An introduction to Hamiltonian Graph Theory （Exercise）

Louis Kao
Department of Applied Mathematics，National Chiao Tung University

Exercise 1

If n points are placed in a plane with pairwise distances at least 1 ， then there are at most $3 n$ unordered pairs of points at distance exactly 1 ．

Proof．

Let G be a graph with the n points as vertices and two vertices are adjacent if they have distance 1 ．Since there are at most 6 points in a unit circle with pairwise distances at least $1, G$ has maximum degree at most 6 Thus

$$
2|E(G)|=\sum_{x \in V(G)} \operatorname{deg}(x) \leq 6 n
$$

so $|E(G)| \leq 3 n$ as desired．

Exercise 2

Let G be a graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and $E(G)=\{i j: 0<|i-j| \leq 2(\bmod n)\}$ ．Show that if $n \geq 5$ ，then the edges of G can be partitioned into two Hamiltonian cycles．

Proof．

If we use $(1,2, \ldots, \boldsymbol{n}, 1)$ as the first Hamiltonian cycle，then the remaining edges also form a Hamiltonian cycle $(1,3, \ldots, n, 2,4, \ldots, n-1,1)$ when n is odd．However，if n is even，the remaining edges form two cycles so we need to make a switch．In this case，we replace the two edges $(1,2),(n-1, n)$ by $(n-1,1),(n, 2)$ in the first cycle．Now the remaining edges form a Hamiltonian cycle．

Exercise 3

If T is a tree and G is a graph such that $G \square T$ is Hamiltonian，then $|V(G)| \geq \Delta(T)$ ．

Proof．

If $\Delta(T)=\operatorname{deg}(s)$ and $G \square T$ is Hamiltonian then

$$
|V(G)|=|V(G \square\{s\})| \geq c(G \square T-G \square\{s\})=\Delta(T) .
$$

The graph $P_{3} \square K_{1,4}$ with $\left|V\left(P_{3}\right)\right|=3<4=\left|\Delta\left(K_{1,4}\right)\right|$ ．

Exercise 4

Suppose $|E(G)| \geq\binom{ n-1}{2}+2$ ，where $n \geq 3$ ．Show that G is Hamiltonian．

Proof．

（Method 1）Suppose G is not Hamiltonian with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ ．Then $d_{i} \leq i$ and $d_{n-i} \leq n-i-1$ for some $i<n / 2$ by Chvátal Theorem．Hence

$$
\begin{aligned}
|E(G)| & =\frac{1}{2}\left(\sum_{j=1}^{n} d_{j}\right) \\
& \leq \frac{1}{2}(\underbrace{i+\cdots+i}_{i}+\underbrace{(n-i-1)+\cdots+(n-i-1)}_{n-2 i}+\underbrace{n-1+\cdots+n-1}_{i}) \\
& \leq\binom{ n-1}{2}+1 .
\end{aligned}
$$

Proof（Method 2）

For any two non－adjacent vertices u, v ，the graph G^{\prime} induced on $V(G)-\{u, v\}$ have size at most $\binom{n-1}{2}$ ．Hence

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geq|E(G)|-\binom{n-2}{2} \geq\binom{ n-1}{2}+2-\binom{n-2}{2}=n .
$$

By Ore Theorem，G is Hamiltonian．

Proof（Method 3，without quoting theorems）

We prove by induction on n ．If $n=3$ then $|E(G)|=3$ and $G=C_{3}$ is Hamiltonian．

Claim．If $G \neq K_{n}$ then there exists a vertex x with $n / 2 \leq \operatorname{deg}(x) \leq n-2$ ． Proof of Claim．If there are $k \leq n-1$ vertices of degree $n-1$ and the remaining $n-k$ vertices have degree at most $n / 2$ ，then $k \leq n / 2$ and

$$
[k(n-1)+(n-k) n / 2] / 2 \geq|E(G)| \geq\binom{ n-1}{2}+2
$$

a contradiction．
If $G=K_{n}$ then G is Hamiltonian．Suppose $G \neq K_{n}$ ．Use Claim to pick a vertex x with $n / 2 \leq \operatorname{deg}(x) \leq n-2$ ．Thus $|E(G-x)| \geq\binom{ n-2}{2}+2$ ．By induction $G-x$ has a Hamiltonian cycle C ．Since $n / 2 \leq \operatorname{deg}(x) \leq n-2$ and C has $n-1$ vertices，two adjacent vertices y, z in C are neighbors of x ． Then $E(C) \cup\{x y, x z\}-\{y z\}$ is a Hamiltonian cycle of G ．

Exercise 5

＂If a simple graph G of order n contains two nonadjacent vertices whose degrees sum is at least n then G is Hamiltonian．＂Find a counterexample of the above statement．

Solution．A counter－example is G with $V(G)=\{1,2,3,4,5\}$ and $E(G)=\{12,23,34,41,15\}$ ．Note that 1 and 3 are not adjacent with $\operatorname{deg}(1)+\operatorname{deg}(3)=5=|V(G)|$ ，but G is not hamiltonian since $\operatorname{deg}(5)=1$ ．

Exercise 6

Find the first mistake in the following proof of the statement＂If a simple graph G of order n contains two nonadjacent vertices whose degrees sum is at least n then G is Hamiltonian．＂

Wrong Proof．

（i）If the statement is false then there is a counter－example G with maximal number of edges．
（ii）There are two nonadjacent vertices u, v in G whose degrees sum is at least n ．
（iii）Since $G+u v$ is not a counter－example，it is Hamiltonian，
（iv）so we have a Hamiltonian path $u=u_{1}, \ldots, u_{n}=v$ in G ．
（v）Then $u u_{i+1}$ and $u_{i} v$ are edges for some $1 \leq i \leq n-1$ ．
（vi）Hence $u_{1}, u_{i+1}, u_{i+2}, \cdots, u_{n}, u_{i}, u_{i-1}, \cdots, u_{1}$ is a Hamiltonian cycle．

Solution

（iii）is a mistake since the assumption that G is a counter－example with maximal number of edges does not imply $G+u v$ is Hamiltonian．For example，A maximal counter－example is G with $V(G)=\{1,2,3,4,5\}$ and $E G=\{12,23,34,41,24,15\} . G$ is a maximal counter－example since the only possible non adjacent vertices in $G+13$ are $5, i$ with $i \neq 1$ and $\operatorname{deg}(5)+\operatorname{deg}(i)=4<5=|V(G+13)| . G$ satisfies the assumption since $u=1$ and $v=3$ are not adjacent in G with $\operatorname{deg}(u)+\operatorname{deg}(v)=5=|V(G)|$ ． $G+13$ is not hamiltonian since $\operatorname{deg}(5)=1$ in $G+13$ ．

Exercise 7

A connected and locally $(k-1)$－connected graph G is k－connected．

Proof．

Assume G is not k－connected．Pick a subset $S \subseteq V G$ of minimal size such that $G-S$ is disconnected．Then $|S| \leq k-1$ ．Pick $v \in S$ ．Since $G-(S-v)$ is connected，there exist $u, w \in G_{1}(v)$ in different components of $G-S$ ． Then u, w are in different components of $G_{1}(v) \cap S$ ，a contradiction．

Exercise 8

On a chessboard，a knight can move from one square to another if they differ by 1 in one coordinate and 2 by another．A knight－tour is a path that a knight visiting every single square exactly once and return to the starting square．Show that a 4 －by－n chessboard contains no knight－tour for all n ．

Proof．

First we color the squares by black and white alternately．Note that a knight can move to a black square only from a white square and vice versa． Now if we delete all n black squares from the middle two lines，the n white squares on the first and fourth line becomes n isolated square．Therefore

$$
|c(G-S)| \geq n+1>n=|S|
$$

which implies a spanning cycle does not exist．

Exercise 9

Let H denote a 2－connected and non－hamiltonian graph．Then H contains a subdivision of $K_{3,2}$ ．

Proof．

Let C be a cycle of maximum length in H ，and $y x$ be an edge with $x \in C$ and $y \notin C$ ．Let $x z$ and $x u$ be edges in C ．The 2 －connected assumption of H implies a cycle C_{1} containing the two edges $y x$ and $x z$ ．If C and C_{1} only intersect in the edge $x z$ ，by joining the two paths in C and C_{1} without the common edge $x z$ ，we will have a cycle of length greater than the length of C ，a contradiction．Assume besides the edge $x z, C$ and C_{1} intersect at a third vertex．Let v be the first vertex in C from y along a path P as a portion of C_{1} not containing the edge $x z$ ．Note that $v \neq u$ ；otherwise we have a longer cycle by replacing the edge $u x$ by the path P and edge $y x$ ． Then the edge $x y$ ，and the edges in P and C form a subdivision of $K_{3,2}$ ．

Exercise 10

If H is a graph that does not contain a subdivision of $K_{3,2}$ ，then the following are equivalent．
（i） H is hamiltonian．
（ii）H is 1－tough．
（iii）H is 2－connected．

Proof．

The implications $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ and $(\mathrm{ii}) \Rightarrow(\mathrm{iii})$ are clear．To prove $(\mathrm{iii}) \Rightarrow(\mathrm{i})$ ，let H be 2 －connected and do not contain a subdivision of $K_{3,2}$ ．Applying last Exercise，we known H is hamiltonian．

Exercise 11

If G is a planar，then the following are equivalent．
（i）G is locally hamiltonian．
（ii）G is locally 1－tough．
（iii）G is locally 2 －connected．

Proof．

Let $x \in V G$ and apply the subgraph $H=G_{1}(x)$ to the previous Exercise． Note that $G_{1}(x)$ does not contain a subdivision of $K_{3,2}$ since $\{x\} \cup G_{1}(x)$ does not contain a subdivision of $K_{3,3}$ ．

