On degrees and average 2-degrees in graphs

Chih-wen Weng[†]

(joint work with Yu-pei Hunag[‡], Chia-an Liu[‡])

[†]Department of Applied Mathematics, National Chiao Tung University [‡]College of Applied Mathematics, Beijing Normal University-Zhuhai [#]Department of Mathematical Sciences, University of Delaware Newark

June 21, 2019

Degree, average 2-degree, degree pair

Let *G* be a simple connected graph with vertex set $VG = \{1, 2, ..., n\}$ and edge set *EG*. Let d_i and m_i be the **degree** and **average** 2-**degree** of the vertex $i \in VG$ respectively, define as follows.

$$d_i := |G_1(i)|,$$

$$m_i := \frac{1}{d_i} \sum_{ji \in EG} d_j,$$

where $G_1(i)$ means the set $\{j \in VG \mid ji \in EG\}$ of neighbors of *i*.

The sequence of pairs

 $\{(d_i, m_i)\}_{i \in VG}$

of G are called sequence of degree pairs of G.

The degree pairs (d_i, m_i)

Two graphs with their degree pairs (d_i, m_i) .

Generating the degree pair

$$\begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix} = A \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} d_1^{-1} & & \\ & d_2^{-1} & \\ & & \ddots & \\ & & & d_n^{-1} \end{pmatrix} A \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix},$$

where A is the adjacency matrix of G.

Determine a graph from degree pairs

Two graphs uniquely determined by their sequence of degree pairs.

We will show that

$$\max d_i m_i = 5 \ge 5 = n \implies \exists C_3 \text{ or } C_4.$$

Two graphs with the same degree pairs I

Two graphs with the same sequence of degree pairs

(2,3), (3,3), (3,3), (4,3), (3,3), (3,3), (2,3).

Two graphs with the same degree pairs II

Two graphs with the same degree pairs.

A feasible condition

$$\sum_{i\in VG} d_i m_i = \sum_{i\in VG} d_i^2.$$

Proof.

$$\sum_{i \in VG} d_i m_i = \sum_{i \in VG} d_i \frac{\sum_{j \in EG} d_j}{d_i} = \sum_{j \in VG} \sum_{i j \in EG} d_j = \sum_{j \in VG} d_j^2.$$

Another feasible condition

There are even number of odd values d_im_i among $i \in VG$.

Proof.

Since $\sum_{i \in VG} d_i$ is even, there are even number of odd d_i , and so does d_i^2 . Hence $\sum_{i \in VG} d_i m_i = \sum_{i \in VG} d_i^2$ is even.

Corollary

 $\sum_{i \in VG} m_i^2 \ge \sum_{i \in VG} d_i^2$ with equality iff $m_i = d_i = k$ for all *i*.

Proof.

$$(\sum_{i\in VG} d_i^2)(\sum_{i\in VG} m_i^2) \ge (\sum_{i\in VG} d_i m_i)^2 = (\sum_{i\in VG} d_i^2)^2$$

and equality iff $m_i = cd_i$, where c = 1 by the above lemma. This is also equivalent to that all neighbors of a vertex of minimum degree k also have degree k.

Proposition

If $\max_{i \in VG} d_i m_i \ge n$ then the graph has girth at most 4.

Proof.

If the graph has girth at least $5\ {\rm then}$

$$n-1 = |VG| - 1 \ge |G_1(i) \cup G_2(i)| = d_i m_i.$$

for any $i \in VG$.

In general, $d_im_i \ge |G_1(i)| + |G_2(i)|$, and there are at least $(d_im_i - n)/2$ triangles based on the vertex *i*.

Erdős-Gallai Theorem

A sequence of nonnegative integers $d_1 \ge d_2 \ge \cdots \ge d_n$ can be represented as the degree sequence of a finite simple graph on *n* vertices if and only if

 $\sum_{i=1}^{n} d_i$

is even and

 $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{d_i, k\} \qquad (1 \le k \le n).$

An analogue of the Erdős-Gallai Theorem

If a sequence of ordered pairs of positive real numbers $(d_1, m_1) \succeq (d_2, m_2) \succeq \cdots \succeq (d_n, m_n)$ in dictionary order is a sequence of degree pairs of a simple graph *G* of order *n*, then

(i) d_i and $d_i m_i$ are both positive integers for i = 1, 2, ..., n; (ii) $d_i m_i \leq \sum_{j=1}^{d_i+1} d_j - d_{\min\{d_i+1,i\}}$ for i = 1, 2, ..., n; (iii) $d_i m_i \geq \sum_{j=n-d_i}^n d_j - d_{\max\{n-d_i,i\}}$ for i = 1, 2, ..., n; (iv) $\sum_{i=1}^n d_i m_i = \sum_{i=1}^n d_i^2$; (v) $\sum_{i=1}^n d_i$ is even (and so does $\sum_{i=1}^n d_i m_i$); (vi) $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min\{d_i, k\}$ for k = 1, 2, ..., n; and (vii) $\sum_{i=1}^k d_i m_i \leq \sum_{i=1}^k d_i \min\{d_i, k-1\} + \sum_{i=k+1}^n d_i \min\{d_i, k\}$ for k = 1, 2, ..., n.

However, the sufficiency is not completed.

The square graph G^2 and its independent number

Let G^2 be the square of G, i.e.

$$V(G^2) = V(G) \quad \text{and} \quad E(G^2) = \{ ij \mid d(i,j) = 1 \text{ or } 2 \},$$

where d(i, j) denotes the distance between vertices *i* and *j* in *G*.

The **independent number** $\alpha(G)$ of a graph *G* is the maximum size of a vertex subset consisting of pairwise nonadjacent vertices.

Proposition

Let G be a simple graph with no isolated vertices and of degree pair sequence $(d_i, m_i)_{i=1}^n$. Then the independence number of the square G^2 of G satisfies

$$\alpha(\mathcal{G}^2) \ge \sum_{i=1}^n \frac{1}{1 + d_i m_i}.$$

The proof is using probabilistic method.

Harmonic graphs

A simple graph G with no isolated vertices is k-harmonic if its average 2-degree $m_i = k$ for every $i \in V(G)$.

From the definition of a k-harmonic graph, k is a rational number, but indeed k is an integer.

A. Dress, I. Gutman, The number of walks in a graph, *Appl. Math. Lett.* 16 (2003) 797-801.

Proposition

A *k*-harmonic graph on *n* vertices has at most nk/2 edges, and the maximum is obtained if and only if the graph is regular.

Proof.

Let *G* be a *k*-harmonic graph with degree pairs $\{(d_i, m_i)\}_{i=1}^n$, where $m_i = k$. By Cauchy's inequality,

$$2k|E(G)| = \sum_{i=1}^{n} d_{i}m_{i} = \sum_{i=1}^{n} d_{i}^{2} \ge \frac{(\sum_{i=1}^{n} d_{i})^{2}}{n} = \frac{4|E(G)|^{2}}{n},$$

we have $|E(G)| \le nk/2$ and the equality is obtained if and only if d_i is a constant.

Pseudo regular graph

A graph is **pseudo** *k*-regular if it is *k*-harmonic but not *k*-regular.

The tree T_k

For each $k \ge 2$, let T_k be the tree of order $k^3 - k^2 + k + 1$ whose root has degree $k^2 - k + 1$ and each neighbor of the root has k - 1 children as leafs.

Pseudo regular trees

For each k, a pseudo k-regular tree is the tree T_k .

The proof is also by A. Dress and I. Gutman.

Proposition

Let G be a pseudo k-regular graph of order n with a vertex i of degree $d_i \ge k^2 - 3k + 5$. Then

(i) every neighbor *j* of *i* has degree $d_j = k$, and

(ii) the order of G is at least

$$f(k) := \left[\frac{5k^4 - 31k^3 + 94k^2 - 140k + 100}{k^2} \right]$$

.

Pseudo 3-regular graph of order at most 10

The number N(k)

Let N(k) denote the minimum number of vertices in a pseudo k-regular graph.

N(k) for $k \leq 7$

k	N (<i>k</i>)	Possible degree sequences
2	7	3, 2, 2, 2, 1, 1, 1
3	7	4, 3, 3, 3, 3, 2, 2
4	8	5, 5, 4, 4, 4, 3, 3, 2
5	9	6, 6, 6, 5, 5, 4, 4, 4, 2
		6, 6, 5, 5, 5, 5, 4, 4, 4
6	11	8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4
7	11	8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6

Minimal pseudo 4-regular graphs

Minimal pseudo 5-regular graphs

Minimal pseudo 6-regular graphs

Proposition

For k = 3, 4 there exists a pseudo k-regular graph on n vertices for every $n \ge N(k)$.

The proof is by inductive constructions.

A lower bound of N(k)

For each positive integer $k \ge 2$, we have

 $N(k) \ge k+3.$

The proof uses counting arguments to disagree the existence of a pseudo k-regular graph of order k + 2.

An upper bound of N(k)

For each positive integer $k \geq 3$, we have

$$N(k) \leq \begin{cases} k+4 & \text{if } k \text{ is odd}; \\ k+6 & \text{if } k \text{ is even.} \end{cases}$$

The proof is by direct construction.

Open problems

- Give a necessary and sufficient condition for a sequence of positive integers that can be the degree sequence of a finite pseudo *k*-regular graph with no isolated vertices for every positive integer *k*.
- Give a necessary and sufficient condition for a sequence of pairs of positive real numbers that is graphic on a finite simple graph with no isolated vertices.
- Is N(k) non-decreasing? It is true for $k \leq 7$.
- For each positive integer k ≥ 8, determine N(k), and find all pseudo k-regular graphs of order N(k).
- Ooes there always exist a pseudo k-regular graph on n vertices for any positive integers k ≥ 5 and n ≥ N(k)?
- Give a function g(n, k) for positive integers n, k that maps to the number of pseudo k-regular graphs of order n up to isomorphism. Currently we have that g(n, 3) = 0 for $n \le 6$ and g(7, 3) = 2; g(n, 4) = 0 for $n \le 7$ and g(8, 4) = 1; g(n, 5) = 0 for $n \le 8$ and g(9, 5) = 3; g(n, 6) = 0 for $n \le 10$; g(n, 7) = 0 for $n \le 10$ and g(11, 7) = 5.

Thank you for your attention.