

Reeder's puzzle on a tree

Chih-wen Weng (翁志文)

Department of Applied Mathematics, National Chiao Tung University, Taiwan

May 20, 2011

Reeder's puzzle on a graph

Reeder's puzzle on a graph

Color every vertex of a graph either in black (1) or white (0), called a configuration.

Reeder's puzzle on a graph

- Color every vertex of a graph either in black (1) or white (0), called a configuration.
- A move is to choose a vertex with odd number of black neighbors and change the color of this vertex.

Reeder's puzzle on a graph

- Color every vertex of a graph either in black (1) or white (0), called a configuration.
- A move is to choose a vertex with odd number of black neighbors and change the color of this vertex.
- Given two configurations, determine if one configuration can be obtained from the other by a sequence of moves.

Reeder's puzzle on a graph

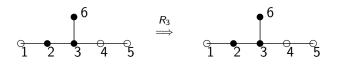
- Color every vertex of a graph either in black (1) or white (0), called a configuration.
- A move is to choose a vertex with odd number of black neighbors and change the color of this vertex.
- Given two configurations, determine if one configuration can be obtained from the other by a sequence of moves.

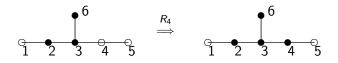
M. Reeder, Level-two structure of simply-laced Coxeter groups, Journal of Algebra 285 (2005) 29-57.

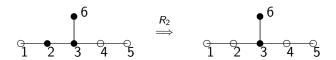
Reeder's puzzle on a graph

- Color every vertex of a graph either in black (1) or white (0), called a configuration.
- A move is to choose a vertex with odd number of black neighbors and change the color of this vertex.
- Given two configurations, determine if one configuration can be obtained from the other by a sequence of moves.

M. Reeder, Level-two structure of simply-laced Coxeter groups, Journal of Algebra 285 (2005) 29-57.







Matrix modeling

• Let G be a simple graph with n vertices $1, 2, \ldots, n$.

- Let G be a simple graph with n vertices $1, 2, \ldots, n$.
- 2 Let F_2^n be the set of column vectors (configurations) indexed by the vertices of G, representing the set of configurations in Reeder's puzzle with 1 = black, 0 = white.

- Let G be a simple graph with n vertices $1, 2, \ldots, n$.
- 2 Let F_2^n be the set of column vectors (configurations) indexed by the vertices of G, representing the set of configurations in Reeder's puzzle with 1 = black, 0 = white.
- Let A be the adjacency matrix of G, and e_i the *i*-th standard basis of the vector space F₂ⁿ.

- Let G be a simple graph with n vertices $1, 2, \ldots, n$.
- Let F_2^n be the set of column vectors (configurations) indexed by the vertices of G, representing the set of configurations in Reeder's puzzle with 1 = black, 0 = white.
- Let A be the adjacency matrix of G, and e_i the *i*-th standard basis of the vector space F₂ⁿ.
- So For 1 ≤ i ≤ n, the *i*-th transvection R_i of Γ is defined to be the n × n matrix R_i = I + e_ie^t_iA.

- Let G be a simple graph with n vertices $1, 2, \ldots, n$.
- Let F₂ⁿ be the set of column vectors (configurations) indexed by the vertices of G, representing the set of configurations in Reeder's puzzle with 1 = black, 0 = white.
- Let A be the adjacency matrix of G, and e_i the i-th standard basis of the vector space F₂ⁿ.
- So For 1 ≤ i ≤ n, the i-th transvection R_i of Γ is defined to be the n × n matrix R_i = I + e_ie^t_iA.

$$\textbf{O} \text{ Note that } R_i u = u + e_i e_i^t A u = \begin{cases} u + e_i, & \text{if } e_i^t A u = 1; \\ u, & \text{if } e_i^t A u = 0. \end{cases}$$

Matrix modeling

- Let G be a simple graph with n vertices $1, 2, \ldots, n$.
- Let F₂ⁿ be the set of column vectors (configurations) indexed by the vertices of G, representing the set of configurations in Reeder's puzzle with 1 = black, 0 = white.
- Let A be the adjacency matrix of G, and e_i the i-th standard basis of the vector space F₂ⁿ.
- So For 1 ≤ i ≤ n, the i-th transvection R_i of Γ is defined to be the n × n matrix R_i = I + e_ie^t_iA.

$$\textbf{O} \text{ Note that } R_i u = u + e_i e_i^t A u = \begin{cases} u + e_i, & \text{if } e_i^t A u = 1; \\ u, & \text{if } e_i^t A u = 0. \end{cases}$$

Hence R_i corresponds to the move by selecting vertex i in the Reeder's puzzle.

A quadratic form

A quadratic form

• Let $q: F_2^n \to F_2$ be the function defined by

$$q(u) := \sum_{1 \le i \le n} u_i^2 + \sum_{i < j \atop i < j} u_i u_j$$

for $u \in F_2^n$, where $i \sim j$ means that i, j are adjacent in G.

A quadratic form

• Let $q: F_2^n \to F_2$ be the function defined by

$$q(u) := \sum_{1 \le i \le n} u_i^2 + \sum_{\substack{i < j \\ i < j}} u_i u_j$$

for $u \in F_2^n$, where $i \sim j$ means that i, j are adjacent in G.

We call an edge *ij* in a configuration *u* black when both of its endpoints *i* and *j* are black.

A quadratic form

• Let $q: F_2^n \to F_2$ be the function defined by

$$q(u) := \sum_{1 \le i \le n} u_i^2 + \sum_{\substack{i < j \\ i < j}} u_i u_j$$

for $u \in F_2^n$, where $i \sim j$ means that i, j are adjacent in G.

- We call an edge *ij* in a configuration *u* black when both of its endpoints *i* and *j* are black.
- Then q(u) is the parity of the number of black vertices plus the number of black edges in u.

A quadratic form

• Let $q: F_2^n \to F_2$ be the function defined by

$$q(u) := \sum_{1 \le i \le n} u_i^2 + \sum_{\substack{i < j \\ i < j}} u_i u_j$$

for $u \in F_2^n$, where $i \sim j$ means that i, j are adjacent in G.

- We call an edge *ij* in a configuration *u* black when both of its endpoints *i* and *j* are black.
- Then q(u) is the parity of the number of black vertices plus the number of black edges in u.
- If G is a tree then q(u) is the parity of the number of connected components in the subgraphs induced on the black vertices of u.

The invariant q(u)

If applying a move R_i on a configuration u, the the color of the vertex i is changed iff odd number of edges incident on i are also changed.

The invariant q(u)

If applying a move R_i on a configuration u, the the color of the vertex i is changed iff odd number of edges incident on i are also changed.

2 Then $q(R_i u) = q(u)$.

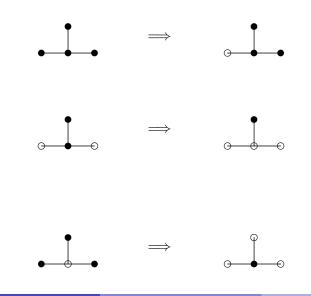
The invariant q(u)

If applying a move R_i on a configuration u, the the color of the vertex i is changed iff odd number of edges incident on i are also changed.

2 Then
$$q(R_i u) = q(u)$$
.

The invariant property of q has great importance in determining the orbits of the action of the group < R₁, R₂,..., R_n > on F₂ⁿ.

q(u) = 1



Non-degenerate quadratic form q

• The quadratic form q is **non-degenerated** if

$$q(u+v)=q(v)$$
 for all $v\in F_2^n$ \Rightarrow $u=0.$

Non-degenerate quadratic form q

• The quadratic form q is **non-degenerated** if

$$q(u+v)=q(v)$$
 for all $v\in F_2^n$ \Rightarrow $u=0.$

M. Reeder characterized the trees with q non-degenerate: If G is a tree then q is non-degenerate iff G has odd number of matchings of size \[n/2 \].

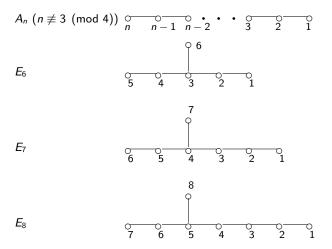
Non-degenerate quadratic form q

The quadratic form q is non-degenerated if

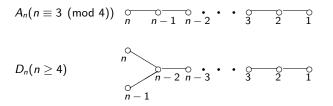
$$q(u+v)=q(v)$$
 for all $v\in F_2^n$ \Rightarrow $u=0.$

- M. Reeder characterized the trees with q non-degenerate: If G is a tree then q is non-degenerate iff G has odd number of matchings of size [n/2].
- A special case of a tree G with non-degenerate q is when G has (unique) perfect matching.

Trees with non-degenerate quadratic form q



Trees with degenerate quadratic form q



By using the non-degenerate property of q, Reeder proved:

By using the non-degenerate property of q, Reeder proved:

Theorem

(Mark Reeder, 2005) Suppose G is a tree with odd number of matchings of size $\lfloor n/2 \rfloor$, but not a path. If O is a Reeder's puzzle orbit, then exactly one of the the following (i)-(iii) holds.

(i) $O = \{u\}$ for some $u \in F_2^n$ with Au = 0; (O contains a single unmovable configuration)

(ii)
$$O = \{ u \in F_2^n \mid q(u) = 1 \};$$

(iii)
$$O = \{ u \in F_2^n \mid Au \neq 0, q(u) = 0 \}.$$

We prove:

We prove:

Lemma

Let G be a tree with a subgraph E_6 . If O is a Reeder's puzzle orbit, then exactly one of the the following (i)-(iii) holds.

(i)
$$O = \{u\}$$
 for some $u \in F_2^n$ with $Au = 0$,

(ii)
$$O = \{ u \in F_2^n \mid q(u) = 1 \};$$

(iii)
$$O = \{ u \in F_2^n \mid Au \neq 0, q(u) = 0 \}.$$

We prove:

Lemma

Let G be a tree with a subgraph E_6 . If O is a Reeder's puzzle orbit, then exactly one of the the following (i)-(iii) holds.

(i)
$$O = \{u\}$$
 for some $u \in F_2^n$ with $Au = 0$,

(ii)
$$O = \{ u \in F_2^n \mid q(u) = 1 \};$$

(iii)
$$O = \{ u \in F_2^n \mid Au \neq 0, q(u) = 0 \}.$$

If G is a tree with a subgraph E_6 then number of black vertices in a movable configuration can be reduced to one or two by a sequence of moves; moreover, the one or two black vertices can be anywhere.

Exercise

$\{u \in F_2^7 \mid q(u) = 1\}$ is not an orbit.

Sketch of the Proof

() We prove by induction on the number |VG| of vertices in the tree *G*.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- 3 If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.
- Solution By switching colors, can assume $u_n = 0$.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.
- Solution By switching colors, can assume $u_n = 0$.
- Use induction to settle the case when u is movable at some vertex $i \neq n$.

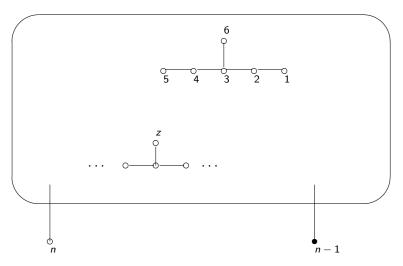
- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.
- Solution By switching colors, can assume $u_n = 0$.
- Use induction to settle the case when u is movable at some vertex $i \neq n$.
- O Can assume that *n* is the unique vertex that *u* is movable at *n*.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.
- Solution By switching colors, can assume $u_n = 0$.
- Use induction to settle the case when u is movable at some vertex $i \neq n$.
- O Can assume that *n* is the unique vertex that *u* is movable at *n*.
- The case that $G = E_6 + P_{n-6} + e$ and G is non-degenerate can be done by Reeder's result.

- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.
- Solution By switching colors, can assume $u_n = 0$.
- Use induction to settle the case when u is movable at some vertex $i \neq n$.
- **(2)** Can assume that n is the unique vertex that u is movable at n.
- The case that $G = E_6 + P_{n-6} + e$ and G is non-degenerate can be done by Reeder's result.
- The case that $G = E_6 + P_{n-6} + e$ and G is degenerate can be done by using that 0 is the unique unmovable configuration in G - n.

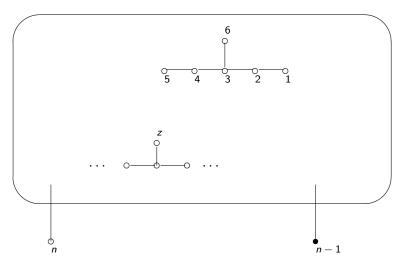
- **(**) We prove by induction on the number |VG| of vertices in the tree G.
- If |VG| = 6, then $G = E_6$ is non-degenerate and the assertion holds by Reeder's result.
- Suppose |VG| > 6 and u is a movable configuration in G.
- Then there is a leaf of G not in the subgraph E_6 , say n.
- Solution By switching colors, can assume $u_n = 0$.
- Use induction to settle the case when u is movable at some vertex $i \neq n$.
- **(2)** Can assume that n is the unique vertex that u is movable at n.
- The case that $G = E_6 + P_{n-6} + e$ and G is non-degenerate can be done by Reeder's result.
- The case that $G = E_6 + P_{n-6} + e$ and G is degenerate can be done by using that 0 is the unique unmovable configuration in G - n.
- **(**) Can assume there is another leaf outside E_6 , say n 1.

2011 ICDMEC



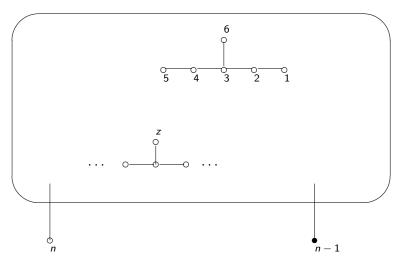
n, n - 1, are leafs not in E_6 . *n* is white, and is the unique movable vertex.

2011 ICDMEC



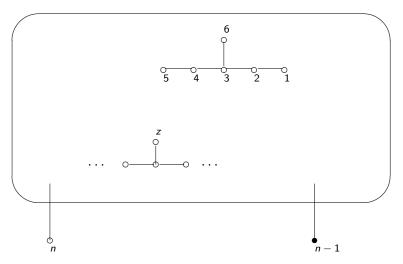
n, n-1, are leafs not in E_6 . n is white, and is the unique movable vertex. n-1 must be black.

2011 ICDMEC



n, n-1, are leafs not in E_6 . n is white, and is the unique movable vertex. n-1 must be black. Applying the moves by selecting the vertices consecutively along the path from n to n-1.

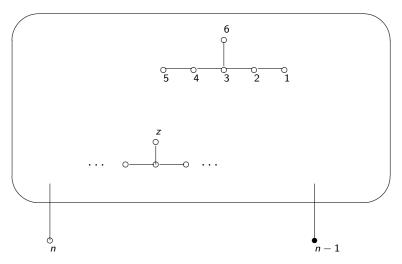
2011 ICDMEC



n, n-1, are leafs not in E_6 . n is white, and is the unique movable vertex. n-1 must be black. Applying the moves by selecting the vertices consecutively along the path from n to n-1. The colors of n and n-1 are switched,

翁志文 (Dep. of A. Math., NCTU, Taiwan)

2011 ICDMEC

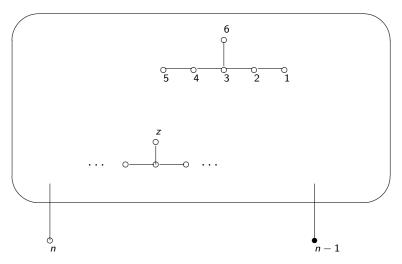


n, n-1, are leafs not in E_6 . n is white, and is the unique movable vertex. n-1 must be black. Applying the moves by selecting the vertices consecutively along the path from n to n-1. The colors of n and n-1are switched, and a branch vertex z becomes movable, a contradiction.

翁志文 (Dep. of A. Math., NCTU, Taiwan)

Reeder's puzzle on a tree

2011 ICDMEC



n, n-1, are leafs not in E_6 . n is white, and is the unique movable vertex. n-1 must be black. Applying the moves by selecting the vertices consecutively along the path from n to n-1. The colors of n and n-1are switched, and a branch vertex z becomes movable, a contradiction.

翁志文 (Dep. of A. Math., NCTU, Taiwan)

Reeder's puzzle on a tree

Binary star $P_{t,a,b}$, $t \geq 3$

Binary star $P_{t,a,b}$, $t \geq 3$

A tree $T = P_{t,a,b}$ is a *binary star* if T has a path $1, 2, \ldots, t$ from 1 to t with a more vertices $t + 1, t + 2, \ldots, t + a$ adjacent to 2, and b remaining vertices $t + a + 1, t + a + 2, \ldots, t + a + b$ adjacent to t - 1. Hence $K_{1,a+b+2} := P_{3,a,b}$ is a *star* of 3 + a + b vertices and $P_t := P_{t,0,0}$ is a path of t vertices.

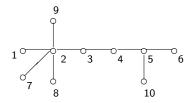


Figure. The binary star $P_{6,3,1}$.

Theorem

(Huang, Lin, W-) Let G be a tree with at least three vertices, but not a binary star. If O is a Reeder's puzzle orbit, then exactly one of the the following (i)-(iii) holds.

(i)
$$O = \{u\}$$
 for some $u \in F_2^n$ with $Au = 0$;

(ii)
$$O = \{ u \in F_2^n \mid q(u) = 1 \};$$

(iii)
$$O = \{ u \in F_2^n \mid Au \neq 0, q(u) = 0 \}.$$

In particular there are $2^{\text{null } A} + 2$ orbits, where null A is the nullity of A over F_2 .

The standard projection in a binary star $P_{t,a,b}$.

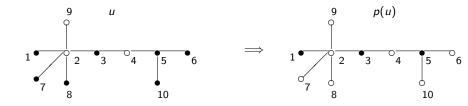


Figure. The standard projection p(u).

For a configuration $u \in F_2^n$ of a binary star $P_{t,a,b}$, let c(u) denote the number of connected components in the subgraph induced on the black vertices of u.

The standard projection in a binary star $P_{t,a,b}$.

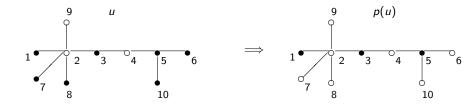


Figure. The standard projection p(u).

For a configuration $u \in F_2^n$ of a binary star $P_{t,a,b}$, let c(u) denote the number of connected components in the subgraph induced on the black vertices of u.

Note that $c(p(u)) \leq \lfloor t/2 \rfloor$.

Theorem

(Huang, Lin, W-) Let G be a binary star $P_{t,a,b}$. If O is a Reeder's puzzle orbit, then exactly one of the following holds.

- **(**) |O| = 1, *i.e.* O contains a unique unmovable configuration.
- ② $O = \{u \in F_2^n \text{ is movable } | c(p(u)) = i\}$ for some integer *i* with 1 ≤ *i* ≤ $\lfloor t/2 \rfloor$,

where p is the standard projection of configurations in $P_{t,a,b}$. In particular there are $2^{a+b} + t/2$ orbits if t is even, and $2^{a+b+1} + (t-1)/2$ orbits if t is odd.

Thank you for your attention.