Sharp bounds of the A_{α}-spectral radius of mixed trees

Chih-wen Weng
joint with Yen-Jen Cheng and Louis Kao
Department of Applied Mathematics, National Yang Ming Chiao Tung University

January 26, 2022

Contents

(1) Introductions
(2) Kelmans transformation
(3) Poset of mixed graphs
(4) Main theorems

Introductions

Mixed graphs

- A mixed graph is a graph in which both directed arcs and undirected edges between two distinct vertices may exist at most once.
- The size of a mixed graph is defined to be the number of directed arcs plus twice the number of undirected edges.

Figure: A mixed graph with size 10

A_{α} matrix and A_{α}-spectral radius of a mixed graph G

- Let $V(G)=\{1,2, \ldots, n\}$ and $E(G)$ collects all directed arcs and undirected edges of the mixed graph G.
- $A(G)=\left(a_{i j}\right)$ is the adjacency matrix of G where $a_{i j}=1$ if and only if $i j$ is an undirected edge or $\overrightarrow{i j}$ is a directed arc in $E(G)$.
- $D^{+}(G)=\operatorname{diag}\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right)$is the out-degree matrix of G where $d_{i}^{+}=\mid\{j: \overrightarrow{i j} \in E(G)$ or $i j \in E(G)\} \mid$.
- For $\alpha \in[0,1]$, define

$$
A_{\alpha}(G)=\alpha D^{+}(G)+(1-\alpha) A(G)
$$

- The A_{α}-spectral radius $\rho_{\alpha}(G)$ of G is the spectral radius of $A_{\alpha}(G)$.

History

- A_{α}-matrices of undirected graphs: [Nikiforov, 2017].
- A_{α}-spectral radii of trees and unicyclic graphs : [Li, Chen, Meng, 2019].
- A_{α}-matrices of digraphs: [Liu, Wu, Chen, Liu, 2019].

Kelmans transformation

Kelmans transformation (undirected graph)

A.K. Kelmans, On graphs with randomly deleted edges, Acta Math. Hungar 37 (1981) 77-88.

A result of P. Csikvári

The largest real eigenvalues of adjacency matrices will not be decreased after a Kelmans transformation of an undirected graph G, i.e.

$$
\rho\left(G_{b}^{a}\right) \geq \rho(G)
$$

P. Csikvári, On a conjecture of V. Nikiforov, Discrete Math. 309 (2009) 4522-4526.

Kelmans transformation (matrix realization)

$$
\begin{aligned}
& A(G)=\left(c_{i j}\right) \quad\left(c_{i j} \in\{0,1\}\right) \\
\rightarrow & A\left(G_{b}^{a}\right)= \\
& { }_{a} \quad \begin{array}{ccc}
j \\
b
\end{array}\left[\begin{array}{ccc}
c_{i j} & c_{i a}+t_{i} & c_{i b}-t_{i} \\
c_{a j}+s_{j} & 0 & c_{a b} \\
c_{b j}-s_{j} & c_{b a} & 0
\end{array}\right]
\end{aligned}
$$

For each $i, j \in[n]-\{a, b\}$, the above $t_{i}, s_{j} \in\{0,1\}$ satisfy

- $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i} \leq c_{i b}$,
- $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j} \leq c_{b j}$.

Generalizing to nonnegative matrices

Let $C=\left(c_{i j}\right)$ be a nonnegative matrix of order n, not necessary symmetric, with $c_{a b}=c_{b a}$ for some $1 \leq a \neq b \leq n$. The Kelmans transformation of C from b to a (denoted as $\left.C_{b}^{a}=C_{b}^{a}\left(t_{i} ; s_{i} ; k\right)\right)$ is the following matrix

$$
C_{b}^{a}=\begin{gathered}
i \\
\\
a \\
b
\end{gathered}\left[\begin{array}{ccc}
j & a & b \\
c_{i j} & c_{i a}+t_{i} & c_{i b}-t_{i} \\
c_{a j}+s_{j} & c_{a a}+k & c_{a b} \\
c_{b j}-s_{j} & c_{b a} & c_{b b}-k
\end{array}\right]
$$

where $\max \left(0, c_{b b}-c_{a a}\right) \leq k \leq c_{b b}$ and for each $i, j \in[n]-\{a, b\}$:

- $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i} \leq c_{i b}$,
- $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j} \leq c_{b j}$.

Theorem on spectral radius

Let $C=\left(c_{i j}\right)$ denote a nonnegative square matrix of order n such that $c_{a b}=c_{b a}$ for some $1 \leq a \neq b \leq n$. Choose k, t_{i}, s_{i} for $i \in[n]-\{a, b\}$ that satisfy $\max \left(0, c_{b b}-c_{a a}\right) \leq k \leq c_{b b}$ and for each $i, j \in[n]-\{a, b\}$:

- $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i} \leq c_{i b}$,
- $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j} \leq c_{b j}$.

Let $C_{b}^{a}=C_{b}^{a}\left(t_{i} ; s_{i} ; k\right)$ be the Kelmans transformation from b to a with respect to $\left(t_{i} ; s_{j} ; k\right)$. Then

$$
\rho(C) \leq \rho\left(C_{b}^{a}\right)
$$

Ideal of the proof

Let $w=\left(w_{i}\right)>0$ be left Perron vector for $\rho(C)$ of C. We prove that

$$
\begin{aligned}
w_{a} \geq w_{b} & \Rightarrow \rho\left(C_{b}^{a}\right) \geq \rho(C) \\
\rho\left(C_{b}^{a}\right) & =\rho\left(C_{a}^{b}\right)
\end{aligned}
$$

Kelmans transformation on mixed graphs

Let a, b be two vertices in mixed graph G such that a and b have either an undirected edge or have no arc. The Kelmans transformation G_{b}^{a} of G from b to a generalizes that of undirected graphs as illustrated below.

Kelman's transformation (A_{α} matrix)

Let $A=\left(c_{i j}\right)$ be the adjacency matrix of a mixed graph G with $c_{a b}=c_{b a}$ for some $1 \leq a \neq b \leq n$. Let G_{b}^{a} be the Kelmans transformation of G from b to a. Then

$$
A_{\alpha}\left(G_{b}^{a}\right)=A_{\alpha}(G)_{b}^{a} .
$$

Corollary

Let G be a mixed graph with two specified vertices a, b which have no arc, and let $\alpha \in[0,1]$. Then the A_{α}-spectral radii $\rho_{\alpha}(G)$ and $\rho_{\alpha}\left(G_{b}^{a}\right)$ satisfy

$$
\rho_{\alpha}(G) \leq \rho_{\alpha}\left(G_{b}^{a}\right)
$$

Poset of mixed graphs

Poset of mixed graphs

Let [G] denote the set of mixed graphs that are isomorphic to G and

$$
\mathcal{G}(n, m):=\{[G]: G \text { is a mixed graph of order } n \text { and size } m\} .
$$

We define the order $[G] \leq\left[G_{b}^{a}\right]$ and extend the order to be a partially ordered set on $(\mathcal{G}(n, m), \leq)$.

Poset of mixed trees

Let $n, m \in \mathbb{N}$ with $n-1 \leq m \leq 2 n-2$,

$$
\mathcal{T}(n, m):=\{[T] \in \mathcal{G}(n, m): T \text { is a mixed tree }\} .
$$

To let the set $\mathcal{T}(n, m)$ be closed under the Kelmans transformations from b to a, we need to choose a and b in the following seven situations:

$$
\begin{aligned}
& a-b, a-x \rightarrow b, a-x \leftarrow b, a \leftarrow x-b, \\
& a \rightarrow x-b, a \rightarrow x \leftarrow b, a \leftarrow x \rightarrow b
\end{aligned}
$$

Maximum elements of $\mathcal{T}(n, m)$

Proposition

Let $[T] \in \mathcal{T}(n, m)$. Then $[T]$ is a maximal element in $\mathcal{T}(n, m)$ if and only if
(i) T is a mixed star, or
(ii) T is a mixed tree without undirected edges (i.e. $m=n-1$) and whenever the subgraph $a \rightarrow x \leftarrow b$ or $a \leftarrow x \rightarrow b$ appears in T, one of a and b is a leaf.

Main Theorem

If $\alpha \in[0,1]$ and T is a mixed tree of order n and size m, then

$$
\rho_{\alpha}(T) \leq \frac{1}{2}\left(\alpha n+\sqrt{\alpha^{2} n^{2}-4 \alpha^{2}(n-1)+4(1-\alpha)^{2}(m-n+1)}\right) .
$$

Moreover, every mixed star of order n and size m with maximum out-degree $n-1$ attains the upper bound.

$$
n=6, m=9 \quad \Rightarrow \quad \rho_{\alpha}(T) \leq \rho_{\alpha}\left(S_{6,9}\right)
$$

Theorem

If T is a mixed tree of order n and size m, and set $k=\left\lceil\frac{n}{2 n-m-1}\right\rceil$ then

$$
\rho_{\alpha}(T) \geq \rho_{\alpha}\left(P_{k}\right)
$$

Moreover, the lower bound is attained when $T=P_{n}(m=2 n-2$, $k=n$).

.

