Reeder＇s puzzle on a tree

Chih－wen Weng（翁志文）

Department of Applied Mathematics，National Chiao Tung University，Taiwan
May 20， 2011

Reeder＇s puzzle on a graph

Reeder＇s puzzle on a graph

（1）Color every vertex of a graph either in black（1）or white（0），called a configuration．

Reeder＇s puzzle on a graph

（1）Color every vertex of a graph either in black（1）or white（0），called a configuration．
（2）A move is to choose a vertex with odd number of black neighbors and change the color of this vertex．

Reeder＇s puzzle on a graph

（1）Color every vertex of a graph either in black（1）or white（0），called a configuration．
（2）A move is to choose a vertex with odd number of black neighbors and change the color of this vertex．
（3）Given two configurations，determine if one configuration can be obtained from the other by a sequence of moves．

Reeder＇s puzzle on a graph

（1）Color every vertex of a graph either in black（1）or white（0），called a configuration．
（2）A move is to choose a vertex with odd number of black neighbors and change the color of this vertex．
（3）Given two configurations，determine if one configuration can be obtained from the other by a sequence of moves．

M．Reeder，Level－two structure of simply－laced Coxeter groups，Journal of Algebra 285 （2005）29－57．

Reeder＇s puzzle on a graph

（1）Color every vertex of a graph either in black（1）or white（0），called a configuration．
（2）A move is to choose a vertex with odd number of black neighbors and change the color of this vertex．
（3）Given two configurations，determine if one configuration can be obtained from the other by a sequence of moves．

M．Reeder，Level－two structure of simply－laced Coxeter groups，Journal of Algebra 285 （2005）29－57．

Matrix modeling

Matrix modeling

（1）Let G be a simple graph with n vertices $1,2, \ldots, n$ ．

Matrix modeling

（1）Let G be a simple graph with n vertices $1,2, \ldots, n$ ．
（2）Let F_{2}^{n} be the set of column vectors（configurations）indexed by the vertices of G ，representing the set of configurations in Reeder＇s puzzle with 1 ＝black， $0=$ white．

Matrix modeling

（1）Let G be a simple graph with n vertices $1,2, \ldots, n$ ．
（2）Let F_{2}^{n} be the set of column vectors（configurations）indexed by the vertices of G ，representing the set of configurations in Reeder＇s puzzle with 1 ＝black， $0=$ white．
（3）Let A be the adjacency matrix of G ，and e_{i} the i－th standard basis of the vector space F_{2}^{n} ．

Matrix modeling

（1）Let G be a simple graph with n vertices $1,2, \ldots, n$ ．
（2）Let F_{2}^{n} be the set of column vectors（configurations）indexed by the vertices of G ，representing the set of configurations in Reeder＇s puzzle with $1=$ black， $0=$ white．
（3）Let A be the adjacency matrix of G ，and e_{i} the i－th standard basis of the vector space F_{2}^{n} ．
（9）For $1 \leq i \leq n$ ，the i－th transvection R_{i} of Γ is defined to be the $n \times n$ matrix $R_{i}=I+e_{i} e_{i}^{t} A$ ．

Matrix modeling

（1）Let G be a simple graph with n vertices $1,2, \ldots, n$ ．
（2）Let F_{2}^{n} be the set of column vectors（configurations）indexed by the vertices of G ，representing the set of configurations in Reeder＇s puzzle with $1=$ black， $0=$ white．
（3）Let A be the adjacency matrix of G ，and e_{i} the i－th standard basis of the vector space F_{2}^{n} ．
（4）For $1 \leq i \leq n$ ，the i－th transvection R_{i} of Γ is defined to be the $n \times n$ matrix $R_{i}=I+e_{i} e_{i}^{t} A$ ．
（5）Note that $R_{i} u=u+e_{i} e_{i}^{t} A u= \begin{cases}u+e_{i}, & \text { if } e_{i}^{t} A u=1 \text { ；} \\ u, & \text { if } e_{i}^{t} A u=0 .\end{cases}$

Matrix modeling

（1）Let G be a simple graph with n vertices $1,2, \ldots, n$ ．
（2）Let F_{2}^{n} be the set of column vectors（configurations）indexed by the vertices of G ，representing the set of configurations in Reeder＇s puzzle with $1=$ black， $0=$ white．
（3）Let A be the adjacency matrix of G ，and e_{i} the i－th standard basis of the vector space F_{2}^{n} ．
（9）For $1 \leq i \leq n$ ，the i－th transvection R_{i} of Γ is defined to be the $n \times n$ matrix $R_{i}=I+e_{i} e_{i}^{t} A$ ．
（5）Note that $R_{i} u=u+e_{i} e_{i}^{t} A u= \begin{cases}u+e_{i}, & \text { if } e_{i}^{t} A u=1 \text { ；} \\ u, & \text { if } e_{i}^{t} A u=0 .\end{cases}$
（0）Hence R_{i} corresponds to the move by selecting vertex i in the Reeder＇s puzzle．

A quadratic form

A quadratic form

（1）Let $q: F_{2}^{n} \rightarrow F_{2}$ be the function defined by

$$
q(u):=\sum_{1 \leq i \leq n} u_{i}^{2}+\sum_{\substack{i<j \\ i \sim j}} u_{i} u_{j}
$$

for $u \in F_{2}^{n}$ ，where $i \sim j$ means that i, j are adjacent in G ．

A quadratic form

（1）Let $q: F_{2}^{n} \rightarrow F_{2}$ be the function defined by

$$
q(u):=\sum_{1 \leq i \leq n} u_{i}^{2}+\sum_{\substack{i<j \\ i \sim j}} u_{i} u_{j}
$$

for $u \in F_{2}^{n}$ ，where $i \sim j$ means that i, j are adjacent in G ．
（2）We call an edge $i j$ in a configuration u black when both of its endpoints i and j are black．

A quadratic form

（1）Let $q: F_{2}^{n} \rightarrow F_{2}$ be the function defined by

$$
q(u):=\sum_{1 \leq i \leq n} u_{i}^{2}+\sum_{\substack{i<j \\ i \sim j}} u_{i} u_{j}
$$

for $u \in F_{2}^{n}$ ，where $i \sim j$ means that i, j are adjacent in G ．
（2）We call an edge $i j$ in a configuration u black when both of its endpoints i and j are black．
（3）Then $q(u)$ is the parity of the number of black vertices plus the number of black edges in u ．

A quadratic form

（1）Let $q: F_{2}^{n} \rightarrow F_{2}$ be the function defined by

$$
q(u):=\sum_{1 \leq i \leq n} u_{i}^{2}+\sum_{\substack{i<j \\ i \sim j}} u_{i} u_{j}
$$

for $u \in F_{2}^{n}$ ，where $i \sim j$ means that i, j are adjacent in G ．
（2）We call an edge $i j$ in a configuration u black when both of its endpoints i and j are black．
（3）Then $q(u)$ is the parity of the number of black vertices plus the number of black edges in u ．
（9）If G is a tree then $q(u)$ is the parity of the number of connected components in the subgraphs induced on the black vertices of u ．

The invariant $q(u)$

（1）If applying a move R_{i} on a configuration u ，the the color of the vertex i is changed iff odd number of edges incident on i are also changed．

The invariant $q(u)$

（1）If applying a move R_{i} on a configuration u ，the the color of the vertex i is changed iff odd number of edges incident on i are also changed．
（2）Then $q\left(R_{i} u\right)=q(u)$ ．

The invariant $q(u)$

（1）If applying a move R_{i} on a configuration u ，the the color of the vertex i is changed iff odd number of edges incident on i are also changed．
（2）Then $q\left(R_{i} u\right)=q(u)$ ．
（3）The invariant property of q has great importance in determining the orbits of the action of the group $<R_{1}, R_{2}, \ldots, R_{n}>$ on F_{2}^{n} ．
$q(u)=1$

Non－degenerate quadratic form q

（1）The quadratic form q is non－degenerated if

$$
q(u+v)=q(v) \text { for all } v \in F_{2}^{n} \quad \Rightarrow \quad u=0 .
$$

Non－degenerate quadratic form q

（1）The quadratic form q is non－degenerated if

$$
q(u+v)=q(v) \quad \text { for all } v \in F_{2}^{n} \quad \Rightarrow \quad u=0
$$

（2）M．Reeder characterized the trees with q non－degenerate：If G is a tree then q is non－degenerate iff G has odd number of matchings of size $\lfloor n / 2\rfloor$ ．

Non－degenerate quadratic form q

（1）The quadratic form q is non－degenerated if

$$
q(u+v)=q(v) \quad \text { for all } v \in F_{2}^{n} \quad \Rightarrow \quad u=0
$$

（2）M．Reeder characterized the trees with q non－degenerate：If G is a tree then q is non－degenerate iff G has odd number of matchings of size $\lfloor n / 2\rfloor$ ．
（3）A special case of a tree G with non－degenerate q is when G has （unique）perfect matching．

Trees with non－degenerate quadratic form q

Trees with degenerate quadratic form q

$$
A_{n}(n \equiv 3(\bmod 4)) \underset{n}{\circ}
$$

By using the non－degenerate property of q ，Reeder proved：

By using the non－degenerate property of q ，Reeder proved：
Theorem
（Mark Reeder，2005）Suppose G is a tree with odd number of matchings of size $\lfloor n / 2\rfloor$ ，but not a path．If O is a Reeder＇s puzzle orbit，then exactly one of the the following（i）－（iii）holds．
（i）$O=\{u\}$ for some $u \in F_{2}^{n}$ with $A u=0$ ；（ O contains a single unmovable configuration）
（ii）$O=\left\{u \in F_{2}^{n} \mid q(u)=1\right\}$ ；
（iii）$O=\left\{u \in F_{2}^{n} \mid A u \neq 0, q(u)=0\right\}$ ．

We prove：

We prove：

Lemma

Let G be a tree with a subgraph E_{6} ．If O is a Reeder＇s puzzle orbit，then exactly one of the the following（i）－（iii）holds．
（i）$O=\{u\}$ for some $u \in F_{2}^{n}$ with $A u=0$ ；
（ii）$O=\left\{u \in F_{2}^{n} \mid q(u)=1\right\}$ ；
（iii）$O=\left\{u \in F_{2}^{n} \mid A u \neq 0, q(u)=0\right\}$ ．

We prove：

Lemma

Let G be a tree with a subgraph E_{6} ．If O is a Reeder＇s puzzle orbit，then exactly one of the the following（i）－（iii）holds．
（i）$O=\{u\}$ for some $u \in F_{2}^{n}$ with $A u=0$ ；
（ii）$O=\left\{u \in F_{2}^{n} \mid q(u)=1\right\}$ ；
（iii）$O=\left\{u \in F_{2}^{n} \mid A u \neq 0, q(u)=0\right\}$ ．

If G is a tree with a subgraph E_{6} then number of black vertices in a movable configuration can be reduced to one or two by a sequence of moves；moreover，the one or two black vertices can be anywhere．

Exercise

$\left\{u \in F_{2}^{7} \mid q(u)=1\right\}$ is not an orbit．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．
（5）By switching colors，can assume $u_{n}=0$ ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．
（5）By switching colors，can assume $u_{n}=0$ ．
（6）Use induction to settle the case when u is movable at some vertex $i \neq n$ ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．
（5）By switching colors，can assume $u_{n}=0$ ．
（0）Use induction to settle the case when u is movable at some vertex $i \neq n$ ．
（3）Can assume that n is the unique vertex that u is movable at n ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．
（5）By switching colors，can assume $u_{n}=0$ ．
（1）Use induction to settle the case when u is movable at some vertex $i \neq n$ ．
（3）Can assume that n is the unique vertex that u is movable at n ．
（8）The case that $G=E_{6}+P_{n-6}+e$ and G is non－degenerate can be done by Reeder＇s result．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．
（5）By switching colors，can assume $u_{n}=0$ ．
（1）Use induction to settle the case when u is movable at some vertex $i \neq n$ ．
（3）Can assume that n is the unique vertex that u is movable at n ．
（8）The case that $G=E_{6}+P_{n-6}+e$ and G is non－degenerate can be done by Reeder＇s result．
（9）The case that $G=E_{6}+P_{n-6}+e$ and G is degenerate can be done by using that 0 is the unique unmovable configuration in $G-n$ ．

Sketch of the Proof

（1）We prove by induction on the number $|V G|$ of vertices in the tree G ．
（2）If $|V G|=6$ ，then $G=E_{6}$ is non－degenerate and the assertion holds by Reeder＇s result．
（3）Suppose $|V G|>6$ and u is a movable configuration in G ．
（9）Then there is a leaf of G not in the subgraph E_{6} ，say n ．
（5）By switching colors，can assume $u_{n}=0$ ．
（1）Use induction to settle the case when u is movable at some vertex $i \neq n$ ．
（3）Can assume that n is the unique vertex that u is movable at n ．
（8）The case that $G=E_{6}+P_{n-6}+e$ and G is non－degenerate can be done by Reeder＇s result．
（9）The case that $G=E_{6}+P_{n-6}+e$ and G is degenerate can be done by using that 0 is the unique unmovable configuration in $G-n$ ．
（10）Can assume there is another leaf outside E_{6} ，say $n-1$ ．

$n, n-1$ ，are leafs not in $E_{6} . n$ is white，and is the unique movable vertex． $n-1$ must be black．Applying the moves by selecting the vertices consecutively along the path from n to $n-1$ ．

$n, n-1$ ，are leafs not in $E_{6} . n$ is white，and is the unique movable vertex． $n-1$ must be black．Applying the moves by selecting the vertices consecutively along the path from n to $n-1$ ．The colors of n and $n-1$ are switched，

$n, n-1$ ，are leafs not in $E_{6} . n$ is white，and is the unique movable vertex． $n-1$ must be black．Applying the moves by selecting the vertices consecutively along the path from n to $n-1$ ．The colors of n and $n-1$ are switched，and a branch vertex z becomes movable，a contradiction．

$n, n-1$ ，are leafs not in $E_{6} . n$ is white，and is the unique movable vertex． $n-1$ must be black．Applying the moves by selecting the vertices consecutively along the path from n to $n-1$ ．The colors of n and $n-1$ are switched，and a branch vertex z becomes movable，a contradiction．

Binary star $P_{t, a, b}, t \geq 3$

Binary star $P_{t, a, b}, t \geq 3$

A tree $T=P_{t, a, b}$ is a binary star if T has a path $1,2, \ldots, t$ from 1 to t with a more vertices $t+1, t+2, \ldots, t+a$ adjacent to 2 ，and b remaining vertices $t+a+1, t+a+2, \ldots, t+a+b$ adjacent to $t-1$ ．Hence $K_{1, a+b+2}:=P_{3, a, b}$ is a star of $3+a+b$ vertices and $P_{t}:=P_{t, 0,0}$ is a path of t vertices．

Figure．The binary star $P_{6,3,1}$ ．

Theorem

（Huang，Lin，W－）Let G be a tree with at least three vertices，but not a binary star．If O is a Reeder＇s puzzle orbit，then exactly one of the the following（i）－（iii）holds．
（i）$O=\{u\}$ for some $u \in F_{2}^{n}$ with $A u=0$ ；
（ii）$O=\left\{u \in F_{2}^{n} \mid q(u)=1\right\}$ ；
（iii）$O=\left\{u \in F_{2}^{n} \mid A u \neq 0, q(u)=0\right\}$ ．
In particular there are $2^{\text {null } A}+2$ orbits，where null A is the nullity of A over F_{2} ．

The standard projection in a binary star $P_{t, a, b}$ ．

Figure．The standard projection $p(u)$ ．
For a configuration $u \in F_{2}^{n}$ of a binary star $P_{t, a, b}$ ，let $c(u)$ denote the number of connected components in the subgraph induced on the black vertices of u ．

The standard projection in a binary star $P_{t, a, b}$ ．

Figure．The standard projection $p(u)$ ．
For a configuration $u \in F_{2}^{n}$ of a binary star $P_{t, a, b}$ ，let $c(u)$ denote the number of connected components in the subgraph induced on the black vertices of u ．

Note that $c(p(u)) \leq\lfloor t / 2\rfloor$ ．

Theorem

（Huang，Lin，W－）Let G be a binary star $P_{t, a, b}$ ．If O is a Reeder＇s puzzle orbit，then exactly one of the following holds．
（1）$|O|=1$ ，i．e．O contains a unique unmovable configuration．
（2）$O=\left\{u \in F_{2}^{n}\right.$ is movable $\left.\mid c(p(u))=i\right\}$ for some integer i with $1 \leq i \leq\lfloor t / 2\rfloor$ ，
where p is the standard projection of configurations in $P_{t, a, b}$ ．In particular there are $2^{a+b}+t / 2$ orbits if t is even，and $2^{a+b+1}+(t-1) / 2$ orbits if t is odd．

Thank you for your attention．

