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Abstract
For a square matrix C , the spectral radius ρ(C ) is defined as

ρ(C ) := max{ |λ| | λ is an eigenvalue of C},
where |λ| is the magnitude of complex number λ. It is well known
that

0 ≤ C ≤ C ′ ⇒ ρ(C ) ≤ ρ(C ′),

where C ′ is another square matrix of the same size. Now assume
that C ′ has the the same row-sum sequence of a nonnegative
matrix C , C ′ has a positive eigenvector v = (v1, v2, . . . , vn)

T with
the i-th entry the least (i.e. vi ≤ vj for all j), and C ′[−|i) is the
submatrix of C ′ obtained by deleting the i-th column. We will
show that

0 ≤ C [−|i) ≤ C ′[−|i) ⇒ ρ(C ) ≤ ρr (C
′),

where ρr (C
′) is the largest real eigenvalue of C ′ Modifying the

proof, we also obtain the dual statement that

C [−|i) ≥ C ′[−|i) ≥ 0 ⇒ ρ(C ) ≥ ρr (C
′).
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Notations

1. When C is a real square matrix, the spectral radius ρ(C ) is
defined as

ρ(C ) := max{ |λ| | λ is an eigenvalue of C},

where |λ| is the magnitude of complex number λ.

2. ρr (C ) is the largest real eigenvalue of C .

3. For a simple undirected graph G , the spectral radius ρ(G ) of
G is ρ(A), where A is the adjacency matrix of G .
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Perron-Frobenius theorem

Let d1 be the maximum degree of G . It is well-known as a special
case of Perron-Frobenius Theorem that

ρ(G ) ≤ d1.

Our realization of the above upper bound:
0 1 · · · 1 d1 − (n − 2)
1 0 1 d1 − (n − 2)
...

. . .
...

...
1 1 · · · 0 d1 − (n − 2)
1 1 · · · 1 d1 − (n − 1)


n×n

→
(
d1
)
.
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More notations

1. Let n be the order of G ,

2. (d1, d2, . . . , dn) be the degree sequence in decreasing order
and

3. m = (d1 + · · ·+ dn)/2 be the number of edges in G .

6 / 28



Spectral upper bound with the number m of edges
In 1985 [2, Corollary 2.3], Brauldi and Hoffman showed that

m ≤ k(k − 1)/2 ⇒ ρ(G ) ≤ k − 1,

and in 1987 [3], Stanley generalized it as

ρ(G ) ≤ −1 +
√
1 + 8m

2
.

Our realization of the above upper bound:
0 1 · · · 1 d1 − (n − 1)
1 0 1 d2 − (n − 1)
...

. . .
...

...
1 1 · · · 0 dn − (n − 1)

1 1 · · · 1 0− n

 →
(

n − 1 1
2m − n(n − 1) −n

)T

.
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Spectral upper bound with n,m and dn
In 1998 [4, Theorem 2], Yuan Hong showed that
ρ(G ) ≤

√
2m − n + 1, and in 2001 [5, Theorem 2.3], Hong et al.

generalized it as

ρ(G ) ≤
dn − 1 +

√
(dn + 1)2 + 4(2m − ndn)

2
.

Our realization of the above upper bound:
0 1 · · · 1 d1 − (n − 2)
1 0 1 d2 − (n − 2)
...

. . .
...

...
1 1 · · · 0 dn−1 − (n − 2)

1 1 · · · 1 dn − (n − 1)

 ,

→
(

n − 2 1
2m − dn − (n − 1)(n − 2) dn − (n − 1)

)T

.
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Spectral upper bound with d1 and dℓ
In 2004 [6, Theorem 2.2], Jinlong Shu and Yarong Wu showed that

ρ(G ) ≤
dℓ − 1 +

√
(dℓ + 1)2 + 4(ℓ− 1)(d1 − dℓ)

2

for 1 ≤ ℓ ≤ n. The special case ℓ = 2 is reproved by Kinkar Ch.
Das in 2011 [7].

Our realization of the above upper bound:
0 1 · · · 1 d1 − (ℓ− 2)
1 0 1 d1 − (ℓ− 2)
...

. . .
...

...
1 1 · · · 0 d1 − (ℓ− 2)

1 1 · · · 1 dℓ − (ℓ− 1)


ℓ×ℓ

,

→
(

ℓ− 2 1
(ℓ− 1)(d1 − ℓ+ 2) dℓ − (ℓ− 1)

)T

.
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Spectral upper bound with degree sequence
In 2013 [8, Theorem 1.7], Chia-an Liu and Chih-wen Weng showed
that

ρ(G ) ≤
dℓ − 1 +

√
(dℓ + 1)2 + 4

∑ℓ−1
i=1(di − dℓ)

2

for 1 ≤ ℓ ≤ n.

Our realization of the above upper bound:
0 1 · · · 1 d1 − (ℓ− 2)
1 0 1 d2 − (ℓ− 2)
...

. . .
...

...
1 1 · · · 0 dℓ−1 − (ℓ− 2)

1 1 · · · 1 dℓ − (ℓ− 1)


ℓ×ℓ

,

→
(

ℓ− 2 1∑ℓ−1
i=1 di − (ℓ− 1)(ℓ− 2) dℓ − (ℓ− 1)

)T

.
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Spectral upper bound with row-sums (diagonals 0)
Let M = (mij) be a nonnegative n× n matrix with diagonal entries
0, row-sums r1 ≥ r2 ≥ . . . ≥ rn, and e := max1≤i ,j≤n mij . In 2013
[9, Theorem 1.9], Yingying Chen, Huiqiu Lin and Jinlong Shu
showed that

ρ(M) ≤
rℓ − e +

√
(rℓ + e)2 + 4e

∑ℓ−1
i=1(ri − rℓ)

2
for 1 ≤ ℓ ≤ n.

Our realization of the above upper bound:
0 e · · · e r1 − (ℓ− 2)e
e 0 e r2 − (ℓ− 2)e
...

. . .
...

...
e e · · · 0 rℓ−1 − (ℓ− 2)e
e e · · · e rℓ − (ℓ− 1)e


ℓ×ℓ

,

→
(

(ℓ− 2)e e∑ℓ−1
i=1 ri − (ℓ− 1)(ℓ− 2)e rℓ − (ℓ− 1)e

)T

.
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Spectral upper bound with row-sums
From the assumptions in the last page, in addition assume
d := max1≤i≤n mii . In 2013 [10, Theorem 2.1], Xing Duan and Bo
Zhou showed that

ρ(M) ≤
rℓ + d − e +

√
(rℓ − d + e)2 + 4e

∑ℓ−1
i=1(ri − rℓ)

2

for 1 ≤ ℓ ≤ n.

Our realization of the above upper bound:
d e · · · e r1 − (ℓ− 2)e − d
e d e r2 − (ℓ− 2)e − d
...

. . .
...

...
e e · · · d rℓ−1 − (ℓ− 2)e − d
e e · · · e rℓ − (ℓ− 1)e


ℓ×ℓ

,

→
(

(ℓ− 2)e + d e∑ℓ−1
i=1 ri − (ℓ− 1)[(ℓ− 2)e + d ] rℓ − (ℓ− 1)e

)T

.
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Notations of matrices

1. C ′[−|n) is the submatrix of an n × n matrix C ′ obtained by
deleting the last column.

2. C ′[α|β] is the |α| × |β| submatrix of C ′ obtained by retrieving
the entries (a, b) ∈ α× β.

3. C ′(α|β) is the (n − |α|)× (n − |β|) submatrix of C ′ obtained
by deleting the entries (a, b) ∈ α× β.
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Rooted vectors

Since the spectral radius is invariant under a permutation of rows
and columns simultaneously, we shall assume i = n in the abstract
and give the following definition.

Definition
A column vector v = (v1, v2, . . . , vn)

T is called rooted if
vj ≥ vn ≥ 0 for 1 ≤ j ≤ n − 1.
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Main theorem

If C = (cij) is a nonnegative n × n matrix and C ′ = (c ′ij) is an
n × n matrix such that C ′ has a positive rooted eigenvector
v ′ = (v ′1, v

′
2, . . . , v

′
n)

T > 0 for some positive eigenvalue λ and the
following (I)-(II) hold

(I) C and C ′ have the same row-sum vector, and

(II) C [−|n) ≤ C ′[−|n),
then

ρ(C ) ≤ λ

with equality if and only if for the index i with vi ̸= 0 and
1 ≤ j ≤ n − 1,

(c ′ij − cij)(v
′
j − v ′n) = 0, (1)

where vT = (v1, v2, . . . , vn) is a nonnegative left eigenvector of C
for ρ(C ).
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Proof.

By the assumption (I), we have that c ′in − cin = −
∑n−1

j=1 (c
′
ij − cij)

for 1 ≤ i ≤ n. Hence

((C ′ − C )v ′)i =
n∑

j=1

(c ′ij − cij)v
′
j =

n−1∑
j=1

(c ′ij − cij)(v
′
j − v ′n) ≥ 0. (2)

Here the last inequality uses the assumption (II) and v ′j − v ′n ≥ 0.
This is equivalent to

Cv ′ ≤ C ′v ′ = λv ′. (3)

Multiplying vT from the left to all terms in (3), we have

ρ(C )vT v ′ = vTCv ′ ≤ vTC ′v ′ = λvT v ′. (4)

Now delete the positive term vT v ′ to obtain ρ(C ) ≤ λ and finish
the proof of the first statement of the theorem.
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Continue the Proof.

Assume that ρ(C ) = λ, so the inequality in (4) is equality.
Especially (Cv ′)i = (C ′v ′)i in (3) for any i with vi ̸= 0. Hence the
inequality in (2) is equality. Thus (1) holds.

Conversely, (1) implies that equalities hold in (2) for those i with
vi ̸= 0, (Cv ′)i = λv ′i in (3), equality holds in (4) and ρ(C ) = λ
sequentially.
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Example

ρ


1 2 7 1

4 1 2 1
4 0 3 1
4 2 2 0

 ≤ λ


1 c1 c2 10− c1 − c2
4 c3 c4 4− c3 − c4
4 c5 c6 4− c5 − c6
4 c7 c8 4− c7 − c8


= ρ

(
1 10
4 4

)
= 9, (ci ∈ R).

Note that

C ′ =


1 c1 c2 10− c1 − c2
4 c3 c4 4− c3 − c4
4 c5 c6 4− c5 − c6
4 c7 c8 4− c7 − c8


has rooted eigenvector (v ′1, v

′
2, v

′
3, v

′
4) = (5, 4, 4, 4) > 0 which has

{j | v ′j ̸= v ′4} = {1}. Hence the inequality ≤ is an equality.
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The dual theorem

If C = (cij) is a nonnegative n × n matrix and C ′ = (c ′ij) is an
n × n matrix such that C ′ has a positive rooted eigenvector
v ′ = (v ′1, v

′
2, . . . , v

′
n)

T > 0 for some positive eigenvalue λ and the
following (I)-(II) hold

(I) C and C ′ have the same row-sum vector, and

(II) C [−|n) ≥ C ′[−|n) ≥ 0,

then
ρ(C ) ≥ λ

with equality if and only if for the index i with vi ̸= 0 and
1 ≤ j ≤ n − 1,

(c ′ij − cij)(v
′
j − v ′n) = 0, (5)

where vT = (v1, v2, . . . , vn) is a nonnegative left eigenvector of C
for ρ(C ).

19 / 28



To apply the main theorem, we need to find a way to construct an
n × n matrix C ′ = (c ′ij) which has a positive rooted eigenvector

v ′ = (v ′1, v
′
2, . . . , v

′
n)

T > 0 for some positive eigenvalue λ
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Rooted matrices

Definition
An n× n matrix C ′ = (c ′ij) is called rooted if its first n− 1 columns

and the row-sum vector (r ′1, r
′
2, . . . , r

′
n)

T are all rooted.


0 1 · · · 1 d1 − (n − 1)
1 0 1 d2 − (n − 1)
...

. . .
...

...
1 1 · · · 0 dn − (n − 1)
1 1 · · · 1 0− n

+ I

Lemma
If C ′ is a rooted matrix, then ρ(C ′) = ρr (C

′) and C ′ has a rooted
eigenvector for ρr (C

′). Moreover, if C ′[n|n) is positive, then v ′ is
positive.
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Equitable quotient

For a partition Π = {π1, π2, . . . , πℓ} of {1, . . . , n}, if

πab =
∑
j∈πb

c ′ij for all i ∈ πa

then the ℓ× ℓ matrix F (C ′) = (πab) is called the equitable
partition of C ′ with respect to Π.

F



1 2 3 3 3 6 6
3 2 1 4 2 8 4
2 3 1 5 1 9 3

3 5 6 1 1 3 4
4 6 4 2 0 4 3

0 2 2 2 2 3 2
1 3 0 3 1 1 4


=

 6 6 12
14 2 7
4 4 5
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Characteristic matrix of a partition

For a partition Π = {π1, π2, . . . , πℓ} of {1, 2, . . . , n}, let S denote
the n × ℓ characteristic matrix of Π.

Π = {{1, 2, 3}, {4, 5}, {6, 7}}

⇒ S =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


, S

1
2
3

 =



1
1
1
2
2
3
3


.
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Lemma

For a partition Π = {π1, π2, . . . , πℓ} of {1, 2, . . . , n} with n ∈ πℓ,
and a square matrix C ′ with an equitable quotient F (C ′),

F (C ′) has a positive rooted eigenvector v for ρr (F (C
′))

⇒ C ′ has the positive rooted eigenvector Sv for ρr (F (C
′)).

Moreover ρr (C
′) ≥ ρr (F (C

′)).
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Main application
Let Π = {π1, π2, . . . , πℓ} be a partition of {1, 2, . . . , n} with
n ∈ πℓ, and C an n × n nonnegative matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn. For 1 ≤ a ≤ ℓ and 1 ≤ b ≤ ℓ− 1, choose r ′a,
c ′ab such that

r ′a = max
i∈πa

ri

c ′ab ≥
∑
j∈πb

cij for all i ∈ πa

c ′ab ≥ c ′ℓ,b > 0 for a ̸= b

c ′aℓ = r ′a −
ℓ−1∑
j=1

c ′aj .

Let C ′ = (c ′ab)1≤a,b≤ℓ. Then

ρ(C ) ≤ ρr (C
′).
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Example

ρ



2 1 3 3 3 12 0
4 2 1 4 2 6 4
2 3 1 4 1 8 3

3 5 3 1 1 3 4
5 6 1 1 0 3 3

0 2 1 2 2 6 0
2 2 0 2 1 1 4


≤ ρr

 7 6 24− 13
12 2 20− 14
4 4 13− 8



The 7× 7 matrix on the left has row-sums 24, 23, 22, 20, 19, 13, 12.

If applying equitable quotient to a matrix that majors the above
7× 7 matrix, one will find the upper bound

ρr

 7 6 12
12 2 7
4 4 6


which is larger than ours.
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