The largest real eigenvalues of nonnegative matrices by applying Kelmans transformations

Chih-wen Weng
(joint work with Louis Kao)
Department of Applied Mathematics
National Chiao Tung University

14:25-15:10, February 23, 2019

Undirected graphs

$$
\begin{aligned}
& V(G)=\{u, v, a, b, c, d\} \\
& E(G)=\{u a, u b, u c, u v, v c, v d\} \\
& N(u)=\{a, b, c, v\} \\
& N(v)=\{u, c, d\} \\
& N[v]=\{u, c, d, v\}
\end{aligned}
$$

2019 Taipei International Workshop on Combinatorics and Graph Theory

Adjacency matrices

Kelmans transformations for undirected graphs

The graph $G(a, b)$ is obtained from G with the same vertex set and replacing edge $a c$ by $b c$ for each $c \in N(a)-N[b]$.

$$
\mathrm{b}\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0
\end{array}\right) \quad \longrightarrow\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

A.K. Kelmans, On graphs with randomly deleted edges, Acta Math. Acad. Sci. Hung. 37 (1981) 77-88.

Remark 1: $G(a, b)$ is isomorphic to $G(b, a)$

\longrightarrow
$G(a, b):$

\longrightarrow

Complement graph

Remark 2: $\bar{G}(b, a)=\overline{G(a, b)}$

$$
\begin{aligned}
& \\
& \mathrm{b}\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0
\end{array}\right) \longrightarrow G(a, b)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
&\left.\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0
\end{array}\right) \longrightarrow \bar{G}(b, a)=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0
\end{array}\right) \\
&=\overline{G(a, b)}
\end{aligned}
$$

Eigenvalues and eigenvectors

Let A be a real square matrix, u is a column vector, λ is a complex number. The number λ is an eigenvalue of A with associated eigenvector u if

$$
A u=\lambda u .
$$

A few facts from linear algebra

(1) An $n \times n$ real symmetric matrix has n real eigenvalues and n corresponding orthonormal eigenvectors.
(2) A nonnegative matrix M has a largest real eigenvalue $\rho(M)$, called the spectral radius of M.
(3) The eigenvalue $\rho(M)$ is associated with a nonnegative eigenvector of length 1, called Perron vector.
(9) All other eigenvalues λ of M satisfy $|\lambda| \leq \rho(M)$.
(3) The spectral radius $\rho(G)$ of a graph G is the largest real eigenvalue of its adjacency matrix $A=A(G)$.

Example

$$
\begin{gathered}
G: \stackrel{.}{a} \cdot \stackrel{\rightharpoonup}{b} \quad A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\sqrt{2} \\
\pm 2 \\
\sqrt{2}
\end{array}\right)= \pm \sqrt{2}\left(\begin{array}{c}
\sqrt{2} \\
\pm 2 \\
\sqrt{2}
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0 .
\end{gathered}
$$

Note that $\frac{1}{2 \sqrt{2}}(\sqrt{2}, 2, \sqrt{2})$ is the Perron vector of A and the three eigenvectors

$$
\frac{1}{2 \sqrt{2}}(\sqrt{2}, 2, \sqrt{2}), \frac{1}{2 \sqrt{2}}(\sqrt{2},-2, \sqrt{2}), \frac{1}{\sqrt{2}}(1,0,-1)
$$

are orthonormal and $\rho(G)=\sqrt{2}$.

Rayleigh quotient for symmetric matrices

Lemma

Let $A=\left(a_{i j}\right)$ be an $n \times n$ symmetric matrix. Then

$$
\rho(A)=\max _{x \neq 0} \frac{x^{t} A x}{x^{t} X} .
$$

Proof.

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be eigenvalues of A with corresponding orthonormal eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. Write $x=\sum_{i=1}^{n} c_{i} x_{i}$, where $\sum_{i=1}^{n} c_{i}^{2}=1$. Then the maximum of

$$
x^{t} A x=\sum_{i=1}^{n} c_{i}^{2} \lambda_{i}
$$

is λ_{1} and is when $x= \pm x_{1}$.

2019 Taipei International Workshop on Combinatorics and Graph Theory

Non-symmetric matrices

$$
\max _{x: x^{t} x=1} x^{t}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x=\max _{\substack{x=(g, b) \\
a^{2}+b^{2}=1}} a b=\frac{1}{2} \neq 0=\rho\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Lemma

Let $x=\left(x_{a}\right)$ be the Perron vector of $A(G)$. Then

$$
x_{b} \geq x_{a} \quad \Rightarrow \quad \rho(G) \leq \rho(G(a, b)) .
$$

Proof.

$$
\begin{aligned}
\rho(G(a, b)) & =\max _{\|y\|_{2}=1} y^{t} A(G(a, b)) y \\
& \geq x^{t} A(G(a, b)) x=\sum_{c d \in E(G(a, b))} x_{c} x_{d} \\
& =\sum_{c d \in E(G)} x_{c} x_{d}+\sum_{e \in N(a)-N[b]} x_{b} x_{e}-x_{a} x_{e} \\
& \geq x^{t} A x=\rho(G)
\end{aligned}
$$

An old result for undirected graphs

Theorem

$$
\rho(G) \leq \rho(G(a, b))
$$

Proof.

Let $x=\left(x_{a}\right)$ be the Perron vector of $A(G)$. Then

$$
\begin{aligned}
x_{b} \geq x_{a} & \Rightarrow \quad \rho(G) \leq \rho(G(a, b)) \\
x_{a} \geq x_{b} & \Rightarrow \quad \rho(G) \leq \rho(G(b, a)), \\
G(a, b)) \cong G(b, a) & \Rightarrow \quad \rho(G(a, b))=\rho(G(b, a)) .
\end{aligned}
$$

Key fact in the above proof

$$
G(a, b) \cong G(b, a)
$$

Corollary

$$
\rho(\bar{G}) \leq \rho(\overline{G(a, b)})
$$

Proof.

$$
\rho(\bar{G}) \leq \rho(\bar{G}(b, a))=\rho(\overline{G(a, b)})
$$

The above results $\rho(G) \leq \rho(G(a, b))$ and $\rho(\bar{G}) \leq \rho(\overline{G(a, b)})$ are from [Péer Csikvári, On a conjecture of V. Nikiforov, Discrete Mathematics, 309(13), 2009, 4522-4526]

2019 Taipei International Workshop on Combinatorics and Graph Theory

A counterexample for digraph transformation

$$
A=\begin{aligned}
& \mathrm{a} \\
& \mathrm{~b}
\end{aligned}\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \rightarrow A^{\prime}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \quad \text { unchanged }
$$

$$
\rho(A) \approx 2.234>2.148 \approx \rho\left(A^{\prime}\right)
$$

We will define Kelmans transformations for nonnegative matrices.

Let C denote a nonnegative square matrix of order n. For a subset S of $[n]:=\{1,2, \ldots, n\}$ let $C[S]$ denote the principal submatrix of C restricted to S.

Fix $1 \leq a, b \leq n$.

2019 Taipei International Workshop on Combinatorics and Graph Theory

Kelmans transformation of C from b to a

(w.r.t. t_{i}, s_{j})

$$
\begin{aligned}
& C=\left(\begin{array}{ccc|cc}
c & d & e & c_{14} & c_{15} \\
f & g & h & c_{24} & c_{25} \\
i & j & k & c_{34} & c_{35} \\
\hline c_{41} & c_{42} & c_{43} & \ell & m \\
c_{51} & c_{52} & c_{53} & n & o
\end{array}\right) \quad \begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\rightarrow \quad C^{\prime}
\end{array} \\
&=\left(\begin{array}{ccc|cc}
c & d & e & c_{14}+t_{1} & c_{15}-t_{1} \\
f & g & h & c_{24}+t_{2} & c_{25}-t_{2} \\
i & j & k & c_{34}+t_{3} & c_{35}-t_{3} \\
\hline c_{41}+s_{1} & c_{42}+s_{2} & c_{43}+s_{3} & \ell & m \\
c_{51}-s_{1} & c_{52}-s_{2} & c_{53}-s_{3} & n & o
\end{array}\right) \geq 0
\end{aligned}
$$

where $c_{i a}+t_{i} \geq c_{i b}-t_{i}$ and $c_{a j}+s_{j} \geq c_{b j}-s_{j}$.

Example

For $a=4, b=5, t_{1}=1, t_{2}=t_{3}=0, s_{1}=s_{3}=0, s_{2}=1$,

$$
C=\left(\begin{array}{lllll}
c & d & e & 0 & 1 \\
f & g & h & 1 & 0 \\
i & j & k & 1 & 1 \\
1 & 0 & 1 & \ell & m \\
0 & 1 & 1 & n & o
\end{array}\right) \quad C^{\prime}=\left(\begin{array}{lllll}
c & d & e & 1 & 0 \\
f & g & h & 1 & 0 \\
i & j & k & 1 & 1 \\
1 & 1 & 1 & \ell & m \\
0 & 0 & 1 & n & o
\end{array}\right)
$$

For $a=5, b=4, t_{2}=1, t_{1}=t_{3}=0, s_{2}=s_{3}=0, s_{1}=1$,

$$
C=\left(\begin{array}{lllll}
c & d & e & 0 & 1 \\
f & g & h & 1 & 0 \\
i & j & k & 1 & 1 \\
1 & 0 & 1 & \ell & m \\
0 & 1 & 1 & n & o
\end{array}\right) \quad \rightarrow \quad C^{\prime}=\left(\begin{array}{lllll}
c & d & e & 0 & 1 \\
f & g & h & 0 & 1 \\
i & j & k & 1 & 1 \\
0 & 0 & 1 & \ell & m \\
1 & 1 & 1 & n & o
\end{array}\right)\left(=C^{\prime \prime} \text { later }\right) .
$$

Throughout let C^{\prime} denote the Kelmans transformation of C from b to a with respect to t_{i} and s_{j}, and let $C^{\prime \prime}=\left(c_{i j}^{\prime \prime}\right)$ is the Kelmans transformation of C from a to b with respect to $c_{i a}-c_{i b}+t_{i}$ and $c_{a j}-c_{b j}+s_{j}$.

Symmetric subgraph

A matrix C is symmetric on $\{a, b\}$ of if the principal submatrix $C[a, b]$ is symmetric with constant diagonals.

Example

The matrix

$$
C=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & s & t \\
0 & 1 & 1 & t & s
\end{array}\right)
$$

is symmetric on $\{4,5\}$.

Remark: C^{\prime} is similar to $C^{\prime \prime}$

If C is symmetric on $\{a, b\}$, then C^{\prime} is similar to $C^{\prime \prime}$.

$$
\begin{aligned}
C & =\left(\begin{array}{ccc|cc}
c & d & e & c_{14}+t_{1} & c_{15}-t_{1} \\
f & g & h & c_{24}+t_{2} & c_{25}-t_{2} \\
i & j & k & c_{34}+t_{3} & c_{35}-t_{3} \\
\hline c_{41}+s_{1} & c_{42}+s_{2} & c_{43}+s_{3} & s & t \\
c_{51}-s_{1} & c_{52}-s_{2} & c_{53}-s_{3} & t & s
\end{array}\right) \\
C^{\prime \prime} & =\left(\begin{array}{ccccc}
c & d & e & c_{15}-t_{1} & c_{14}+t_{1} \\
f & g & h & c_{25}-t_{2} & c_{24}+t_{2} \\
i & j & k & c_{35}-t_{3} & c_{34}+t_{3} \\
\hline c_{51}-s_{1} & c_{52}-s_{2} & c_{53}-s_{3} & s & t \\
c_{41}+s_{1} & c_{42}+s_{2} & c_{43}+s_{3} & t & s
\end{array}\right)
\end{aligned}
$$

Main result

Theorem
 If a nonnegative matrix C is symmetric on $\{a, b\}$, then $\rho(C) \leq \rho\left(C^{\prime}\right)$.

For the remaining of the talk, we will prove the above theorem.

Strongly connected

A digraph is strongly connected if for any two vertices x, y there exists a directed path from x to y.

$$
\begin{aligned}
& V(G)=\{1,2,3\} \\
& E(G)=\{13,12,23,32\}
\end{aligned}
$$

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

The above digraph is not strongly connected because there is no directed path from 2 to 1.

Digraph associated with a matrix

For an $n \times n$ matrix M, we define a digraph $G(M)$ with vertex set $\{1,2, \ldots, n\}$ and edge set

$$
E=\left\{x y \mid M_{x y} \neq 0\right\} .
$$

$G(M)$ is called the digraph associated with M.

$$
M=\left(\begin{array}{ccc}
0 & 0 & -2 \\
3 & 0 & 2 \\
0 & -1 & 0
\end{array}\right) \quad \longrightarrow \quad{ }^{2}
$$

Irreducible matrix

A matrix is irreducible if its associated digraph is strongly connected.

The matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

is reducible since its associated digraph $G(A)$ is not strongly connected.

$$
\begin{aligned}
& V(G(A))=\{1,2,3\} \\
& E(G(A))=\{13,12,23,32\}
\end{aligned}
$$

A fact from linear algebra

A nonnegative irreducible matrix has a positive Perron vector.

The irreducible matrix A^{ϵ}

For a binary matrix $A=\left(a_{i j}\right)$ and $0<\epsilon<1$, define the matrix $A^{\epsilon}=A+\epsilon J$, where J is the matrix with all 1's.

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \Rightarrow \quad A^{\epsilon}=\left(\begin{array}{ccc}
\epsilon & 1+\epsilon & 1+\epsilon \\
\epsilon & \epsilon & 1+\epsilon \\
\epsilon & 1+\epsilon & \epsilon
\end{array}\right)
$$

The idea

Our proof is motivated by the following exercise.

Exercise

Suppose $0 \leq C \leq C^{\prime}$. Show $\rho(C) \leq \rho\left(C^{\prime}\right)$.

Proof.

Let $u^{t} \geq 0$ be left Perron vector of C for $\rho(C)$ and $v^{\epsilon}>0$ be right Perron vector of $C^{\epsilon \epsilon}$ for $\rho\left(C^{\epsilon}\right)$. Then

$$
\rho(C) u^{t} v^{\epsilon}=u^{t} C v^{\epsilon} \leq u^{t} C^{\epsilon \epsilon} v^{\epsilon}=\rho\left(C^{\epsilon}\right) u^{t} v^{\epsilon},
$$

which implies $\rho(C) \leq \rho\left(C^{\epsilon \epsilon}\right)$ since $u^{t} v^{\epsilon}>0$. Then by continuity

$$
\rho(C) \leq \lim _{\epsilon \rightarrow 0^{+}} \rho\left(C^{\epsilon}\right)=\rho\left(C^{\prime}\right) .
$$

The left Perron vector w^{t} for $\rho(C)$

Let $w^{t}=\left(w_{i}\right)$ denote the left Perron vector for $\rho(C)$ of C.
We will show that

$$
\begin{aligned}
& w_{a} \geq w_{b} \quad \Rightarrow \quad \rho(C) \leq \rho\left(C^{\prime}\right) \\
& w_{b} \geq w_{a} \quad \Rightarrow \quad \rho(C) \leq \rho\left(C^{\prime \prime}\right)=\rho\left(C^{\prime}\right)
\end{aligned}
$$

By symmetric, we might assume $w_{a} \geq w_{b}$ and only prove $\rho(C) \leq \rho\left(C^{\prime}\right)$.

The matrix $Q=I_{n}-E^{b a}$

Set $v^{t}=w^{t} Q$, where $Q=I_{n}-E^{b a}$ and $E^{b a}$ denote the binary matrix of order n with a unique 1 in the position ba.

$$
\begin{aligned}
v^{t} & =\left(w_{1}, w_{2}, w_{3}, w_{4}-w_{5}, w_{5}\right) \\
& =\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right) \quad a \\
& =w^{t} Q
\end{aligned}
$$

By the assumption $w_{a} \geq w_{b}, v^{t} \geq 0$

$v^{t} Q^{-1} C=w^{t} C=\rho(C) w^{t}=\rho(C) v^{t} Q^{-1}$

$$
\begin{aligned}
& v^{t}=w^{t} Q \text { and } w^{t} C=\rho(C) w^{t} \\
\Rightarrow \quad & v^{t} Q^{-1} C=\rho(C) v^{t} Q^{-1}
\end{aligned}
$$

$$
Q^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \begin{aligned}
& \\
& a \\
& b
\end{aligned}
$$

2019 Taipei International Workshop on Combinatorics and Graph Theory

The matrix $Q^{-1} C\left(Q^{-1}\right)^{t}$

$$
\begin{aligned}
& Q^{-1} C\left(Q^{-1}\right)^{t} \\
= & \left(\begin{array}{ccc|c}
c_{11} & \cdots & c_{1} n-1 & c_{1 n-1}+c_{1 n} \\
\vdots & & \vdots & \vdots \\
c_{n-11} & \cdots & c_{n-1 n-1} & c_{n-1 n-1}+c_{n-1 n} \\
\hline c_{n-1} 1+c_{n 1} & \cdots & c_{n-1} n-1+c_{n n-1} & c_{n-1 n-1}+c_{n n-1} \\
& & & c_{n-1}+c_{n n}
\end{array}\right)
\end{aligned}
$$

$$
Q^{-1} C\left(Q^{-1}\right)^{t} \leq Q^{-1} C^{\epsilon}\left(Q^{-1}\right)^{t}
$$

$$
\begin{aligned}
& C=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad \mathrm{a} \\
& \mathrm{~b}
\end{aligned} \rightarrow \quad C^{\prime}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

The right eigenvector vector u^{ϵ} for $\rho\left(Q^{t} C^{\epsilon}\left(Q^{t}\right)^{-1}\right)$

Let $u^{\epsilon} \nless 0$ denote the right eigenvector vector for $\rho\left(Q^{t} C^{\epsilon}\left(Q^{t}\right)^{-1}\right)$.
($C^{\epsilon \epsilon}$ is positive, but $Q^{t} C^{\epsilon}\left(Q^{t}\right)^{-1}$ could have some negative entries)
Then
(i) $\rho\left(C^{\prime \epsilon}\right)=\rho\left(Q^{t} C^{\prime \epsilon}\left(Q^{t}\right)^{-1}\right)$;
(ii) $C^{\prime \epsilon}\left(Q^{-1}\right)^{t} u^{\epsilon}=C^{\prime \epsilon}\left(Q^{t}\right)^{-1} u^{\epsilon}=\rho\left(C^{\prime \epsilon}\right)\left(Q^{t}\right)^{-1} u^{\epsilon}=\rho\left(C^{\prime \epsilon}\right)\left(Q^{-1}\right)^{t} u^{\epsilon}$;
(iii) $\left(Q^{-1}\right)^{t} u^{\epsilon}>0$ is an eigenvector for $\rho\left(C^{\epsilon}\right)$.

Right multiplication of u^{ϵ}

$$
Q^{-1} C\left(Q^{-1}\right)^{t} u^{\epsilon} \leq Q^{-1} C^{\epsilon}\left(Q^{-1}\right)^{t} u^{\epsilon}=\rho\left(C^{\epsilon}\right) Q^{-1}\left(Q^{-1}\right)^{t} u^{\epsilon} .
$$

Left multiplication of v^{t}

$$
\rho(C) v^{t} Q^{-1}\left(Q^{-1}\right)^{t} u^{\epsilon}=v^{t} Q^{-1} C\left(Q^{-1}\right)^{t} u^{\epsilon} \leq v^{t} \rho\left(C^{\epsilon}\right) Q^{-1}\left(Q^{-1}\right)^{t} u^{\epsilon} .
$$

Deleting the positive term $v^{t} Q^{-1}\left(Q^{-1}\right)^{t} u^{\epsilon}$

$$
\begin{aligned}
& \rho(C) v^{t} Q^{-1}\left(Q^{-1}\right)^{t} u^{\epsilon} \leq \rho\left(C^{\epsilon}\right) v^{t} Q^{-1}\left(Q^{-1}\right)^{t} u^{\epsilon} \\
\Rightarrow \quad & \rho(C) \leq \rho\left(C^{\prime}\right) .
\end{aligned}
$$

The proof is completed.

Thank you for your attention.

