Spectral bounds obtained by reweighting entries in a row of a nonnegative matrix

> Chih-wen Weng (joint work with Yen-Jen Cheng)

Department of Applied Mathematics National Chiao Tung University

July 19, 2017

Outline

- Abstract
- Notations
- Previous results and our realizations
- Main theorem
 - 1. The statement
 - 2. The proof
 - 3. Example
 - 4. A dual statement
- Applications
 - 1. Rooted matrices
 - 2. Equitable quotient
 - 3. Main application
 - 4. Example

References

Abstract

For a square matrix C, the spectral radius $\rho(C)$ is defined as

 $\rho(C) := \max\{ |\lambda| \mid \lambda \text{ is an eigenvalue of } C\},$

where $|\lambda|$ is the magnitude of complex number $\lambda.$ It is well known that

 $0 \leq C \leq C' \quad \Rightarrow \quad \rho(C) \leq \rho(C'),$

where C' is another square matrix of the same size. Now assume that C' has the the same row-sum sequence of a nonnegative matrix C, C' has a positive eigenvector $v = (v_1, v_2, \ldots, v_n)^T$ with the *i*-th entry the least (i.e. $v_i \leq v_j$ for all *j*), and C'[-|i) is the submatrix of C' obtained by deleting the *i*-th column. We will show that

$$0 \leq C[-|i) \leq C'[-|i) \quad \Rightarrow \quad \rho(C) \leq \rho_r(C'),$$

where $\rho_r(C')$ is the largest real eigenvalue of C' Modifying the proof, we also obtain the dual statement that

 $C[-|i) \ge C'[-|i) \ge 0 \quad \Rightarrow \quad \rho(C) \ge \rho_r(C').$

Notations

1. When C is a real square matrix, the spectral radius $\rho(C)$ is defined as

 $\rho(C) := \max\{ |\lambda| \mid \lambda \text{ is an eigenvalue of } C\},$

where $|\lambda|$ is the magnitude of complex number λ .

- 2. $\rho_r(C)$ is the largest real eigenvalue of C.
- For a simple undirected graph G, the spectral radius ρ(G) of G is ρ(A), where A is the adjacency matrix of G.

Perron-Frobenius theorem

Let d_1 be the maximum degree of G. It is well-known as a special case of Perron-Frobenius Theorem that

 $\rho(G) \leq d_1.$

$$\begin{pmatrix} 0 & 1 & \cdots & 1 & d_1 - (n-2) \\ 1 & 0 & & 1 & d_1 - (n-2) \\ \vdots & & \ddots & \vdots & & \vdots \\ 1 & 1 & \cdots & 0 & d_1 - (n-2) \\ 1 & 1 & \cdots & 1 & d_1 - (n-1) \end{pmatrix}_{n \times n} \rightarrow (d_1) \, .$$

More notations

- 1. Let n be the order of G,
- 2. (d_1, d_2, \ldots, d_n) be the degree sequence in decreasing order and
- 3. $m = (d_1 + \cdots + d_n)/2$ be the number of edges in G.

Spectral upper bound with the number *m* of edges

In 1985 [2, Corollary 2.3], Brauldi and Hoffman showed that

$$m \leq k(k-1)/2 \quad \Rightarrow \quad \rho(G) \leq k-1,$$

and in 1987 [3], Stanley generalized it as

$$\rho(G) \leq \frac{-1 + \sqrt{1 + 8m}}{2}$$

$$\begin{pmatrix} 0 & 1 & \cdots & 1 & d_1 - (n-1) \\ 1 & 0 & 1 & d_2 - (n-1) \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & d_n - (n-1) \\ \hline 1 & 1 & \cdots & 1 & 0 - n \end{pmatrix} \rightarrow \begin{pmatrix} n-1 & 1 \\ 2m - n(n-1) & -n \end{pmatrix}^T$$

Spectral upper bound with n, m and d_n

In 1998 [4, Theorem 2], Yuan Hong showed that $\rho(G) \leq \sqrt{2m - n + 1}$, and in 2001 [5, Theorem 2.3], Hong et al. generalized it as

$$\rho(G) \leq \frac{d_n - 1 + \sqrt{(d_n + 1)^2 + 4(2m - nd_n)}}{2}.$$

$$\begin{pmatrix} 0 & 1 & \cdots & 1 & d_1 - (n-2) \\ 1 & 0 & 1 & d_2 - (n-2) \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & d_{n-1} - (n-2) \\ \hline 1 & 1 & \cdots & 1 & d_n - (n-1) \end{pmatrix},$$

$$\rightarrow \begin{pmatrix} n-2 & 1 \\ 2m - d_n - (n-1)(n-2) & d_n - (n-1) \end{pmatrix}^T.$$

Spectral upper bound with d_1 and d_ℓ

In 2004 [6, Theorem 2.2], Jinlong Shu and Yarong Wu showed that

$$ho(G) \leq rac{d_{\ell} - 1 + \sqrt{(d_{\ell} + 1)^2 + 4(\ell - 1)(d_1 - d_{\ell})}}{2}$$

for $1 \le \ell \le n$. The special case $\ell = 2$ is reproved by Kinkar Ch. Das in 2011 [7].

Spectral upper bound with degree sequence

In 2013 [8, Theorem 1.7], Chia-an Liu and Chih-wen Weng showed that

$$ho(G) \leq rac{d_\ell - 1 + \sqrt{(d_\ell + 1)^2 + 4\sum_{i=1}^{\ell-1} (d_i - d_\ell)}}{2}$$

for $1 \leq \ell \leq n$.

$$egin{array}{ccccccccc} & \left(egin{array}{ccccccccccc} 0 & 1 & \cdots & 1 & d_1 - (\ell-2) \ 1 & 0 & 1 & d_2 - (\ell-2) \ dots & \ddots & dots & dots \ dots & dots & dots \ dots & dots & dots \ dots & dots \ dots & dots \ dots & dots \ \dots \ dots \ \$$

Spectral upper bound with row-sums (diagonals 0)

Let $M = (m_{ij})$ be a nonnegative $n \times n$ matrix with diagonal entries 0, row-sums $r_1 \ge r_2 \ge \ldots \ge r_n$, and $e := \max_{1 \le i,j \le n} m_{ij}$. In 2013 [9, Theorem 1.9], Yingying Chen, Huiqiu Lin and Jinlong Shu showed that

$$ho(M) \leq rac{r_\ell - e + \sqrt{(r_\ell + e)^2 + 4e \sum_{i=1}^{\ell-1} (r_i - r_\ell)}}{2}$$
 for $1 < \ell < n$.

Our realization of the above upper bound:

$$\begin{pmatrix} 0 & e & \cdots & e & r_1 - (\ell - 2)e \\ e & 0 & e & r_2 - (\ell - 2)e \\ \vdots & \ddots & \vdots & \vdots \\ e & e & \cdots & 0 & r_{\ell - 1} - (\ell - 2)e \\ e & e & \cdots & e & r_{\ell} - (\ell - 1)e \end{pmatrix}_{\ell \times \ell}^{},$$

$$\rightarrow \quad \begin{pmatrix} (\ell - 2)e & e \\ \sum_{i=1}^{\ell - 1} r_i - (\ell - 1)(\ell - 2)e & r_{\ell} - (\ell - 1)e \end{pmatrix}^{T}.$$

11/28

Spectral upper bound with row-sums

From the assumptions in the last page, in addition assume $d := \max_{1 \le i \le n} m_{ii}$. In 2013 [10, Theorem 2.1], Xing Duan and Bo Zhou showed that

$$\rho(M) \leq \frac{r_{\ell} + d - e + \sqrt{(r_{\ell} - d + e)^2 + 4e \sum_{i=1}^{\ell-1} (r_i - r_{\ell})}}{2}$$

for $1 \leq \ell \leq n$.

$$\begin{pmatrix} d & e & \cdots & e & r_1 - (\ell - 2)e - d \\ e & d & e & r_2 - (\ell - 2)e - d \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ e & e & \cdots & e & r_{\ell-1} - (\ell - 2)e - d \\ e & e & \cdots & e & r_{\ell} - (\ell - 1)e \end{pmatrix}_{\ell \times \ell} ,$$

Notations of matrices

- 1. C'[-|n) is the submatrix of an $n \times n$ matrix C' obtained by deleting the last column.
- 2. $C'[\alpha|\beta]$ is the $|\alpha| \times |\beta|$ submatrix of C' obtained by retrieving the entries $(a, b) \in \alpha \times \beta$.
- 3. $C'(\alpha|\beta)$ is the $(n |\alpha|) \times (n |\beta|)$ submatrix of C' obtained by deleting the entries $(a, b) \in \alpha \times \beta$.

Since the spectral radius is invariant under a permutation of rows and columns simultaneously, we shall assume i = n in the abstract and give the following definition.

Definition

A column vector $v = (v_1, v_2, ..., v_n)^T$ is called rooted if $v_j \ge v_n \ge 0$ for $1 \le j \le n-1$.

Main theorem

If $C = (c_{ij})$ is a nonnegative $n \times n$ matrix and $C' = (c'_{ij})$ is an $n \times n$ matrix such that C' has a positive rooted eigenvector $v' = (v'_1, v'_2, \dots, v'_n)^T > 0$ for some positive eigenvalue λ and the following (I)-(II) hold

(1) C and C' have the same row-sum vector, and (11) $C[-|n) \le C'[-|n)$,

then

$$\rho(C) \leq \lambda$$

with equality if and only if for the index i with $v_i \neq 0$ and $1 \leq j \leq n-1$, $(c'_{ij} - c_{ij})(v'_j - v'_n) = 0$, (1)

where $v^T = (v_1, v_2, ..., v_n)$ is a nonnegative left eigenvector of C for $\rho(C)$.

Proof.

By the assumption (I), we have that $c'_{in} - c_{in} = -\sum_{j=1}^{n-1} (c'_{ij} - c_{ij})$ for $1 \le i \le n$. Hence

$$((C'-C)v')_i = \sum_{j=1}^n (c'_{ij} - c_{ij})v'_j = \sum_{j=1}^{n-1} (c'_{ij} - c_{ij})(v'_j - v'_n) \ge 0.$$
 (2)

Here the last inequality uses the assumption (II) and $v'_j - v'_n \ge 0$. This is equivalent to

$$Cv' \le C'v' = \lambda v'. \tag{3}$$

Multiplying v^T from the left to all terms in (3), we have

$$\rho(C)v^{\mathsf{T}}v' = v^{\mathsf{T}}Cv' \le v^{\mathsf{T}}C'v' = \lambda v^{\mathsf{T}}v'.$$
(4)

Now delete the positive term $v^T v'$ to obtain $\rho(C) \leq \lambda$ and finish the proof of the first statement of the theorem.

Continue the Proof.

Assume that $\rho(C) = \lambda$, so the inequality in (4) is equality. Especially $(Cv')_i = (C'v')_i$ in (3) for any *i* with $v_i \neq 0$. Hence the inequality in (2) is equality. Thus (1) holds.

Conversely, (1) implies that equalities hold in (2) for those *i* with $v_i \neq 0$, $(Cv')_i = \lambda v'_i$ in (3), equality holds in (4) and $\rho(C) = \lambda$ sequentially.

Example

Note that

$$C' = \begin{pmatrix} 1 & c_1 & c_2 & 10 - c_1 - c_2 \\ 4 & c_3 & c_4 & 4 - c_3 - c_4 \\ 4 & c_5 & c_6 & 4 - c_5 - c_6 \\ 4 & c_7 & c_8 & 4 - c_7 - c_8 \end{pmatrix}$$

has rooted eigenvector $(v'_1, v'_2, v'_3, v'_4) = (5, 4, 4, 4) > 0$ which has $\{j \mid v'_j \neq v'_4\} = \{1\}$. Hence the inequality \leq is an equality.

The dual theorem

If $C = (c_{ij})$ is a nonnegative $n \times n$ matrix and $C' = (c'_{ij})$ is an $n \times n$ matrix such that C' has a positive rooted eigenvector $v' = (v'_1, v'_2, \dots, v'_n)^T > 0$ for some positive eigenvalue λ and the following (I)-(II) hold

(1) C and C' have the same row-sum vector, and (11) $C[-|n] \ge C'[-|n] \ge 0$,

then

$$\rho(C) \geq \lambda$$

with equality if and only if for the index i with $v_i \neq 0$ and $1 \leq j \leq n-1$, $(c'_{ij} - c_{ij})(v'_j - v'_n) = 0$,

where $v^T = (v_1, v_2, ..., v_n)$ is a nonnegative left eigenvector of C for $\rho(C)$.

(5)

To apply the main theorem, we need to find a way to construct an $n \times n$ matrix $C' = (c'_{ij})$ which has a positive rooted eigenvector $v' = (v'_1, v'_2, \dots, v'_n)^T > 0$ for some positive eigenvalue λ

Rooted matrices

Definition

An $n \times n$ matrix $C' = (c'_{ij})$ is called **rooted** if its first n-1 columns and the row-sum vector $(r'_1, r'_2, \ldots, r'_n)^T$ are all rooted.

$$\begin{pmatrix} 0 & 1 & \cdots & 1 & d_1 - (n-1) \\ 1 & 0 & & 1 & d_2 - (n-1) \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & d_n - (n-1) \\ 1 & 1 & \cdots & 1 & 0 - n \end{pmatrix} + I$$

Lemma

If C' is a rooted matrix, then $\rho(C') = \rho_r(C')$ and C' has a rooted eigenvector for $\rho_r(C')$. Moreover, if C'[n|n) is positive, then v' is positive.

Equitable quotient

For a partition $\Pi = \{\pi_1, \pi_2, \dots, \pi_\ell\}$ of $\{1, \dots, n\}$, if

$$\pi_{oldsymbol{a} b} = \sum_{j \in \pi_b} c_{ij}' \qquad ext{for all } i \in \pi_{oldsymbol{a}}$$

then the $\ell \times \ell$ matrix $F(C') = (\pi_{ab})$ is called the equitable partition of C' with respect to Π .

$$F\begin{pmatrix}1&2&3&3&3&6&6\\3&2&1&4&2&8&4\\2&3&1&5&1&9&3\\\hline3&5&6&1&1&3&4\\4&6&4&2&0&4&3\\\hline0&2&2&2&2&2&3&2\\1&3&0&3&1&1&4\end{pmatrix} = \begin{pmatrix}6&6&12\\14&2&7\\4&4&5\end{pmatrix}$$

Characteristic matrix of a partition

For a partition $\Pi = \{\pi_1, \pi_2, \dots, \pi_\ell\}$ of $\{1, 2, \dots, n\}$, let *S* denote the $n \times \ell$ characteristic matrix of Π .

$$\Pi = \{\{1, 2, 3\}, \{4, 5\}, \{6, 7\}\}$$

$$\Rightarrow S = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, S \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \end{pmatrix}.$$

Lemma

For a partition $\Pi = \{\pi_1, \pi_2, \dots, \pi_\ell\}$ of $\{1, 2, \dots, n\}$ with $n \in \pi_\ell$, and a square matrix C' with an equitable quotient F(C'),

F(C') has a positive rooted eigenvector v for $\rho_r(F(C'))$ $\Rightarrow C'$ has the positive rooted eigenvector Sv for $\rho_r(F(C'))$.

Moreover $\rho_r(C') \ge \rho_r(F(C'))$.

Main application

Let $\Pi = \{\pi_1, \pi_2, \dots, \pi_\ell\}$ be a partition of $\{1, 2, \dots, n\}$ with $n \in \pi_\ell$, and C an $n \times n$ nonnegative matrix with row-sums $r_1 \ge r_2 \ge \dots \ge r_n$. For $1 \le a \le \ell$ and $1 \le b \le \ell - 1$, choose r'_a , c'_{ab} such that

$$egin{array}{r_a} &=& \max_{i\in\pi_a}r_i \ c_{ab}' &\geq& \sum_{j\in\pi_b}c_{ij} \ c_{ab} &\geq& c_{\ell,b}' > 0 \ c_{ab}' &\geq& c_{\ell,b}' > 0 \ c_{a\ell}' &=& r_a' - \sum_{j=1}^{\ell-1}c_{aj}'. \end{array}$$

Let $C' = (c'_{ab})_{1 \leq a, b \leq \ell}$. Then

 $\rho(C) \leq \rho_r(C').$

Example

$$\rho \begin{pmatrix} 2 & 1 & 3 & 3 & 3 & 12 & 0 \\ 4 & 2 & 1 & 4 & 2 & 6 & 4 \\ 2 & 3 & 1 & 4 & 1 & 8 & 3 \\ \hline 3 & 5 & 3 & 1 & 1 & 3 & 4 \\ 5 & 6 & 1 & 1 & 0 & 3 & 3 \\ \hline 0 & 2 & 1 & 2 & 2 & 6 & 0 \\ 2 & 2 & 0 & 2 & 1 & 1 & 4 \end{pmatrix} \leq \rho_r \begin{pmatrix} 7 & 6 & 24 - 13 \\ 12 & 2 & 20 - 14 \\ 4 & 4 & 13 - 8 \end{pmatrix}$$

The 7×7 matrix on the left has row-sums 24, 23, 22, 20, 19, 13, 12.

If applying equitable quotient to a matrix that majors the above 7×7 matrix, one will find the upper bound

$$\rho_r \begin{pmatrix} 7 & 6 & 12 \\ 12 & 2 & 7 \\ 4 & 4 & 6 \end{pmatrix}$$

which is larger than ours.

References

Henryk Minc, Nonnegative Matrices, John Wiley and Sons Inc., New York, 1988.

R. A. Brauldi and A. J. Hoffman, On the spectral radius of (0,1)-matrices, *Linear Algebra and its Applications*, 65 (1985), 133-146.

Richard. P. Stanley and A. J. Hoffman, A bound on the spectral radius of graphs with e edges, *Linear Algebra and its Applications*, 87 (1987), 267-269.

Yuan Hong, Upper bounds of the spectral radius of graphs in terms of genus, *Journal of Combinatorial Theory*, Series B 74 (1998), 153-159.

Yuan Hong, Jin-Long Shu and Kunfu Fang, A sharp upper bound of the spectral radius of graphs, *Journal of Combinatorial Theory*, Series B 81 (2001), 177-183.

Kinkar Ch. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, *Linear Algebra and its Applications*, 435 (2011), 2420-2424.

Chia-an Liu and Chih-wen Weng, Spectral radius and degree sequence of a graph, Linear Algebra and its Applications, 438 (2013), 3511-3515

Yingying Chen, Huiqiu Lin and Jinlong Shu, Sharp upper bounds on the distance spectral radius of a graph, Sharp upper bounds on the distance spectral radius of a graph *Linear Algebra and its Applications*, 439 (2013), 2659-2666

Xing Duan and Bo Xhou, Sharp bounds on the spectral radius of a nonegative matrix *Linear Algebra and its Applications*, 439 (2013), 2961-2970

Thank you for your attention.