}^{n} r_{n}=n(n-1) f+n d$ and

$$
C=\left(\begin{array}{ccccc}
d & f & \cdots & f & r_{1}-d-(n-1) f \\
f & d & \ddots & f & r_{2}-d-(n-1) f \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
f & f & \cdots & d & r_{n}-d-(n-1) f \\
f & f & \cdots & f & -n f
\end{array}\right)
$$

Realization a result of Csikvári in 2009

Theorem
Assume that the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ forms a clique in the graph G and $V(G) \backslash K=\left\{v_{k+1}, \ldots, v_{n}\right\}$ forms an independent set. Let e^{\prime} be the number of edges between K and $V(G) \backslash K$. Then

$$
\rho(G) \leq \frac{k-1+\sqrt{(k-1)^{2}+4 e^{\prime}}}{2} .
$$

Proof.
Use $e^{\prime}=\sum_{i=1}^{k} r_{i}$ and

$$
C^{\prime}=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & r_{1}-(k-1) \\
1 & 0 & \ddots & 1 & r_{2}-(k-1) \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 0 & r_{k}-(k-1) \\
1 & 1 & \cdots & 1 & 0
\end{array}\right)
$$

$\rho(G) \leq \rho\left(G_{D(G)}\right)$

To illustrate how our method is applied to bipartite graph, we need the following theorem of A. Bhattacharya, S. Friedland, and U.N. Peled in 2008.

Theorem
If a bipartite graph G has degree sequence $D=D(G)$ of one part then $\rho(G) \leq \rho\left(G_{D}\right)$ with equality if and only if $G=G_{D}$ (up to isomorphism).

The spectral radius of G_{D}

The bipartite graph G_{D} has adjacency matrix of the block form

$$
A(G)=\left(\begin{array}{cc}
0 & B(D) \\
B(D)^{T} & 0
\end{array}\right) . \text { Then } A^{2}=\left(\begin{array}{cc}
B(D) B(D)^{T} & O \\
O & B(D)^{T} B(D)
\end{array}\right)
$$

and

$$
C:=B(D) B(D)^{T}=\left(\begin{array}{lllll}
d_{1} & d_{2} & d_{3} & & d_{p} \\
d_{2} & d_{2} & d_{3} & & d_{p} \\
d_{3} & d_{3} & d_{3} & & d_{p} \\
& & & \ddots & \\
d_{p} & d_{p} & d_{p} & & d_{p}
\end{array}\right)
$$

Since $B(D) B(D)^{T}$ and $B(D)^{T} B(D)$ have the same spectral radius,

$$
\rho^{2}\left(G_{D}\right)=\rho\left(A^{2}\right)=\rho(C)
$$

A proof of the next theorem

For $D=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ in nonincreasing order,

$$
C=\left(\begin{array}{lllll}
d_{1} & d_{2} & d_{3} & & d_{p} \\
d_{2} & d_{2} & d_{3} & & d_{p} \\
d_{3} & d_{3} & d_{3} & & d_{p} \\
& & & \ddots & \\
d_{p} & d_{p} & d_{p} & & d_{p}
\end{array}\right)
$$

and fix $1 \leq \ell \leq p$, we will choose

$$
C^{\prime}=\left(\begin{array}{ccccc}
d_{1} & d_{1} & \cdots & d_{1} & r_{1}-(\ell-1) d_{1} \\
d_{2} & d_{2} & \cdots & d_{2} & r_{2}-(\ell-1) d_{2} \\
d_{3} & d_{3} & \cdots & d_{3} & r_{3}-(\ell-1) d_{3} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
d_{\ell} & d_{\ell} & \cdots & d_{\ell} & r_{\ell}-(\ell-1) d_{\ell}
\end{array}\right),
$$

where $r_{i}=(i-1) d_{i}+\sum_{k=i}^{p} d_{k}$ is the i-th row-sum of C to obtain the theorem in the next page.

A theorem for bipartite graphs

Theorem
Let G be a bipartite graph and $D=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ be the degree sequence of one part of G in decreasing order. Then for $1 \leq \ell \leq p$,

$$
\rho(G) \leq \sqrt{\frac{r_{1}+\sqrt{\left(2 r_{\ell}-r_{1}\right)^{2}+4 d_{\ell} \sum_{i=1}^{\ell}\left(r_{i}-r_{\ell}\right)}}{2}}
$$

The above theorem is the main tool for our proof of the weak BFP Conjecture for $C(p, q, e)$ with $e \geq p q-\max (p, q)$ or $\min (p, q) \leq 5$.

A new lower bound

Our method also has dual version.
Theorem
Let $C=\left(c_{i j}\right)$ be an $n \times n$ nonnegative matrix with row-sums
$r_{1} \geq r_{2} \geq \cdots \geq r_{n}$. For $1 \leq t<n$, let $d=\max _{t<i \leq n} c_{i i}$ and
$f=\max _{1 \leq i \leq n, t<j \leq n, i \neq j} c_{i j}$. Assume that $0<r_{n}-(n-t-1) f-d$.
Then

$$
\frac{r_{t}-f+d+\sqrt{\left(r_{t}-(2 n-2 t-1) f-d\right)^{2}+4(n-t)\left(f r_{n}-(n-t-1) f-d\right)}}{2}
$$

is a lower bound of $\rho(C)$.
Proof.

$$
C^{\prime}=\left(\begin{array}{cc}
r_{t}-(n-t) f & (n-t) f \\
r_{n}-(n-t-1) f-d & (n-t-1) f+d
\end{array}\right) .
$$

A general form of our main method

Theorem

Let $C=\left(c_{i j}\right), C^{\prime}=\left(c_{i j}^{\prime}\right), P$ and Q be $n \times n$ matrices. Assume that
(i) $P C Q \leq P C^{\prime} Q$;
(ii) C^{\prime} has an eigenvector $Q u$ for λ^{\prime} for some nonnegative column vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T} \geq 0$ and $\lambda^{\prime} \in \mathbb{R}$;
(iii) C has a left eigenvector $v^{\top} P$ for λ for some nonnegative row vector $v^{\top}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \geq 0$ and $\lambda \in \mathbb{R}$; and
(iv) $v^{\top} P Q u>0$.

Then $\lambda \leq \lambda^{\prime}$. Moreover, $\lambda=\lambda^{\prime}$ if and only if

$$
\left(P C^{\prime} Q\right)_{i j}=(P C Q)_{i j} \quad \text { for } 1 \leq i, j \leq n \text { with } v_{i} \neq 0 \text { and } u_{j} \neq 0
$$

Quick realization

To realize the theorem in the last page, we might investigate its special case $P=Q=I$.
Theorem
Let $C=\left(c_{i j}\right), C^{\prime}=\left(c_{i j}^{\prime}\right)$ be $n \times n$ matrices. Assume that
(i) $C \leq C^{\prime}$;
(ii) C^{\prime} has an eigenvector u for λ^{\prime} for some nonnegative column vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T} \geq 0$ and $\lambda^{\prime} \in \mathbb{R}$;
(iii) C has a left eigenvector v^{\top} for λ for some nonnegative row vector $v^{\top}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \geq 0$ and $\lambda \in \mathbb{R}$; and
(iv) $v^{\top} u>0$.

Then $\lambda \leq \lambda^{\prime}$. Moreover, $\lambda=\lambda^{\prime}$ if and only if

$$
\left(C^{\prime}\right)_{i j}=(C)_{i j} \quad \text { for } 1 \leq i, j \leq n \text { with } v_{i} \neq 0 \text { and } u_{j} \neq 0
$$

As simple as majorization-monotone property

Theorem
Let $C=\left(c_{i j}\right), C^{\prime}=\left(c_{i j}^{\prime}\right)$ be $n \times n$ matrices. Assume that
(i) $0 \leq C \leq C^{\prime}$;
(ii) C^{\prime} has an eigenvector u for λ^{\prime} for some nonnegative column vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T} \geq 0$ and $\lambda^{\prime} \subset \mathbb{R}$;
(iii) C has a left eigenvector v^{\top} for λ for some nonnegative row vector $v^{\top}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \geq 0$ and $\lambda \in \mathbb{R}$; and
(iv) $v^{\top} u>0$.

Then $\lambda \leq \lambda^{\prime}$. Moreover, $\lambda=\lambda^{\prime}$ if and only if

$$
\left(C^{\prime}\right)_{i j}=(C)_{i j} \quad \text { for } 1 \leq i, j \leq n \underbrace{\mu \mu i t h / x_{i} / \# / \phi / \nexists \mu \phi / / \mu \rho / \# / \phi}_{\text {if assume } C \text { irreducible }} .
$$

Remark

The restricted form is the special case of the general form by applying

$$
P=I, \quad Q=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 1 \\
0 & 1 & \ddots & 0 & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

Many other cases should be continuously investigated.

References

1. A. Bhattacharya, S. Friedland, U. N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008) R144.
2. P. Csikvári, On a conjecture of Nikiforov, Discrete Math. 309 (2009) 4522-4526.
3. X. Duan, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl. 439 (2013) 2961-2970.
4. Yen-Jen Cheng, Feng-lei Fan and Chih-wen Weng, An extending result on spectral radius of bipartite graphs, Taiwanese Journal of Mathematics, 22(2)(2018), 263-274.
5. Yen-Jen Cheng, Feng-lei Fan and Chih-wen Weng, A conjecture on the spectral radius of a bipartite graph, preprint.
6. Yen-Jen Cheng, Chih-wen Weng, A matrix realization of spectral bounds of the spectral radius of a nonnegative matrix, arXiv:1711.03274.
7. Chia-an Liu, Chih-wen Weng, Spectral Radius of Bipartite Graphs, Linear Algebra Appl. 474 (2015), 30-43.
8. R. P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra Appl. 87 (1987), 267-269.

Thank you for your attention.

