# **Sharp bounds of the** $A_{\alpha}$ -spectral radius of mixed trees

Chih-wen Weng

#### joint with Yen-Jen Cheng and Louis Kao

Department of Applied Mathematics, National Yang Ming Chiao Tung University

January 26, 2022

#### Contents



- 2 Kelmans transformation
- Oset of mixed graphs

#### 4 Main theorems

# Introductions

# **Mixed graphs**

- A **mixed graph** is a graph in which both directed arcs and undirected edges between two distinct vertices may exist **at most once**.
- The size of a mixed graph is defined to be the number of directed arcs plus twice the number of undirected edges.



Figure: A mixed graph with size 10

# $A_{\alpha}$ matrix and $A_{\alpha}$ -spectral radius of a mixed graph G

- Let  $V(G) = \{1, 2, ..., n\}$  and E(G) collects all directed arcs and undirected edges of the mixed graph G.
- $A(G) = (a_{ij})$  is the adjacency matrix of G where  $a_{ij} = 1$  if and only if ij is an undirected edge or ij is a directed arc in E(G).
- $D^+(G) = \text{diag}(d_1^+, d_2^+, \dots, d_n^+)$  is the out-degree matrix of G where  $d_i^+ = |\{j : \overrightarrow{ij} \in E(G) \text{ or } ij \in E(G)\}|.$
- For  $\alpha \in [0, 1]$ , define

$$A_{\alpha}(G) = \alpha D^{+}(G) + (1 - \alpha)A(G).$$

• The  $A_{\alpha}$ -spectral radius  $\rho_{\alpha}(G)$  of G is the spectral radius of  $A_{\alpha}(G)$ .

### History

- $A_{\alpha}$ -matrices of undirected graphs : [Nikiforov, 2017].
- $A_{\alpha}$ -spectral radii of trees and unicyclic graphs : [Li, Chen, Meng, 2019].
- $A_{\alpha}$ -matrices of digraphs : [Liu, Wu, Chen, Liu, 2019].

# **Kelmans transformation**

# Kelmans transformation (undirected graph)



A.K. Kelmans, On graphs with randomly deleted edges, *Acta Math. Hungar* 37 (1981) 77–88.

# A result of P. Csikvári

The largest real eigenvalues of adjacency matrices will not be decreased after a Kelmans transformation of an **undirected graph** G, i.e.

 $\rho(G_b^a) \ge \rho(G)$ 

P. Csikvári, On a conjecture of V. Nikiforov, *Discrete Math.* 309 (2009) 4522–4526.

# Kelmans transformation (matrix realization)

$$egin{aligned} & A(G) = (c_{ij}) & (c_{ij} \in \{0,1\}) \ & j & a & b \ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & &$$

For each  $i, j \in [n] - \{a, b\}$ , the above  $t_i, s_j \in \{0, 1\}$  satisfy •  $\max(0, c_{ib} - c_{ia}) \le t_i \le c_{ib}$ ,

• 
$$\max(0, c_{bj} - c_{aj}) \leq s_j \leq c_{bj}$$
.

### Generalizing to nonnegative matrices

Let  $C = (c_{ij})$  be a nonnegative matrix of order n, **not necessary** symmetric, with  $c_{ab} = c_{ba}$  for some  $1 \le a \ne b \le n$ . The Kelmans transformation of C from b to a (denoted as  $C_b^a = C_b^a(t_i; s_i; k)$ ) is the following matrix

$$C_{b}^{a} = \begin{bmatrix} i \\ c_{ij} & c_{ia} + t_{i} & c_{ib} - t_{i} \\ c_{aj} + s_{j} & c_{aa} + k & c_{ab} \\ c_{bj} - s_{j} & c_{ba} & c_{bb} - k \end{bmatrix}$$

where  $\max(0, c_{bb} - c_{aa}) \leq k \leq c_{bb}$  and for each  $i, j \in [n] - \{a, b\}$ :

• 
$$\max(0, c_{ib} - c_{ia}) \leq \frac{t_i}{c_i} \leq c_{ib}$$
,

• 
$$\max(0, c_{bj} - c_{aj}) \leq \frac{s_j}{s_j} \leq c_{bj}$$
.

#### Theorem on spectral radius

Let  $C = (c_{ij})$  denote a nonnegative square matrix of order n such that  $c_{ab} = c_{ba}$  for some  $1 \le a \ne b \le n$ . Choose  $k, t_i, s_i$  for  $i \in [n] - \{a, b\}$  that satisfy  $\max(0, c_{bb} - c_{aa}) \le k \le c_{bb}$  and for each  $i, j \in [n] - \{a, b\}$ :

• 
$$\max(0, c_{ib} - c_{ia}) \leq t_i \leq c_{ib}$$
,

• 
$$\max(0, c_{bj} - c_{aj}) \leq s_j \leq c_{bj}$$
.

Let  $C_b^a = C_b^a(t_i; s_i; k)$  be the Kelmans transformation from *b* to *a* with respect to  $(t_i; s_j; k)$ . Then

 $\rho(C) \leq \rho(C_b^a).$ 

### Ideal of the proof

Let  $w = (w_i) > 0$  be left Perron vector for  $\rho(C)$  of C. We prove that

$$w_a \ge w_b \quad \Rightarrow \quad \rho(C_b^a) \ge \rho(C)$$
  
 $ho(C_b^a) \quad = \quad \rho(C_a^b)$ 

### Kelmans transformation on mixed graphs

Let a, b be two vertices in mixed graph G such that a and b have either an undirected edge or have no arc. The Kelmans transformation  $G_b^a$  of G from b to a generalizes that of undirected graphs as illustrated below.



### Kelman's transformation ( $A_{\alpha}$ matrix)

Let  $A = (c_{ij})$  be the adjacency matrix of a mixed graph G with  $c_{ab} = c_{ba}$  for some  $1 \le a \ne b \le n$ . Let  $G_b^a$  be the Kelmans transformation of G from b to a. Then

 $A_{\alpha}(G_b^a) = A_{\alpha}(G)_b^a.$ 

Corollary

Let G be a mixed graph with two specified vertices a, b which have no arc, and let  $\alpha \in [0, 1]$ . Then the  $A_{\alpha}$ -spectral radii  $\rho_{\alpha}(G)$  and  $\rho_{\alpha}(G_{b}^{a})$  satisfy

 $\rho_{\alpha}(G) \leq \rho_{\alpha}(G_{b}^{a}).$ 

# **Poset of mixed graphs**

# Poset of mixed graphs

Let [G] denote the set of mixed graphs that are isomorphic to G and

 $\mathcal{G}(n,m) := \{ [G] : G \text{ is a mixed graph of order } n \text{ and size } m \}.$ 

We define the order  $[G] \leq [G_b^a]$  and extend the order to be a partially ordered set on  $(\mathcal{G}(n, m), \leq)$ .

#### Poset of mixed trees

Let  $n, m \in \mathbb{N}$  with  $n-1 \leq m \leq 2n-2$ ,

 $\mathcal{T}(n,m) := \{ [T] \in \mathcal{G}(n,m) \colon T \text{ is a mixed tree} \}.$ 

To let the set  $\mathcal{T}(n, m)$  be closed under the Kelmans transformations from b to a, we need to choose a and b in the following seven situations:

$$a-b, a-x \rightarrow b, a-x \leftarrow b, a \leftarrow x-b,$$
  
 $a \rightarrow x-b, a \rightarrow x \leftarrow b, a \leftarrow x \rightarrow b$ 

# Maximum elements of $\mathcal{T}(n, m)$

#### Proposition

- Let  $[T] \in \mathcal{T}(n, m)$ . Then [T] is a maximal element in  $\mathcal{T}(n, m)$  if and only if
  - (i) *T* is a **mixed star**, or
- (ii) *T* is a mixed tree without undirected edges (i.e. m = n 1) and whenever the subgraph  $a \rightarrow x \leftarrow b$  or  $a \leftarrow x \rightarrow b$  appears in *T*, one of *a* and *b* is a leaf.

#### **Main Theorem**

If  $\alpha \in [0,1]$  and T is a mixed tree of order n and size m, then

$$\rho_{\alpha}(T) \leq \frac{1}{2} \left( \alpha n + \sqrt{\alpha^2 n^2 - 4\alpha^2 (n-1) + 4(1-\alpha)^2 (m-n+1)} \right)$$

Moreover, every mixed star of order n and size m with maximum out-degree n-1 attains the upper bound.



#### Theorem

If T is a mixed tree of order n and size m, and set  $k = \lfloor \frac{n}{2n-m-1} \rfloor$  then

$$\rho_{\alpha}(T) \geq \rho_{\alpha}(P_k).$$

Moreover, the lower bound is attained when  $T = P_n$  (m = 2n - 2, k = n).



# Thank you for your time and attention!