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Degree, average 2-degree, degree pair

Let G be a simple connected graph with vertex set VG = {1, 2, . . . , n} and
edge set EG. Let di and mi be the degree and average 2-degree of the
vertex i ∈ VG respectively, define as follows.

di :=|G1(i)|,

mi :=
1

di

∑
ji∈EG

dj,

where G1(i) means the set {j ∈ VG | ji ∈ EG} of neighbors of i.

The sequence of pairs
{(di,mi)}i∈VG

of G are called sequence of degree pairs of G.
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The degree pairs (di,mi)

r r
r
r

r r

(3, 73)

(2, 52) (2, 3)

(2, 2)(2, 52) (2, 52)

r r
r
r

r r

Two graphs with their degree pairs (di,mi).
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Generating the degree pair
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where A is the adjacency matrix of G.
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Determine a graph from degree pairs
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Two graphs uniquely determined by their sequence of degree pairs.

We will show that

max dimi = 5 ≥ 5 = n ⇒ ∃C3 or C4.
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Two graphs with the same degree pairs I

r r
r r r

r r r r
r r r

r r
Two graphs with the same sequence of degree pairs

(2, 3), (3, 3), (3, 3), (4, 3), (3, 3), (3, 3), (2, 3).
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Two graphs with the same degree pairs II
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Two graphs with the same degree pairs.
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A feasible condition

∑
i∈VG dimi =

∑
i∈VG d2i .

Proof. ∑
i∈VG

dimi =
∑
i∈VG

di

∑
ji∈EG dj

di
=

∑
j∈VG

∑
ij∈EG

dj =
∑
j∈VG

d2j .
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Another feasible condition

There are even number of odd values dimi among i ∈ VG.

Proof.
Since

∑
i∈VG di is even, there are even number of odd di, and so does d2i .

Hence
∑

i∈VG dimi =
∑

i∈VG d2i is even.
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Corollary

∑
i∈VG m2

i ≥
∑

i∈VG d2i with equality iff mi = di = k for all i.

Proof.
(
∑
i∈VG

d2i )(
∑
i∈VG

m2
i ) ≥ (

∑
i∈VG

dimi)
2 = (

∑
i∈VG

d2i )2

and equality iff mi = cdi, where c = 1 by the above lemma. This is also
equivalent to that all neighbors of a vertex of minimum degree k also have
degree k.
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Proposition

If maxi∈VG dimi ≥ n then the graph has girth at most 4.

Proof.
If the graph has girth at least 5 then

n − 1 = |VG| − 1 ≥ |G1(i) ∪ G2(i)| = dimi.

for any i ∈ VG.

In general, dimi ≥ |G1(i)|+ |G2(i)|, and there are at least (dimi − n)/2
triangles based on the vertex i.
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Erdős-Gallai Theorem

A sequence of nonnegative integers d1 ≥ d2 ≥ · · · ≥ dn can be represented
as the degree sequence of a finite simple graph on n vertices if and only if

n∑
i=1

di

is even and
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{di, k} (1 ≤ k ≤ n).

翁志文 (Dep. of A. Math., NCTU) On degrees and average 2-degrees in graphs June 21, 2019 12 / 32



An analogue of the Erdős-Gallai Theorem
If a sequence of ordered pairs of positive real numbers
(d1,m1) ≽ (d2,m2) ≽ · · · ≽ (dn,mn) in dictionary order is a sequence of
degree pairs of a simple graph G of order n, then
(i) di and dimi are both positive integers for i = 1, 2, . . . , n;
(ii) dimi ≤

∑di+1
j=1 dj − dmin{di+1,i} for i = 1, 2, . . . , n;

(iii) dimi ≥
∑n

j=n−di
dj − dmax{n−di,i} for i = 1, 2, . . . , n;

(iv)
∑n

i=1 dimi =
∑n

i=1 d2i ;
(v)

∑n
i=1 di is even (and so does

∑n
i=1 dimi);

(vi)
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 min{di, k} for k = 1, 2, . . . , n; and
(vii)

∑k
i=1 dimi ≤

∑k
i=1 di min{di, k − 1}+

∑n
i=k+1 di min{di, k} for

k = 1, 2, . . . , n.

However, the sufficiency is not completed.
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The square graph G2 and its independent number

Let G2 be the square of G, i.e.

V(G2) = V(G) and E(G2) = {ij | d(i, j) = 1 or 2},

where d(i, j) denotes the distance between vertices i and j in G.

The independent number α(G) of a graph G is the maximum size of a
vertex subset consisting of pairwise nonadjacent vertices.
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Proposition

Let G be a simple graph with no isolated vertices and of degree pair
sequence (di,mi)n

i=1. Then the independence number of the square G2 of G
satisfies

α(G2) ≥
n∑

i=1

1

1 + dimi
.

The proof is using probabilistic method.
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Harmonic graphs

A simple graph G with no isolated vertices is k-harmonic if its average
2-degree mi = k for every i ∈ V(G).

From the definition of a k-harmonic graph, k is a rational number, but
indeed k is an integer.

A. Dress, I. Gutman, The number of walks in a graph, Appl. Math. Lett.
16 (2003) 797-801.
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Proposition

A k-harmonic graph on n vertices has at most nk/2 edges, and the
maximum is obtained if and only if the graph is regular.

Proof.
Let G be a k-harmonic graph with degree pairs {(di,mi)}n

i=1, where
mi = k. By Cauchy’s inequality,

2k|E(G)| =
n∑

i=1

dimi =
n∑

i=1

d2i ≥
(
∑n

i=1 di)2

n =
4|E(G)|2

n ,

we have |E(G)| ≤ nk/2 and the equality is obtained if and only if di is a
constant.
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Pseudo regular graph

A graph is pseudo k-regular if it is k-harmonic but not k-regular.
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The tree Tk
For each k ≥ 2, let Tk be the tree of order k3 − k2 + k + 1 whose root has
degree k2 − k+1 and each neighbor of the root has k− 1 children as leafs.

T2:

r
r

r
r
r

r
r

T3:

r r r r r r r r r r r r r r
r r r r r r r

r

翁志文 (Dep. of A. Math., NCTU) On degrees and average 2-degrees in graphs June 21, 2019 19 / 32



Pseudo regular trees

For each k, a pseudo k-regular tree is the tree Tk.

The proof is also by A. Dress and I. Gutman.
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Proposition

Let G be a pseudo k-regular graph of order n with a vertex i of degree
di ≥ k2 − 3k + 5. Then
(i) every neighbor j of i has degree dj = k, and
(ii) the order of G is at least

f(k) :=
⌈

5k4 − 31k3 + 94k2 − 140k + 100

k2
⌉
.
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Pseudo 3-regular graph of order at most 10
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The number N(k)

Let N(k) denote the minimum number of vertices in a pseudo k-regular
graph.
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N(k) for k ≤ 7

k N(k) Possible degree sequences
2 7 3, 2, 2, 2, 1, 1, 1
3 7 4, 3, 3, 3, 3, 2, 2
4 8 5, 5, 4, 4, 4, 3, 3, 2
5 9 6, 6, 6, 5, 5, 4, 4, 4, 2

6, 6, 5, 5, 5, 5, 4, 4, 4
6 11 8, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4
7 11 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6
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Minimal pseudo 4-regular graphs
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Minimal pseudo 5-regular graphs

2 matchings
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Minimal pseudo 6-regular graphs

4-regular

翁志文 (Dep. of A. Math., NCTU) On degrees and average 2-degrees in graphs June 21, 2019 27 / 32



Proposition

For k = 3, 4 there exists a pseudo k-regular graph on n vertices for every
n ≥ N(k).

The proof is by inductive constructions.
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A lower bound of N(k)

For each positive integer k ≥ 2, we have

N(k) ≥ k + 3.

The proof uses counting arguments to disagree the existence of a pseudo
k-regular graph of order k + 2.
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An upper bound of N(k)

For each positive integer k ≥ 3, we have

N(k) ≤
{

k + 4 if k is odd;
k + 6 if k is even.

The proof is by direct construction.
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Open problems
1 Give a necessary and sufficient condition for a sequence of positive

integers that can be the degree sequence of a finite pseudo k-regular
graph with no isolated vertices for every positive integer k.

2 Give a necessary and sufficient condition for a sequence of pairs of
positive real numbers that is graphic on a finite simple graph with no
isolated vertices.

3 Is N(k) non-decreasing? It is true for k ≤ 7.
4 For each positive integer k ≥ 8, determine N(k), and find all pseudo

k-regular graphs of order N(k).
5 Does there always exist a pseudo k-regular graph on n vertices for any

positive integers k ≥ 5 and n ≥ N(k)?
6 Give a function g(n, k) for positive integers n, k that maps to the

number of pseudo k-regular graphs of order n up to isomorphism.
Currently we have that g(n, 3) = 0 for n ≤ 6 and g(7, 3) = 2;
g(n, 4) = 0 for n ≤ 7 and g(8, 4) = 1; g(n, 5) = 0 for n ≤ 8 and
g(9, 5) = 3; g(n, 6) = 0 for n ≤ 10; g(n, 7) = 0 for n ≤ 10 and
g(11, 7) = 5.
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Thank you for your attention.
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