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Reeder’s puzzle on a graph

1 Color every vertex of a graph either in black (1) or white (0), called a
configuration.

2 A move is to choose a vertex with odd number of black neighbors and
change the color of this vertex.

3 Given two configurations, determine if one configuration can be
obtained from the other by a sequence of moves.

M. Reeder, Level-two structure of simply-laced Coxeter groups, Journal of
Algebra 285 (2005) 29-57.
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Matrix modeling

1 Let G be a simple graph with n vertices 1, 2, . . . , n.

2 Let F n
2 be the set of column vectors (configurations) indexed by the

vertices of G , representing the set of configurations in Reeder’s puzzle
with 1 = black, 0 = white.

3 Let A be the adjacency matrix of G , and ei the i-th standard basis of
the vector space F n

2 .

4 For 1 ≤ i ≤ n, the i-th transvection Ri of Γ is defined to be the
n × n matrix Ri = I + eie

t
i A.

5 Note that Riu = u + eie
t
i Au =

{
u + ei , if et

i Au = 1;
u, if et

i Au = 0.

6 Hence Ri corresponds to the move by selecting vertex i in the
Reeder’s puzzle.
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A quadratic form

1 Let q : F n
2 → F2 be the function defined by

q(u) :=
∑

1≤i≤n

u2
i +

∑
i<j
i∼j

uiuj

for u ∈ F n
2 , where i ∼ j means that i , j are adjacent in G .

2 We call an edge ij in a configuration u black when both of its
endpoints i and j are black.

3 Then q(u) is the parity of the number of black vertices plus the
number of black edges in u.

4 If G is a tree then q(u) is the parity of the number of connected
components in the subgraphs induced on the black vertices of u.
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The invariant q(u)

1 If applying a move Ri on a configuration u, the the color of the vertex
i is changed iff odd number of edges incident on i are also changed.

2 Then q(Riu) = q(u).

3 The invariant property of q has great importance in determining the
orbits of the action of the group < R1, R2, . . . , Rn > on F n

2 .
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q(u) = 1

t t tt
=⇒ d t tt

d t dt
=⇒ d d dt

t d tt
=⇒ d t dd
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Non-degenerate quadratic form q

1 The quadratic form q is non-degenerated if

q(u + v) = q(v) for all v ∈ F n
2 ⇒ u = 0.

2 M. Reeder characterized the trees with q non-degenerate: If G is a
tree then q is non-degenerate iff G has odd number of matchings of
size bn/2c.

3 A special case of a tree G with non-degenerate q is when G has
(unique) perfect matching.
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Trees with non-degenerate quadratic form q

An (n 6≡ 3 (mod 4)) c c c q q q c c c
n n − 1 n − 2 3 2 1

E6 c c c c c
c

5 4 3 2 1

6

E7 c c c c c
c

c
6 5 4 3 2

7

1

E8 c c c c c
c

c c
7 6 5 4 3

8

2 1
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Trees with degenerate quadratic form q

An(n ≡ 3 (mod 4)) c c c q q q c c c
n n − 1 n − 2 3 2 1

Dn(n ≥ 4) c
c c c q q q c c c
"
""

b
b

n − 1

n

n − 2 n − 3 3 2 1
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By using the non-degenerate property of q, Reeder proved:

Theorem

(Mark Reeder, 2005) Suppose G is a tree with odd number of matchings
of size bn/2c, but not a path. If O is a Reeder’s puzzle orbit, then exactly
one of the the following (i)-(iii) holds.

(i) O = {u} for some u ∈ F n
2 with Au = 0; (O contains a single

unmovable configuration)

(ii) O = {u ∈ F n
2 | q(u) = 1};

(iii) O = {u ∈ F n
2 | Au 6= 0, q(u) = 0}.
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We prove:

Lemma

Let G be a tree with a subgraph E6. If O is a Reeder’s puzzle orbit, then
exactly one of the the following (i)-(iii) holds.

(i) O = {u} for some u ∈ F n
2 with Au = 0;

(ii) O = {u ∈ F n
2 | q(u) = 1};

(iii) O = {u ∈ F n
2 | Au 6= 0, q(u) = 0}.

If G is a tree with a subgraph E6 then number of black vertices in a
movable configuration can be reduced to one or two by a sequence of
moves; moreover, the one or two black vertices can be anywhere.
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Exercise

s c s c s
c

c
6 5 4 3 2

7

1

{u ∈ F 7
2 | q(u) = 1} is not an orbit.
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Sketch of the Proof

1 We prove by induction on the number |VG | of vertices in the tree G .

2 If |VG | = 6, then G = E6 is non-degenerate and the assertion holds
by Reeder’s result.

3 Suppose |VG | > 6 and u is a movable configuration in G .

4 Then there is a leaf of G not in the subgraph E6, say n.

5 By switching colors, can assume un = 0.

6 Use induction to settle the case when u is movable at some vertex
i 6= n.

7 Can assume that n is the unique vertex that u is movable at n.

8 The case that G = E6 + Pn−6 + e and G is non-degenerate can be
done by Reeder’s result.

9 The case that G = E6 + Pn−6 + e and G is degenerate can be done
by using that 0 is the unique unmovable configuration in G − n.

10 Can assume there is another leaf outside E6, say n − 1.
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9 The case that G = E6 + Pn−6 + e and G is degenerate can be done
by using that 0 is the unique unmovable configuration in G − n.

10 Can assume there is another leaf outside E6, say n − 1.
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n, n − 1, are leafs not in E6. n is white, and is the unique movable vertex.

n − 1 must be black. Applying the moves by selecting the vertices

consecutively along the path from n to n − 1. The colors of n and n − 1

are switched, and a branch vertex z becomes movable, a contradiction.
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Binary star Pt,a,b, t ≥ 3

A tree T = Pt,a,b is a binary star if T has a path 1, 2, . . . , t from 1 to t
with a more vertices t + 1, t + 2, . . . , t + a adjacent to 2, and b remaining
vertices t + a + 1, t + a + 2, . . . , t + a + b adjacent to t − 1. Hence
K1,a+b+2 := P3,a,b is a star of 3 + a + b vertices and Pt := Pt,0,0 is a path
of t vertices.
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Figure. The binary star P6,3,1.
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Theorem

(Huang, Lin, W-) Let G be a tree with at least three vertices, but not a
binary star. If O is a Reeder’s puzzle orbit, then exactly one of the the
following (i)-(iii) holds.

(i) O = {u} for some u ∈ F n
2 with Au = 0;

(ii) O = {u ∈ F n
2 | q(u) = 1};

(iii) O = {u ∈ F n
2 | Au 6= 0, q(u) = 0}.

In particular there are 2null A + 2 orbits, where null A is the nullity of A
over F2.
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The standard projection in a binary star Pt,a,b.
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Figure. The standard projection p(u).

For a configuration u ∈ F n
2 of a binary star Pt,a,b, let c(u) denote the

number of connected components in the subgraph induced on the black
vertices of u.

Note that c(p(u)) ≤ bt/2c.
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Theorem

(Huang, Lin, W-) Let G be a binary star Pt,a,b. If O is a Reeder’s puzzle
orbit, then exactly one of the following holds.

1 |O| = 1, i.e. O contains a unique unmovable configuration.

2 O = {u ∈ F n
2 is movable | c(p(u)) = i} for some integer i with

1 ≤ i ≤ bt/2c,
where p is the standard projection of configurations in Pt,a,b. In particular
there are 2a+b + t/2 orbits if t is even, and 2a+b+1 + (t − 1)/2 orbits if t
is odd.
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Thank you for your attention.
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