A few inequalities related to spectral excess theorem

Chih－wen Weng（翁志文）

（joint work with Guang－Siang Lee（李光祥））
Department of Applied Mathematics
National Chiao Tung University

August 19， 2012

Preliminaries

(1) Throughout let $G=(V G, E G)$ be a simple connected graph of order n and diameter D.
(2) Assume that adjacency matrix A has $d+1$ distinct eigenvalues $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{d}$ with corresponding multiplicities $1=m_{0}, m_{1}, \cdots, m_{d} . d$ is called the spectral diameter of G.
(3) It is well-known that $D \leq d$.
(4)

$$
Z(x):=\prod_{i=0}^{d}\left(x-\lambda_{i}\right)
$$

is the minimal polynomial of A.

Inner product

Consider the vector space $\mathbb{R}_{d}[x] \cong \mathbb{R}[x] /\langle Z(x)\rangle$ with the inner product

$$
\langle p(x), q(x)\rangle:=\frac{1}{n} \operatorname{tr}(p(A) q(A))=\frac{1}{n} \sum_{i, j}(p(A) \circ q(A))_{i j},
$$

for $p(x), q(x) \in \mathbb{R}_{d}[x]$, where \circ is the entrywise product of matrices.

2012 Shanghai Conference on Algebraic Combinatorics, August 17 - 22, 2012, Shanghai Jiao Tong University

Predistance polynomials

Definition 1.1

(i) The orthogonal polynomials $1=p_{0}(x), p_{1}(x), \ldots, p_{d}(x)$ in $\mathbb{R}_{d}[x]$ satisfying

$$
\operatorname{deg} p_{i}(x)=i \quad \text { and } \quad\left\langle p_{i}(x), p_{j}(x)\right\rangle=\delta_{i j} p_{i}\left(\lambda_{0}\right)
$$

are called the predistance polynomials of G.
(ii) The polynomial

$$
H(x):=n \prod_{i=1}^{d} \frac{x-\lambda_{i}}{\lambda_{0}-\lambda_{i}}
$$

is called the Hoffman polynomial of G. Moreover, G is regular iff $H(A)=J$, the all 1's matrix.

The sum of all predistance polynomials gives the Hoffman polynomial

$$
H(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{d}(x)
$$

and

$$
H(A)=p_{0}(A)+p_{1}(A)+\cdots+p_{d}(A) .
$$

The predistance polynomials satisfy a three-term recurrence:

$$
x p_{i}(x)=c_{i+1}^{\prime} p_{i+1}(x)+a_{i}^{\prime} p_{i}(x)+b_{i-1}^{\prime} p_{i-1}(x) \quad 0 \leq i \leq d,
$$

where $c_{i+1}^{\prime}, a_{i}^{\prime}, b_{i-1}^{\prime} \in \mathbb{R}$ with $b_{-1}^{\prime}=c_{d+1}^{\prime}:=0$.

Three -term recurrence for bipartite graph

(1) If G is bipartite, then the predistance polynomials satisfy a three-term recurrence of the form

$$
\begin{equation*}
x^{2} p_{i}(x)=X_{i+2} p_{i+2}(x)+Y_{i} p_{i}(x)+Z_{i-2} p_{i-2}(x) \quad 0 \leq i \leq d, \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{i+2} & =c_{i+1}^{\prime} c_{i+2}^{\prime} \\
Y_{i} & =b_{i}^{\prime} c_{i+1}^{\prime}+b_{i-1}^{\prime} c_{i}^{\prime}, \\
Z_{i-2} & =b_{i-2}^{\prime} b_{i-1}^{\prime} .
\end{aligned}
$$

(2) Moreover, if G is bipartite, then for $0 \leq j \leq d, a_{j}^{\prime}=0$, and $p_{j}(x)$ is even or odd depending on whether j is even or odd.

Distance polynomials

(1) Let α be the eigenvector of A corresponding to λ_{0} such that $\alpha^{t} \alpha=n$ and all entries are positive. Note that $\alpha=(1,1, \ldots, 1)^{t}$ iff G is regular.
(2) The matrix A_{i}, indexed by $V G$, satisfying $\left(A_{i}\right)_{u v}=\left\{\begin{array}{cl}\alpha_{u} \alpha_{v}, & \text { if } \partial(u, v)=i ; \\ 0, & \text { else. }\end{array}\right.$ is called the i-th (weighted) distance matrix of G.
(3) $A_{0}=p_{0}(A)(=I)$ iff G is regular.
(4) $A_{0}+A_{1}+\cdots+A_{D}=H(A)=p_{0}(A)+p_{1}(A)+\cdots+p_{d}(A)$.

The spectral excess and the excess

(1) $p_{d}\left(\lambda_{0}\right)$ is called the spectral excess of G.
(2) $\delta_{d}:=\frac{1}{n} \sum_{i, j}\left(A_{d} \circ A_{d}\right)_{i j}$ is called the excess of G, where $A_{d}:=0$ if $D<d$.

If G is regular, then δ_{d} is the average number of vertices to have distance d to a vertex.

2012 Shanghai Conference on Algebraic Combinatorics, August 17 - 22, 2012, Shanghai Jiao Tong University

The spectral excess theorem (SET)

Theorem 1.2

$$
\delta_{d} \leq p_{d}\left(\lambda_{0}\right)
$$

with equality iff G is a distance-regular graph.
[FG1997] M.A. Fiol and E. Garriga, From local adjacency polynomials to local pseudo-distance-regular graphs, J. Combin. Theory Ser. B 71 (1997), 162-183.

Related definitions

Define

$$
\begin{aligned}
\delta_{i} & :=\frac{1}{n} \sum_{u, v}\left(A_{i} \circ A_{i}\right)_{u v}, \\
\delta_{\geq i} & :=\delta_{i}+\delta_{i+1}+\cdots, \\
p_{\geq i}\left(\lambda_{0}\right) & :=p_{i}\left(\lambda_{0}\right)+p_{i+1}\left(\lambda_{0}\right)+\cdots, \\
p^{\text {even }}\left(\lambda_{0}\right) & :=p_{0}\left(\lambda_{0}\right)+p_{2}\left(\lambda_{0}\right)+\cdots, \\
p_{\geq i}^{\text {odd }}\left(\lambda_{0}\right) & :=p_{i}\left(\lambda_{0}\right)+p_{i+2}\left(\lambda_{0}\right)+\cdots \quad \text { for odd } i, \\
A^{\text {odd }} & :=A_{1}+A_{3}+\cdots
\end{aligned}
$$

2012 Shanghai Conference on Algebraic Combinatorics, August 17 - 22, 2012, Shanghai Jiao Tong University

Modify the proof of SET

Proposition 1.3

$$
\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)
$$

with equality iff $A_{\geq i}=p_{\geq i}(A)$.

Proposition 1.4

$$
\delta_{\leq i} \geq p_{\leq i}\left(\lambda_{0}\right)
$$

with equality iff $A_{\leq i}=p_{\leq i}(A)$.

2012 Shanghai Conference on Algebraic Combinatorics, August 17 - 22, 2012, Shanghai Jiao Tong University

G is bipartite

Proposition 1.5

If G is bipartite and $* \in\{$ even, odd $\}$ then

$$
\delta_{\geq i}^{*} \leq p_{\geq i}^{*}\left(\lambda_{0}\right)
$$

with equality iff $A_{\geq i}^{*}=p_{\geq i}^{*}(A)$.

Proposition 1.6

If G is bipartite and $* \in\{$ even,odd $\}$ then

$$
\delta_{\leq i}^{*} \geq p_{\leq i}^{*}\left(\lambda_{0}\right)
$$

with equality iff $A_{\leq i}^{*}=p_{\leq i}^{*}(A)$.

2012 Shanghai Conference on Algebraic Combinatorics, August $17-22,2012$, Shanghai Jiao Tong University

Questions?

$\delta_{i} \leq p_{i}\left(\lambda_{0}\right) \quad$ or $\quad \delta_{i} \geq p_{i}\left(\lambda_{0}\right)$?

Which graphs have the property that $\delta_{i}=p_{i}\left(\lambda_{0}\right)$?

2012 Shanghai Conference on Algebraic Combinatorics, August 17 - 22, 2012, Shanghai Jiao Tong University

The case $i=0$

Proposition 2.1

$$
\delta_{0} \geq 1\left(=p_{0}\left(\lambda_{0}\right)\right) \quad\left(\text { i.e. } \alpha_{1}^{4}+\alpha_{2}^{4}+\cdots+\alpha_{n}^{4} \geq n\right)
$$

and the following are equivalent.
(1) $\delta_{0}=1$. (i.e. $\alpha_{1}^{4}+\alpha_{2}^{4}+\cdots+\alpha_{n}^{4}=n$.)
(2) $A_{0}=I$.
(3) G is regular.
(1) The entries of α are all 1 .

The above inequality is from $\delta_{\leq 0} \geq p_{\leq 0}\left(\lambda_{0}\right)$ which we mentioned earlier, but also follows from the Cauchy-Schwarz inequality

$$
\alpha_{1}^{4}+\alpha_{2}^{4}+\cdots+\alpha_{n}^{4} \geq\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}\right)^{2} / n \geq n
$$

2012 Shanghai Conference on Algebraic Combinatorics, August 17 - 22, 2012, Shanghai Jiao Tong University

The case $i=1$

A bipartite graph with bipartition $V(G)=X \cup Y$ is biregular if there exist distinct integers $k \neq k^{\prime}$ such that every $x \in X$ has degree k, and every $y \in Y$ has degree k^{\prime}.

Proposition 3.1

$$
\delta_{1} \geq p_{1}\left(\lambda_{0}\right)
$$

and the following statements are equivalent.
(i) $\delta_{1}=p_{1}\left(\lambda_{0}\right)$ (or equivalently $\delta_{1} \bar{k}=\lambda_{0}^{2}$),
(ii) $A_{1}=p_{1}(A)$,
(iii) G is regular or G is bipartite biregular.

Corollary 3.2

There is no bipartite biregular graph G with exactly four distinct eigenvalues.

The idea of the proof is to modify a proof in
[DDFGG2011] C. Dalfó, E.R. van Dam, M.A. Fiol, E. Garriga and B.L. Gorissen, On almost distance-regular graphs, J. Combin. Theory Ser. A 118 (2011), 1094-1113.
(1) If $d=2$ then $\delta_{2} \leq p_{2}\left(\lambda_{0}\right)$.
(2) If G is regular bipartite, then $\phi \phi \psi \psi \delta_{2} \geq \not p \phi(\lambda \psi \phi) \nmid \psi p_{2}\left(\lambda_{0}\right)$.
(3) There is no hope to determine the order of δ_{2} and $p_{2}\left(\lambda_{0}\right)$ uniformly.

Definition 4.1

Let G be a graph and i is a nonnegative integer. We say the numbers c_{i}, a_{i}, b_{i} respectively are well-defined in G if for any $x, y \in V(G)$ with $\partial(x, y)=i$, the numbers

$$
\begin{aligned}
c_{i} & :=\left|G_{1}(x) \cap G_{i-1}(y)\right|, \\
a_{i} & :=\left|G_{1}(x) \cap G_{i}(y)\right|, \\
b_{i} & :=\left|G_{1}(x) \cap G_{i+1}(y)\right|,
\end{aligned}
$$

respectively are independent of the choice of x, y.
y

x

Definition 4.2

A graph G is t-partially distance-regular if for $2 \leq i \leq t$ and the numbers c_{i}, a_{i-1}, b_{i-2} are well-defined.

Lemma 4.3

$\delta_{0}=p_{0}\left(\lambda_{0}\right)$ and $\delta_{2}=p_{2}\left(\lambda_{0}\right)$ iff G is 2-partially distance-regular.

Definition 4.4

For a connected bipartite graph G with bipartition $X \cup Y$, the halved graphs G^{X} and G^{Y} are the two connected components of the distance-2 graph of G.

Theorem 4.5 (BCN, Prop 4.2.2, p.141)

The halved graphs of a bipartite distance-regular graph are again distance-regular and, in the case where G is vertex transitive, the two halved graphs are isomorphic.

Lemma 4.6

If $G=(X, Y)$ is a connected regular bipartite graph with $\delta_{2}=p_{2}\left(\lambda_{0}\right)$ (so 2-partially distance-regular by previous lemma), then the halved graphs G^{X} and G^{Y} have the same spectrum.

2012 Shanghai Conference on Algebraic Combinatorics, August $17-22,2012$, Shanghai Jiao Tong University

Bipartite graphs with $\delta_{d-1}=p_{d-1}\left(\lambda_{0}\right)$

Lemma 5.1

Let G be bipartite and $\delta_{d-1}=p_{d-1}\left(\lambda_{0}\right)$. Then

$$
A_{d-1}=p_{d-1}(A), A_{d-3}=p_{d-3}(A), A_{d-5}=p_{d-5}(A), \ldots
$$

In particular G is regular (if $A_{0}=p_{0}(A)$) or bipartite biregular (if $\left.A_{1}=p_{1}(A)\right)$.

Theorem 5.2

Let G be a connected bipartite graph with bipartition $X \cup Y$, odd d. Then the following are equivalent.
(i) $\delta_{d-1}=p_{d-1}\left(\lambda_{0}\right)$;
(ii) G is 2-partially distance-regular and both halved graphs G^{X} and G^{Y} are distance-regular with the same intersection numbers.

The following example shows that a bipartite graph satisfying Theorem 5.2(i)-(ii) and $D=d$ needs not to be distance-regular graph.

Example 5.3

Consider the regular bipartite graphs G on 20 vertices obtained from the Desargues graph (the bipartite double of the Petersen graph) by the GM-switching (a way to produce cospectral nonisomorphic graphs). One can check (by Maple) that $D=d=5$, sp $G=\left\{3^{1}, 2^{4}, 1^{5},(-1)^{5},(-2)^{4},(-3)^{1}\right\}, p_{0}(x)=1, p_{1}(x)=x$, $p_{2}(x)=x^{2}-3, p_{3}(x)=\left(x^{3}-5 x\right) / 2, p_{4}(x)=\left(x^{4}-9 x^{2}+12\right) / 4$, $p_{5}(x)=\left(x^{5}-11 x^{3}+22 x\right) / 12, A_{i}=p_{i}(A)$ for $i \in\{0,1,2,4\}$. Hence $\delta_{0}=p_{0}\left(\lambda_{0}\right)=1, \delta_{1}=p_{1}\left(\lambda_{0}=3, \delta_{2}=p_{2}\left(\lambda_{0}\right)=6\right.$, $\left.\delta_{4}=p_{4}\left(\lambda_{0}\right)=3\right), \delta_{3}=32 / 5, \delta_{5}=3 / 5, p_{3}\left(\lambda_{0}\right)=6$, $p_{5}\left(\lambda_{0}\right)=1 \neq 3 / 5=\delta_{5}$. Then G is not distance-regular.

The following example provides a graph G satisfying Theorem 5.2(i)-(ii) with $D=d-1$.

Example 5.4

Consider the Möbius-Kantor graph G, i.e., the generalized Petersen graph $G P(8,3)$ with vertex set $\left\{u_{0}, u_{1}, \ldots, u_{7}, v_{0}, v_{1}, \ldots, v_{7}\right\}$ and edge set $\left\{u_{i} v_{i}, u_{i} u_{i+1}, v_{i} v_{i+3} \mid 0 \leq i \leq 7\right\}$ with arithmetic modulo 8 .
One can check (by Maple) that $D=4<5=d$,
sp $G=\left\{3^{1}, \sqrt{3}^{4}, 1^{3},(-1)^{3},(-\sqrt{3})^{4},(-3)^{1}\right\}, p_{0}(x)=1, p_{1}(x)=x$,
$p_{2}(x)=x^{2}-3, p_{3}(x)=2\left(x^{3}-5 x\right) / 5, p_{4}(x)=\left(x^{4}-10 x^{2}+15\right) / 6$,
$p_{5}(x)=\left(x^{5}-56 x^{3} / 5+21 x\right) / 18, A_{i}=p_{i}(A)$ for $i \in\{0,1,2,4\}$
$\left(\delta_{0}=p_{0}\left(\lambda_{0}\right)=1, \delta_{1}=p_{1}\left(\lambda_{0}\right)=3, \delta_{2}=p_{2}\left(\lambda_{0}\right)=6\right.$, $\left.\delta_{4}=p_{4}\left(\lambda_{0}\right)=1\right), \delta_{3}=5, p_{3}\left(\lambda_{0}\right)=24 / 5, p_{5}\left(\lambda_{0}\right)=1 / 5$. Note that $G^{2}=2 X$, where X is the 16 -cell graph
(http://mathworld.wolfram.com/16-Cell.html), which is distance-regular with sp $X=\left\{6^{1}, 0^{4},(-2)^{3}\right\}$.

Theorem 5.5

Let G be a connected bipartite graph with bipartition $X \cup Y$ and even d. Then the following are equivalent.
(i) G is distance-regular;
(ii) G is 2-partially distance-regular and both of the halved graphs G^{X} and G^{Y} are distance-regular of diameter $d / 2$.

In the next two pages, we provide two examples of non-distance-regular graphs that satisfy $p_{d-1}\left(\lambda_{0}\right)=\delta_{d-1}$ when d is even. The first one is bipartitle biregular and the second one is regular.

Example 5.6

Consider the bipartite graphs G on 25 vertices obtained from the Petersen graph by subdividing each edge once. One can check (by Maple) that $D=d=6$,
sp $G=\left\{\sqrt{6}^{1}, 2^{5}, 1^{4}, 0^{5},(-1)^{4},(-2)^{5},(-\sqrt{6})^{1}\right\}$, the
Perron-Frobenius vector $\alpha=(\underbrace{\sqrt{5 / 4}, \cdots, \sqrt{5 / 4}}_{10}, \underbrace{\sqrt{5 / 6}, \cdots, \sqrt{5 / 6}}_{15})^{t}$,
$p_{0}(x)=1, p_{1}(x)=5 \sqrt{6} x / 12, p_{2}(x)=15\left(x^{2}-12 / 5\right) / 16$,
$p_{3}(x)=5 \sqrt{6}\left(x^{3}-4 x\right) / 12, p_{4}(x)=25\left(x^{4}-21 x^{2} / 4+3\right) / 28$,
$p_{5}(x)=5 \sqrt{6}\left(x^{5}-7 x^{3}+10 x\right) / 24$,
$p_{6}(x)=5\left(x^{6}-65 x^{4} / 7+22 x^{2}-48 / 7\right) / 24, \widetilde{A}_{i}=p_{i}(A)$ for $i \in\{1,3,5\}$
$\left(\delta_{1}=p_{1}\left(\lambda_{0}\right)=5 / 2, \delta_{3}=p_{3}\left(\lambda_{0}\right)=5, \delta_{5}=p_{5}\left(\lambda_{0}\right)=5\right), \delta_{0}=25 / 24$,
$\delta_{2}=85 / 24, \delta_{4}=85 / 12, \delta_{6}=5 / 6, p_{0}\left(\lambda_{0}\right)=1, p_{2}\left(\lambda_{0}\right)=27 / 8$,
$p_{4}\left(\lambda_{0}\right)=375 / 56, p_{6}\left(\lambda_{0}\right)=10 / 7$. Note that G^{2} is the disjoint union of the Petersen graph X and the line graph Y of X. We have sp $X=\left\{3^{1}, 1^{5},(-2)^{4}\right\}$, and sp $Y=\left\{4^{1}, 2^{5},(-1)^{4},(-2)^{5}\right\}$.

Example 5.7

Let G be the Hoffman graph (A graph nonisomorphic but cospectral to 4 -cube). Then sp $G=\left\{4^{1}, 2^{4}, 0^{6},(-2)^{4},(-4)^{1}\right\}$, $D=d=4, p_{0}(x)=1, p_{1}(x)=x, p_{2}(x)=\left(x^{2}-4\right) / 2$, $p_{3}(x)=\left(x^{3}-10 x\right) / 6, p_{4}(x)=\left(x^{4}-16 x^{2}+24\right) / 24$, and $A_{3}=p_{3}(A)$. Note that G^{2} is the disjoint union of K_{8} and $K_{2,2,2,2}\left(=K_{8}-4 K_{2}\right)$, which are both distance-regular (sp $K_{2,2,2,2}=\left\{6^{1}, 0^{4},(-2)^{3}\right\}$).

