On degrees and average 2－degrees in graphs

Chih－wen Weng ${ }^{\dagger}$

（joint work with Yu－pei Hunag ${ }^{\ddagger}$ ，Chia－an Liu ${ }^{\sharp}$ ）
${ }^{\dagger}$ Department of Applied Mathematics，National Chiao Tung University ${ }^{\ddagger}$ College of Applied Mathematics，Beijing Normal University－Zhuhai
\＃Department of Mathematical Sciences，University of Delaware Newark
June 21， 2019

Degree，average 2－degree，degree pair

Let G be a simple connected graph with vertex set $V G=\{1,2, \ldots, n\}$ and edge set $E G$ ．Let d_{i} and m_{i} be the degree and average 2－degree of the vertex $i \in V G$ respectively，define as follows．

$$
\begin{aligned}
d_{i} & :=\left|G_{1}(i)\right|, \\
m_{i} & :=\frac{1}{d_{i}} \sum_{j i \in E G} d_{j},
\end{aligned}
$$

where $G_{1}(i)$ means the set $\{j \in V G \mid j i \in E G\}$ of neighbors of i ．
The sequence of pairs

$$
\left\{\left(d_{i}, m_{i}\right)\right\}_{i \in V G}
$$

of G are called sequence of degree pairs of G ．

The degree pairs $\left(d_{i}, m_{i}\right)$

Two graphs with their degree pairs $\left(d_{i}, m_{i}\right)$ ．

Generating the degree pair

$$
\begin{aligned}
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right) & =A\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \\
\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{n}
\end{array}\right) & =\left(\begin{array}{llll}
d_{1}^{-1} & & & \\
& d_{2}^{-1} & & \\
& & \ddots & \\
& & & d_{n}^{-1}
\end{array}\right) A\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right),
\end{aligned}
$$

where A is the adjacency matrix of G ．

Determine a graph from degree pairs

Two graphs uniquely determined by their sequence of degree pairs．

We will show that

$$
\max d_{i} m_{i}=5 \geq 5=n \quad \Rightarrow \quad \exists C_{3} \text { or } C_{4} .
$$

Two graphs with the same degree pairs I

Two graphs with the same sequence of degree pairs

$$
(2,3),(3,3),(3,3),(4,3),(3,3),(3,3),(2,3) .
$$

Two graphs with the same degree pairs II

Two graphs with the same degree pairs．

A feasible condition

$\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2}$.

Proof．

Another feasible condition

There are even number of odd values $d_{i} m_{i}$ among $i \in V G$ ．

Proof．

Since $\sum_{i \in V G} d_{i}$ is even，there are even number of odd d_{i} ，and so does d_{i}^{2} ． Hence $\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2}$ is even．

Corollary

$\sum_{i \in V G} m_{i}^{2} \geq \sum_{i \in V G} d_{i}^{2}$ with equality iff $m_{i}=d_{i}=k$ for all i.

Proof．

$$
\left(\sum_{i \in V G} d_{i}^{2}\right)\left(\sum_{i \in V G} m_{i}^{2}\right) \geq\left(\sum_{i \in V G} d_{i} m_{i}\right)^{2}=\left(\sum_{i \in V G} d_{i}^{2}\right)^{2}
$$

and equality iff $m_{i}=c d_{i}$ ，where $c=1$ by the above lemma．This is also equivalent to that all neighbors of a vertex of minimum degree k also have degree k ．

Proposition

If $\max _{i \in V G} d_{i} m_{i} \geq n$ then the graph has girth at most 4 ．

Proof．

If the graph has girth at least 5 then

$$
n-1=|V G|-1 \geq\left|G_{1}(i) \cup G_{2}(i)\right|=d_{i} m_{i}
$$

for any $i \in V G$ ．

In general，$d_{i} m_{i} \geq\left|G_{1}(i)\right|+\left|G_{2}(i)\right|$ ，and there are at least $\left(d_{i} m_{i}-n\right) / 2$ triangles based on the vertex i ．

Erdős－Gallai Theorem

A sequence of nonnegative integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if

$$
\sum_{i=1}^{n} d_{i}
$$

is even and

$$
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left\{d_{i}, k\right\} \quad(1 \leq k \leq n)
$$

An analogue of the Erdős－Gallai Theorem

If a sequence of ordered pairs of positive real numbers $\left(d_{1}, m_{1}\right) \succeq\left(d_{2}, m_{2}\right) \succeq \cdots \succeq\left(d_{n}, m_{n}\right)$ in dictionary order is a sequence of degree pairs of a simple graph G of order n ，then
（i）d_{i} and $d_{i} m_{i}$ are both positive integers for $i=1,2, \ldots, n$ ；
（ii）$d_{i} m_{i} \leq \sum_{j=1}^{d_{i}+1} d_{j}-d_{\min \left\{d_{i}+1, i\right\}}$ for $i=1,2, \ldots, n$ ；
（iii）$d_{i} m_{i} \geq \sum_{j=n-d_{i}}^{n} d_{j}-d_{\max \left\{n-d_{i}, i\right\}}$ for $i=1,2, \ldots, n$ ；
（iv）$\sum_{i=1}^{n} d_{i} m_{i}=\sum_{i=1}^{n} d_{i}^{2}$ ；
（v）$\sum_{i=1}^{n} d_{i}$ is even（and so does $\sum_{i=1}^{n} d_{i} m_{i}$ ）；
（vi）$\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left\{d_{i}, k\right\}$ for $k=1,2, \ldots, n$ ；and
（vii） $\begin{aligned} & \sum_{i=1}^{k} d_{i} m_{i} \leq \sum_{i=1}^{k} d_{i} \min \left\{d_{i}, k-1\right\}+\sum_{i=k+1}^{n} d_{i} \min \left\{d_{i}, k\right\} \text { for } \\ & k=1,2, \ldots, n \text { ．}\end{aligned}$

However，the sufficiency is not completed．

The square graph G^{2} and its independent number

Let G^{2} be the square of G ，i．e．

$$
V\left(G^{2}\right)=V(G) \quad \text { and } E\left(G^{2}\right)=\{i j \mid d(i, j)=1 \text { or } 2\}
$$

where $d(i, j)$ denotes the distance between vertices i and j in G ．

The independent number $\alpha(G)$ of a graph G is the maximum size of a vertex subset consisting of pairwise nonadjacent vertices．

Proposition

Let G be a simple graph with no isolated vertices and of degree pair sequence $\left(d_{i}, m_{i}\right)_{i=1}^{n}$ ．Then the independence number of the square G^{2} of G satisfies

$$
\alpha\left(G^{2}\right) \geq \sum_{i=1}^{n} \frac{1}{1+d_{i} m_{i}}
$$

The proof is using probabilistic method．

Harmonic graphs

A simple graph G with no isolated vertices is k－harmonic if its average 2－degree $m_{i}=k$ for every $i \in V(G)$ ．

From the definition of a k－harmonic graph，k is a rational number，but indeed k is an integer．

A．Dress，I．Gutman，The number of walks in a graph，Appl．Math．Lett． 16 （2003）797－801．

Proposition

A k－harmonic graph on n vertices has at most $n k / 2$ edges，and the maximum is obtained if and only if the graph is regular．

Proof．

Let G be a k－harmonic graph with degree pairs $\left\{\left(d_{i}, m_{i}\right)\right\}_{i=1}^{n}$ ，where $m_{i}=k$ ．By Cauchy＇s inequality，

$$
2 k|E(G)|=\sum_{i=1}^{n} d_{i} m_{i}=\sum_{i=1}^{n} d_{i}^{2} \geq \frac{\left(\sum_{i=1}^{n} d_{i}\right)^{2}}{n}=\frac{4|E(G)|^{2}}{n}
$$

we have $|E(G)| \leq n k / 2$ and the equality is obtained if and only if d_{i} is a constant．

Pseudo regular graph

A graph is pseudo k－regular if it is k－harmonic but not k－regular．

The tree T_{k}

For each $k \geq 2$ ，let T_{k} be the tree of order $k^{3}-k^{2}+k+1$ whose root has degree $k^{2}-k+1$ and each neighbor of the root has $k-1$ children as leafs．

Pseudo regular trees

For each k ，a pseudo k－regular tree is the tree T_{k} ．

The proof is also by A．Dress and I．Gutman．

Proposition

Let G be a pseudo k－regular graph of order n with a vertex i of degree $d_{i} \geq k^{2}-3 k+5$ ．Then
（i）every neighbor j of i has degree $d_{j}=k$ ，and
（ii）the order of G is at least

$$
f(k):=\left\lceil\frac{5 k^{4}-31 k^{3}+94 k^{2}-140 k+100}{k^{2}}\right\rceil
$$

Pseudo 3－regular graph of order at most 10

The number $N(k)$

Let $N(k)$ denote the minimum number of vertices in a pseudo k－regular graph．

$N(k)$ for $k \leq 7$

k	$N(k)$	Possible degree sequences
2	7	$3,2,2,2,1,1,1$
3	7	$4,3,3,3,3,2,2$
4	8	$5,5,4,4,4,3,3,2$
5	9	$6,6,6,5,5,4,4,4,2$
		$6,6,5,5,5,5,4,4,4$
6	11	$8,6,6,6,6,6,6,6,6,4,4$
7	11	$8,8,8,7,7,7,7,6,6,6,6$

Minimal pseudo 4－regular graphs

Minimal pseudo 5－regular graphs

Minimal pseudo 6－regular graphs

Proposition

For $k=3,4$ there exists a pseudo k－regular graph on n vertices for every $n \geq N(k)$ ．

The proof is by inductive constructions．

A lower bound of $N(k)$

For each positive integer $k \geq 2$ ，we have

$$
N(k) \geq k+3
$$

The proof uses counting arguments to disagree the existence of a pseudo k－regular graph of order $k+2$ ．

An upper bound of $N(k)$

For each positive integer $k \geq 3$ ，we have

$$
N(k) \leq \begin{cases}k+4 & \text { if } k \text { is odd } \\ k+6 & \text { if } k \text { is even }\end{cases}
$$

The proof is by direct construction．

Open problems

（1）Give a necessary and sufficient condition for a sequence of positive integers that can be the degree sequence of a finite pseudo k－regular graph with no isolated vertices for every positive integer k ．
（2）Give a necessary and sufficient condition for a sequence of pairs of positive real numbers that is graphic on a finite simple graph with no isolated vertices．
（3）Is $N(k)$ non－decreasing？It is true for $k \leq 7$ ．
（4）For each positive integer $k \geq 8$ ，determine $N(k)$ ，and find all pseudo k－regular graphs of order $N(k)$ ．
（6）Does there always exist a pseudo k－regular graph on n vertices for any positive integers $k \geq 5$ and $n \geq N(k)$ ？
（0）Give a function $g(n, k)$ for positive integers n, k that maps to the number of pseudo k－regular graphs of order n up to isomorphism．
Currently we have that $g(n, 3)=0$ for $n \leq 6$ and $g(7,3)=2$ ；
$g(n, 4)=0$ for $n \leq 7$ and $g(8,4)=1 ; g(n, 5)=0$ for $n \leq 8$ and $g(9,5)=3 ; g(n, 6)=0$ for $n \leq 10 ; g(n, 7)=0$ for $n \leq 10$ and $g(11,7)=5$ ．

Thank you for your attention．

