The largest real eigenvalues of nonnegative matrices by applying Kelmans transformations

Chih-wen Weng (joint work with Louis Kao)

Department of Applied Mathematics National Chiao Tung University

14:25-15:10, February 23, 2019

Undirected graphs

Adjacency matrices

Kelmans transformations for undirected graphs

The graph G(a, b) is obtained from G with the same vertex set and replacing edge ac by bc for each $c \in N(a) - N[b]$.

A.K. Kelmans, On graphs with randomly deleted edges, *Acta Math. Acad. Sci. Hung.* 37 (1981) 77-88.

Remark 1: G(a, b) is isomorphic to G(b, a)

Complement graph

Remark 2: $\overline{G}(b, a) = \overline{G(a, b)}$

Eigenvalues and eigenvectors

Let A be a real square matrix, u is a column vector, λ is a complex number. The number λ is an eigenvalue of A with associated eigenvector u if

$$Au = \lambda u.$$

A few facts from linear algebra

- An n × n real symmetric matrix has n real eigenvalues and n corresponding orthonormal eigenvectors.
- A nonnegative matrix *M* has a largest real eigenvalue ρ(*M*), called the spectral radius of *M*.
- The eigenvalue \(\rho(M)\) is associated with a nonnegative eigenvector of length 1, called Perron vector.
- All other eigenvalues λ of M satisfy $|\lambda| \leq \rho(M)$.
- The spectral radius ρ(G) of a graph G is the largest real eigenvalue of its adjacency matrix A = A(G).

Example

$$G: \underbrace{\bullet}_{a} \underbrace{\bullet}_{b} \underbrace{\bullet}_{c} \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} \\ \pm 2 \\ \sqrt{2} \end{pmatrix} = \pm \sqrt{2} \begin{pmatrix} \sqrt{2} \\ \pm 2 \\ \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0.$$
Note that $\frac{1}{2\sqrt{2}}(\sqrt{2}, 2, \sqrt{2})$ is the Perron vector of A and the three eigenvectors

$$\frac{1}{2\sqrt{2}}(\sqrt{2},2,\sqrt{2}),\frac{1}{2\sqrt{2}}(\sqrt{2},-2,\sqrt{2}),\frac{1}{\sqrt{2}}(1,0,-1)$$

are orthonormal and $\rho(\mathbf{G}) = \sqrt{2}$.

Rayleigh quotient for symmetric matrices

Lemma

Let $A = (a_{ij})$ be an $n \times n$ symmetric matrix. Then

$$\rho(A) = \max_{x \neq 0} \frac{x^t A x}{x^t x}.$$

Proof.

Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be eigenvalues of A with corresponding orthonormal eigenvectors x_1, x_2, \ldots, x_n . Write $x = \sum_{i=1}^n c_i x_i$, where $\sum_{i=1}^n c_i^2 = 1$. Then the maximum of

$$x^{t}Ax = \sum_{i=1}^{n} c_{i}^{2}\lambda_{i}$$

is λ_1 and is when $x = \pm x_1$.

Non-symmetric matrices

$$\max_{x:x^{t}x=1} x^{t} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x = \max_{\substack{x=(a,b) \\ a^{2}+b^{2}=1}} ab = \frac{1}{2} \neq 0 = \rho \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Lemma

Let $x = (x_a)$ be the Perron vector of A(G). Then

$$x_b \ge x_a \quad \Rightarrow \quad \rho(G) \le \rho(G(a, b)).$$

Proof.

$$p(G(a, b)) = \max_{\||y\|_2 = 1} y^t A(G(a, b)) y$$

$$\geq x^t A(G(a, b)) x = \sum_{cd \in E(G(a, b))} x_c x_d$$

$$= \sum_{cd \in E(G)} x_c x_d + \sum_{e \in N(a) - N[b]} x_b x_e - x_a x_e$$

$$\geq x^t A x = \rho(G).$$

An old result for undirected graphs

Theorem

$\rho(G) \le \rho(G(a, b))$

Proof.

Let $x = (x_a)$ be the Perron vector of A(G). Then

$$\begin{array}{rcl} x_b \geq x_a & \Rightarrow & \rho(G) \leq \rho(G(a,b)), \\ x_a \geq x_b & \Rightarrow & \rho(G) \leq \rho(G(b,a)), \\ G(a,b)) \cong G(b,a) & \Rightarrow & \rho(G(a,b)) = \rho(G(b,a)). \end{array}$$

Key fact in the above proof

$$G(a, b) \cong G(b, a)$$

Corollary

F

$$\rho(\overline{G}) \le \rho(\overline{G(a, b)})$$

Proof.
$$\rho(\overline{G}) \le \rho(\overline{G}(b, a)) = \rho(\overline{G(a, b)})$$

The above results $\rho(G) \leq \rho(G(a, b))$ and $\rho(\overline{G}) \leq \rho(\overline{G(a, b)})$ are from [Péer Csikvári, On a conjecture of V. Nikiforov, *Discrete Mathematics*, 309(13), 2009, 4522-4526]

A counterexample for digraph transformation

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \rightarrow A' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
unchanged

 $\rho(\mathbf{A}) \approx 2.234 > 2.148 \approx \rho(\mathbf{A}')$

We will define Kelmans transformations for nonnegative matrices.

Let C denote a nonnegative square matrix of order n. For a subset S of $[n] := \{1, 2, ..., n\}$ let C[S] denote the principal submatrix of C restricted to S.

Fix $1 \leq a, b \leq n$.

Kelmans transformation of C from b to a (w.r.t. t_i , s_j)

$$C = \begin{pmatrix} c & d & e & c_{14} & c_{15} \\ f & g & h & c_{24} & c_{25} \\ i & j & k & c_{34} & c_{35} \\ \hline c_{41} & c_{42} & c_{43} & \ell & m \\ c_{51} & c_{52} & c_{53} & n & o \end{pmatrix} \stackrel{>}{b} \ge 0$$

$$\Rightarrow C' = \begin{pmatrix} c & d & e & c_{14} + t_1 & c_{15} - t_1 \\ f & g & h & c_{24} + t_2 & c_{25} - t_2 \\ i & j & k & c_{34} + t_3 & c_{35} - t_3 \\ \hline c_{41} + s_1 & c_{42} + s_2 & c_{43} + s_3 & \ell & m \\ c_{51} - s_1 & c_{52} - s_2 & c_{53} - s_3 & n & o \end{pmatrix} \ge 0,$$

where $c_{ia} + t_i \ge c_{ib} - t_i$ and $c_{aj} + s_j \ge c_{bj} - s_j$.

_

Example

For
$$a = 4, b = 5, t_1 = 1, t_2 = t_3 = 0, s_1 = s_3 = 0, s_2 = 1,$$

$$C = \begin{pmatrix} c & d & e & 0 & 1 \\ f & g & h & 1 & 0 \\ i & j & k & 1 & 1 \\ 1 & 0 & 1 & \ell & m \\ 0 & 1 & 1 & n & o \end{pmatrix} \quad \rightarrow \quad C' = \begin{pmatrix} c & d & e & 1 & 0 \\ f & g & h & 1 & 0 \\ i & j & k & 1 & 1 \\ 1 & 1 & 1 & \ell & m \\ 0 & 0 & 1 & n & o \end{pmatrix}$$

For
$$a = 5, b = 4, t_2 = 1, t_1 = t_3 = 0, s_2 = s_3 = 0, s_1 = 1,$$

$$C = \begin{pmatrix} c & d & e & 0 & 1 \\ f & g & h & 1 & 0 \\ i & j & k & 1 & 1 \\ 1 & 0 & 1 & \ell & m \\ 0 & 1 & 1 & n & o \end{pmatrix} \quad \rightarrow \quad C' = \begin{pmatrix} c & d & e & 0 & 1 \\ f & g & h & 0 & 1 \\ i & j & k & 1 & 1 \\ 0 & 0 & 1 & \ell & m \\ 1 & 1 & 1 & n & o \end{pmatrix} (= C'' \text{ later}).$$

•

C' and C''

Throughout let C' denote the Kelmans transformation of C from b to a with respect to t_i and s_j , and let $C' = (c''_{ij})$ is the Kelmans transformation of C from a to b with respect to $c_{ia} - c_{ib} + t_i$ and $c_{aj} - c_{bj} + s_j$.

Symmetric subgraph

A matrix C is symmetric on $\{a, b\}$ of if the principal submatrix C[a, b] is symmetric with constant diagonals.

Remark: C' is similar to C"

If C is symmetric on $\{a, b\}$, then C' is similar to C''.

$$C' = \begin{pmatrix} c & d & e & c_{14} + t_1 & c_{15} - t_1 \\ f & g & h & c_{24} + t_2 & c_{25} - t_2 \\ i & j & k & c_{34} + t_3 & c_{35} - t_3 \\ \hline c_{41} + s_1 & c_{42} + s_2 & c_{43} + s_3 & s & t \\ c_{51} - s_1 & c_{52} - s_2 & c_{53} - s_3 & t & s \end{pmatrix}$$

$$C'' = \begin{pmatrix} c & d & e & c_{15} - t_1 & c_{14} + t_1 \\ f & g & h & c_{25} - t_2 & c_{24} + t_2 \\ i & j & k & c_{35} - t_3 & c_{34} + t_3 \\ \hline c_{51} - s_1 & c_{52} - s_2 & c_{53} - s_3 & s & t \\ \hline c_{51} - s_1 & c_{52} - s_2 & c_{53} - s_3 & s & t \\ \hline c_{51} - s_1 & c_{52} - s_2 & c_{53} - s_3 & s & t \\ \hline c_{41} + s_1 & c_{42} + s_2 & c_{43} + s_3 & t & s \end{pmatrix}$$

Main result

Theorem

If a nonnegative matrix C is symmetric on $\{a, b\}$, then $\rho(C) \leq \rho(C')$.

For the remaining of the talk, we will prove the above theorem.

Strongly connected

A digraph is strongly connected if for any two vertices x, y there exists a directed path from x to y.

The above digraph is not strongly connected because there is no directed path from 2 to 1.

Digraph associated with a matrix

For an $n \times n$ matrix M, we define a digraph G(M) with vertex set $\{1, 2, ..., n\}$ and edge set

$$E = \{xy \mid M_{xy} \neq 0\}.$$

G(M) is called the digraph associated with M.

Irreducible matrix

A matrix is irreducible if its associated digraph is strongly connected.

The matrix

$$\mathsf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

is reducible since its associated digraph G(A) is not strongly connected.

A fact from linear algebra

A nonnegative irreducible matrix has a positive Perron vector.

The irreducible matrix A^{ϵ}

For a binary matrix $A = (a_{ij})$ and $0 < \epsilon < 1$, define the matrix $A^{\epsilon} = A + \epsilon J$, where J is the matrix with all 1's.

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \Rightarrow \quad A^{\epsilon} = \begin{pmatrix} \epsilon & 1+\epsilon & 1+\epsilon \\ \epsilon & \epsilon & 1+\epsilon \\ \epsilon & 1+\epsilon & \epsilon \end{pmatrix}$$

The idea

Our proof is motivated by the following exercise.

Exercise

Suppose $0 \leq C \leq C'$. Show $\rho(C) \leq \rho(C')$.

Proof.

Let $u^t \ge 0$ be left Perron vector of C for $\rho(C)$ and $v^{\epsilon} > 0$ be right Perron vector of C'^{ϵ} for $\rho(C'^{\epsilon})$. Then

$$\rho(\mathcal{C})\boldsymbol{u}^{t}\boldsymbol{v}^{\epsilon} = \boldsymbol{u}^{t}\mathcal{C}\boldsymbol{v}^{\epsilon} \leq \boldsymbol{u}^{t}\mathcal{C}^{\prime\epsilon}\boldsymbol{v}^{\epsilon} = \rho(\mathcal{C}^{\prime\epsilon})\boldsymbol{u}^{t}\boldsymbol{v}^{\epsilon},$$

which implies $\rho(\mathcal{C}) \leq \rho(\mathcal{C}^{\epsilon})$ since $u^t v^{\epsilon} > 0$. Then by continuity

$$\rho(\mathcal{C}) \leq \lim_{\epsilon \to 0^+} \rho(\mathcal{C}^{\epsilon}) = \rho(\mathcal{C}^{\prime}).$$

The left Perron vector w^t for $\rho(C)$

Let $w^t = (w_i)$ denote the left Perron vector for $\rho(C)$ of C. We will show that

$$\begin{aligned} w_{a} &\geq w_{b} \quad \Rightarrow \quad \rho(\mathcal{C}) \leq \rho(\mathcal{C}'), \\ w_{b} &\geq w_{a} \quad \Rightarrow \quad \rho(\mathcal{C}) \leq \rho(\mathcal{C}') = \rho(\mathcal{C}'). \end{aligned}$$

By symmetric, we might assume $w_a \ge w_b$ and only prove $\rho(C) \le \rho(C)$.

The matrix $Q = I_n - E^{ba}$

Set $v^t = w^t Q$, where $Q = I_n - E^{ba}$ and E^{ba} denote the binary matrix of order *n* with a unique 1 in the position *ba*.

$$v^{t} = (w_{1}, w_{2}, w_{3}, w_{4} - w_{5}, w_{5})$$

$$= (w_{1}, w_{2}, w_{3}, w_{4}, w_{5}) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \stackrel{a}{b}$$

$$= w^{t}Q$$

By the assumption $w_a \ge w_b$, $v^t \ge 0$

 $\mathbf{v}^t \mathbf{Q}^{-1} \mathbf{C} = \mathbf{w}^t \mathbf{C} = \rho(\mathbf{C}) \mathbf{w}^t = \rho(\mathbf{C}) \mathbf{v}^t \mathbf{Q}^{-1}$

$$v^t = w^t Q$$
 and $w^t C = \rho(C) w^t$
 $\Rightarrow v^t Q^{-1} C = \rho(C) v^t Q^{-1}$

$$Q^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}$$

The matrix $Q^{-1}C(Q^{-1})^t$

 $Q^{-1}C(Q^{-1})^t \leq Q^{-1}C^{\epsilon}(Q^{-1})^t$

$$C = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \stackrel{\text{a}}{\text{b}} \rightarrow C' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
$$\Rightarrow \quad Q^{-1}C(Q^{-1})^{t} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 2 \end{pmatrix} \leq \begin{pmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 2 \end{pmatrix} = Q^{-1}C'(Q^{-1})^{t}$$

The right eigenvector vector u^{ϵ} for $\rho(Q^t C^{\epsilon}(Q^t)^{-1})$

Let $u^{\epsilon} \not\leqslant 0$ denote the right eigenvector vector for $\rho(Q^t C'^{\epsilon}(Q^t)^{-1})$.

(C^{ϵ} is positive, but $Q^t C^{\epsilon}(Q^t)^{-1}$ could have some negative entries)

Then

(i)
$$\rho(C^{\epsilon}) = \rho(Q^t C'^{\epsilon}(Q^t)^{-1});$$

(ii) $C'^{\epsilon}(Q^{-1})^t u^{\epsilon} = C'^{\epsilon}(Q^t)^{-1} u^{\epsilon} = \rho(C'^{\epsilon})(Q^t)^{-1} u^{\epsilon} = \rho(C'^{\epsilon})(Q^{-1})^t u^{\epsilon};$
(iii) $(Q^{-1})^t u^{\epsilon} > 0$ is an eigenvector for $\rho(C'^{\epsilon}).$

Right multiplication of u^{ϵ}

$$\mathbf{Q}^{-1}\mathbf{C}(\mathbf{Q}^{-1})^t u^{\epsilon} \leq \mathbf{Q}^{-1}\mathbf{C}^{\prime\epsilon}(\mathbf{Q}^{-1})^t u^{\epsilon} = \rho(\mathbf{C}^{\prime\epsilon})\mathbf{Q}^{-1}(\mathbf{Q}^{-1})^t u^{\epsilon}.$$

Left multiplication of v^t

$$\rho(\mathcal{C})\mathbf{v}^{t}\mathcal{Q}^{-1}(\mathcal{Q}^{-1})^{t}u^{\epsilon} = \mathbf{v}^{t}\mathcal{Q}^{-1}\mathcal{C}(\mathcal{Q}^{-1})^{t}u^{\epsilon} \leq \mathbf{v}^{t}\rho(\mathcal{C}^{\prime\epsilon})\mathcal{Q}^{-1}(\mathcal{Q}^{-1})^{t}u^{\epsilon}.$$

Deleting the positive term $v^t Q^{-1} (Q^{-1})^t u^{\epsilon}$

$$\begin{split} \rho(\mathcal{C}) \mathbf{v}^t \mathcal{Q}^{-1} (\mathcal{Q}^{-1})^t \mathbf{u}^\epsilon &\leq \rho(\mathcal{C}^\epsilon) \mathbf{v}^t \mathcal{Q}^{-1} (\mathcal{Q}^{-1})^t \mathbf{u}^\epsilon \\ \Rightarrow \quad \rho(\mathcal{C}) &\leq \rho(\mathcal{C}'). \end{split}$$

The proof is completed.

Thank you for your attention.