An introduction to Hamiltonian Graph Theory (Exercise)

Louis Kao

Department of Applied Mathematics, National Chiao Tung University

If *n* points are placed in a plane with pairwise distances at least 1, then there are at most 3n unordered pairs of points at distance exactly 1.

Proof.

Let G be a graph with the n points as vertices and two vertices are adjacent if they have distance 1. Since there are at most 6 points in a unit circle with pairwise distances at least 1, G has maximum degree at most 6 Thus

$$2|\mathsf{E}(\mathsf{G})| = \sum_{x \in \mathsf{V}(\mathsf{G})} \deg(x) \le 6n,$$

so $|E(G)| \leq 3n$ as desired.

Let *G* be a graph with vertex set $V(G) = \{1, 2, ..., n\}$ and $E(G) = \{ij : 0 < |i-j| \le 2 \pmod{n}\}$. Show that if $n \ge 5$, then the edges of *G* can be partitioned into two Hamiltonian cycles.

Proof.

If we use (1, 2, ..., n, 1) as the first Hamiltonian cycle, then the remaining edges also form a Hamiltonian cycle (1, 3, ..., n, 2, 4, ..., n - 1, 1) when n is odd. However, if n is even, the remaining edges form two cycles so we need to make a switch. In this case, we replace the two edges (1, 2), (n - 1, n) by (n - 1, 1), (n, 2) in the first cycle. Now the remaining edges form a Hamiltonian cycle.

If *T* is a tree and *G* is a graph such that $G\Box T$ is Hamiltonian, then $|V(G)| \ge \Delta(T)$.

Proof.

If $\Delta(T) = \deg(s)$ and $G\Box T$ is Hamiltonian then

$$|V(G)| = |V(G \square \{s\})| \ge c(G \square T - G \square \{s\}) = \Delta(T).$$

The graph $P_3 \Box \mathcal{K}_{1,4}$ with $|\mathcal{V}(P_3)| = 3 < 4 = |\Delta(\mathcal{K}_{1,4})|$.

Suppose $|E(G)| \ge \binom{n-1}{2} + 2$, where $n \ge 3$. Show that G is Hamiltonian.

Proof.

(Method 1) Suppose G is not Hamiltonian with degree sequence $d_1 \leq d_2 \leq \cdots \leq d_n$. Then $d_i \leq i$ and $d_{n-i} \leq n-i-1$ for some i < n/2 by Chvátal Theorem. Hence

$$|E(G)| = \frac{1}{2} \left(\sum_{j=1}^{n} d_j \right)$$

$$\leq \frac{1}{2} \left(\underbrace{i + \dots + i}_{i} + \underbrace{(n-i-1) + \dots + (n-i-1)}_{n-2i} + \underbrace{n-1 + \dots + n-1}_{i} \right)$$

$$\leq \binom{n-1}{2} + 1.$$

Proof (Method 2)

For any two non-adjacent vertices u, v, the graph G' induced on $V(G) - \{u, v\}$ have size at most $\binom{n-1}{2}$. Hence

$$\deg(u) + \deg(v) \ge |\mathsf{E}(\mathsf{G})| - \binom{n-2}{2} \ge \binom{n-1}{2} + 2 - \binom{n-2}{2} = n.$$

By Ore Theorem, G is Hamiltonian.

Proof (Method 3, without quoting theorems)

We prove by induction on *n*. If n = 3 then |E(G)| = 3 and $G = C_3$ is Hamiltonian.

Claim. If $G \neq K_n$ then there exists a vertex x with $n/2 \leq \deg(x) \leq n-2$. **Proof of Claim.** If there are $k \leq n-1$ vertices of degree n-1 and the remaining n-k vertices have degree at most n/2, then $k \leq n/2$ and

$$[k(n-1) + (n-k)n/2]/2 \ge |E(G)| \ge {n-1 \choose 2} + 2,$$

a contradiction.

If $G = K_n$ then G is Hamiltonian. Suppose $G \neq K_n$. Use Claim to pick a vertex x with $n/2 \leq \deg(x) \leq n-2$. Thus $|E(G-x)| \geq \binom{n-2}{2} + 2$. By induction G - x has a Hamiltonian cycle C. Since $n/2 \leq \deg(x) \leq n-2$ and C has n-1 vertices, two adjacent vertices y, z in C are neighbors of x. Then $E(C) \cup \{xy, xz\} - \{yz\}$ is a Hamiltonian cycle of G.

"If a simple graph G of order n contains two nonadjacent vertices whose degrees sum is at least n then G is Hamiltonian." Find a counterexample of the above statement.

Solution. A counter-example is *G* with $V(G) = \{1, 2, 3, 4, 5\}$ and $E(G) = \{12, 23, 34, 41, 15\}$. Note that 1 and 3 are not adjacent with $\deg(1) + \deg(3) = 5 = |V(G)|$, but *G* is not hamiltonian since $\deg(5) = 1$.

Find the first mistake in the following proof of the statement "If a simple graph G of order n contains two nonadjacent vertices whose degrees sum is at least n then G is Hamiltonian."

Wrong Proof.

- (i) If the statement is false then there is a counter-example G with maximal number of edges.
- (ii) There are two nonadjacent vertices u, v in G whose degrees sum is at least n.
- (iii) Since G + uv is not a counter-example, it is Hamiltonian,
- (iv) so we have a Hamiltonian path $u = u_1, \ldots, u_n = v$ in G.
- (v) Then uu_{i+1} and u_iv are edges for some $1 \le i \le n-1$.
- (vi) Hence $u_1, u_{i+1}, u_{i+2}, \dots, u_n, u_i, u_{i-1}, \dots, u_1$ is a Hamiltonian cycle.

Solution

(iii) is a mistake since the assumption that *G* is a counter-example with maximal number of edges does not imply G + uv is Hamiltonian. For example, A maximal counter-example is *G* with $V(G) = \{1, 2, 3, 4, 5\}$ and $EG = \{12, 23, 34, 41, 24, 15\}$. *G* is a maximal counter-example since the only possible non adjacent vertices in G + 13 are 5, *i* with $i \neq 1$ and $\deg(5) + \deg(i) = 4 < 5 = |V(G + 13)|$. *G* satisfies the assumption since u = 1 and v = 3 are not adjacent in *G* with $\deg(u) + \deg(v) = 5 = |V(G)|$. G + 13 is not hamiltonian since $\deg(5) = 1$ in G + 13.

A connected and locally (k-1)-connected graph G is k-connected.

Proof.

Assume *G* is not *k*-connected. Pick a subset $S \subseteq VG$ of minimal size such that G-S is disconnected. Then $|S| \leq k-1$. Pick $v \in S$. Since G-(S-v) is connected, there exist $u, w \in G_1(v)$ in different components of G-S. Then u, w are in different components of $G_1(v) \cap S$, a contradiction.

On a chessboard, a knight can move from one square to another if they differ by 1 in one coordinate and 2 by another. A knight-tour is a path that a knight visiting every single square exactly once and return to the starting square. Show that a 4-by-*n* chessboard contains no knight-tour for all *n*.

Proof.

First we color the squares by black and white alternately. Note that a knight can move to a black square only from a white square and vice versa. Now if we delete all n black squares from the middle two lines, the n white squares on the first and fourth line becomes n isolated square. Therefore

$$|c(G-S)| \ge n+1 > n = |S|,$$

which implies a spanning cycle does not exist.

Let *H* denote a 2-connected and non-hamiltonian graph. Then *H* contains a subdivision of $K_{3,2}$.

Proof.

Let *C* be a cycle of maximum length in *H*, and *yx* be an edge with $x \in C$ and $y \notin C$. Let *xz* and *xu* be edges in *C*. The 2-connected assumption of *H* implies a cycle C_1 containing the two edges *yx* and *xz*. If *C* and C_1 only intersect in the edge *xz*, by joining the two paths in *C* and C_1 without the common edge *xz*, we will have a cycle of length greater than the length of *C*, a contradiction. Assume besides the edge *xz*, *C* and C_1 intersect at a third vertex. Let *v* be the first vertex in *C* from *y* along a path *P* as a portion of C_1 not containing the edge *xz*. Note that $v \neq u$; otherwise we have a longer cycle by replacing the edge *ux* by the path *P* and edge *yx*. Then the edge *xy*, and the edges in *P* and *C* form a subdivision of $K_{3,2}$.

If H is a graph that does not contain a subdivision of $K_{3,2}$, then the following are equivalent.

- (i) *H* is hamiltonian.
- (ii) H is 1-tough.
- (iii) *H* is 2-connected.

Proof.

The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are clear. To prove (iii) \Rightarrow (i), let H be 2-connected and do not contain a subdivision of $K_{3,2}$. Applying last Exercise, we known H is hamiltonian.

If G is a planar, then the following are equivalent.

- (i) G is locally hamiltonian.
- (ii) *G* is locally 1-tough.
- (iii) G is locally 2-connected.

Proof.

Let $x \in VG$ and apply the subgraph $H = G_1(x)$ to the previous Exercise. Note that $G_1(x)$ does not contain a subdivision of $K_{3,2}$ since $\{x\} \cup G_1(x)$ does not contain a subdivision of $K_{3,3}$.