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A characterization of bipartite distance-regular graphs
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G2

If both parts of G? are isomorphic distance-regular graphs, can you

conclude that the bipartite graph G is also distance-regular?
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GQ

Maybe we need some regularity assumption on G.
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A bipartite graph G with bipartition X UY is 2-partially distance-regular if
G is regular, and

co = |G1(u) NGy (v)]

is a constant for any two vertices u,v € X UY at distance 2.

Note that the total graph of a symmetric BIBD is a bipartite 2-partially
distance-regular graph of diameter 3.
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Abstract

It is well-known that the halved graphs of a bipartite distance-regular
graph are distance-regular. Examples are given to show that the
converse does not hold. Thus, a natural question is to find out when
the converse is true. In this talk we show that if the graph is connected
bipartite 2-partially distance-regular with even spectral diameter then
the converse mentioned above holds. This is a joint work with
Guang-Siang Lee.

Keywords: Distance-regular graph, Distance matrices, Predistance
polynomials, Spectral diameter
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Distance-regular graphs

A graph G with diameter D is distance-regular if and only if for ¢ < D,

ci = |Gi(z) N Gia(y)l,
ai = |Gi(z) N Gi(y)l,
bi = |Gi(x) NGit1(y)|

are constants subject to all vertices x,y with d(x,y) = i.
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Note that a; 4+ b; + ¢; = by and k := by is the valency of G.
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Distance matrices

The matrices that we are concerned are square matrices with rows and
columns indexed by the vertex set VG. For each i let A; be a 01-matrix

with entries (2.9)
1, ifo(x,y) =14
(Ai)ay = { 0, else.

A; is called i-th distance matrix, and A = Aj; is also called the adjacency
matrix of I'. Note A9 =1 and A_1 = Apy1 =0.
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Three-term recurrence relation of distance matrices
G is distance-regular if and only if
AA; = bi1Ai 1+ aiAi + i1 A 0<:< D,
where cpyq = 1.
Proof.
bi—1, ifd(z,y)=1i—1,

Ay =4 asy iFO(ry) =i
Ciy1, Iif (9(13, y) =1+ 1.

AMALE LA HE
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Orthogonal polynomials
In last page we show
AA; = b1 A1 + aiAi + cip1Ain 0<:i<D.

Consider polynomials fo(z) :=1, fi(z) := z and f;(z) is defined
recursively using

xfi(x) = bi—1 fi—1(x) + ai fi(x) + cipr fix1(x) 2<i<D.
Note that 4; = f;(A4), fp+1(A) = Aps1 =0, and f;(x) has degree i.

The polynomials fo(z) =1, fi(x) ==z, ..., fp(zx) are orthogonal with
respect to the inner product defined by

(il fy(@)) o 1= SAADLA) _ olAA)

n n
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Indeed the converse is also true, so we have the following

Theorem
© G is distance-regular

@ there exist a sequence of polynomial fo(z) =1, fi(x) ==z, ..., fp(x)
such that deg(f;) =i and A; = f;(A).

Ol

y

The polynomial fo(x) =1, fi(z) ==, ..., fp(x) are called the
distance-polynomials of distance-regular graph G.
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Preliminaries of spectral graph theory

Let G be a connected graph of order n and diameter D (not necessary to
be distance-regular). Assume that adjacency matrix A = A; has d + 1
distinct eigenvalues k = Ao > A1 > ... > A\q with corresponding

multiplicities 1 = mg, m1,--- ,mgq. Note that D < d and
d
Z(w) = [[(= =)
i=0

is the minimal polynomial of A, and d is called the spectral diameter of G.
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Consider the vector space Ry[z] = R[z]/(Z(x)) with the inner product
(p(z), q(x)) A := tr(p(A)q(A))/n,

for p(z), q(z) € Ry[x].
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Gram-Schmidt process
There exists a unique sequence of polynomials

po(CC),p1($), s 7pd(x) S Rd[‘r]?

called predistance polynomials of G, satisfying

deg pi(z) =i and  (pi(2),pj(x))a = 0ijpi(Ao).

It turns out that

d
po(a) +p1(x) + - +pa(z) =n]]
=1

ZE—)\l’
Ao —Ai

which is called the Hoffman polynomial of G. In particular if G is regular,

po(A) +p1(A) + -+ pa(A) = J,

the all ones matrix.
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Lemma

The predistance polynomials satisfy a three-term recurrence:
zpi(z) = cip1pit1(z) + ajpi(x) + bi_1pi—1(z) 0<i<d,

where cj |, aj, b;_; € R withV | = ¢, :=0.

Note that po(x) = 1, and if G is regular then p;(z) = x.
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Lemma (Spectrum Lemma 1)

Let G,G' be two distance-regular graphs. Then G and G’ have the same
intersection numbers if and only if G and G’ have the same spectrum.
Indeed c;y1 = ¢y, a; = aj, b; = b;_y, fi(x) = pi(x).

bipartite distance-regular graphs 2013 £ 5 A 11 H 17 / 33



2013 MHieHEH20E
Theorem
Suppose G is a regular graph with diameter D and spectral diameter d.
Then the following (i)-(iii) are equivalent.
(i) G is distance-regular; (Equivalently A; = p;(A) for0 < i< D.)
(i) Ag =pa(A). (This implies d = D.)

Proof.
This follows by backward induction and using pg41(A) =0,

Ao+ A1 +---+Ap=J =po(A) +p1(A) + - - - + pa(A),
Api(A) = ci1piv1(A) + aipi(A) + bi_1pi—1(A).

@ M.A. Fiol, E. Garriga and J.L.A. Yebra, Locally pseudo-distance-regular
graphs, J. Combin. Theory Ser. B 68 (1996), 179-205.

@ E.R. van Dam, The spectral excess theorem for distance-regular graphs: a
global (over)view, Electron. J. Combin. 15(1) (2008), R129.
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A graph G is 2-partially distance-regular if and only if G is k-regular and

Ay = po(A) = ¢y H(A(A — a|I) — kI);

which is equivalent to

[ d, ifo(zy) =1
IT1(z) NT1(y)| = { ch, if (w,y) = 2.

If G is bipartite 2-partially distance-regular then

Ay = po(A) = 51 (A% — k).
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A detour to freshmen linear linear algebra

Lemma

Let N be an n x m matrix. Then there exists a one-one correspondence
between the nonzero eigenvalues of NNT and NTN.

Proof.

Suppose j is a nonzero eigenvalue of NN with corresponding eigenvector
u. Then NNTu = pu # 0. In particular N7 # 0. Since

NTNNTy = uNTu, NTu is an eigenvector of NN corresponding to the
eigenvalue ji. Suppose i has multiplicity m as an eigenvalue of NN7. Let
u1, U2, - . ., Uy be the corresponding orthogonal eigenvectors. If

aNTu + -+ ¢ NTuy, = 0 then

0= N(clNTul 4+ cmNTum) = plcrur + -+ + cmum),

and hence ¢y = ¢y = - -+ = ¢, = 0. This proves that the multiplicity of u
in NNT is no larger than that in N7 N. Similarly for the other side, so the
two multiplicities are the same. O

w
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Lemma (Spectrum Lemma 2)

If G = (X,Y) is a connected regular bipartite graph with As = pa(A),
then the halved graphs GX and GY have the same spectrum.

Proof.
Let X; and Y] be adjacency matrices of GX and GY respectively. First

note that
0 B
a=(5 7))

for some square matrix B. Then

X 0\, o { aBBT +0I 0
<0 Y1>_A2_p2(A)_“A +b[‘< 0 aBTB—i—bI)

for some real numbers a, b with a # 0. Since (from linear algebra) BB”
and BT B have the same characteristic polynomial, GX and G¥ have the
same spectrum. L]

v
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The spectrum of a bipartite graph is symmetric to the 0.

Lemma

Let M be bipartite. Then X is an eigenvalue of M iff —\ is an eigenvalue
of M. Moreover A and —\ has the same geometry multiplicity.

Proof.

Observe in block form product

(o 0 )(5)=2(5)
(s &) (5)=(57)
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Lemma (Diameter Lemma)

Let G = (X,Y) be a connected regular bipartite graph with diameter D,
even spectral diameter d and Ay = f(A) for some polynomial f(z) € R[z]
of degree 2. Suppose one of GX and GY has spectral diameter d’ equal to
its diameter. Then D = d = 2d'.

Proof.

Let f(z) = ax?® + bx + ¢ for some real numbers a, b, c with a # 0. Since G
is bipartite, by comparing the uv-entry with d(u,v) = 1 of both sides of
A = f(A) = aA? +bA+ cI, we have b =0, and thus Ay = a A2 + cl. If
X is an eigenvalue of A with eigenvector u then aA? + ¢ is an eigenvalue of
Ay with the same eigenvector u. Since G is bipartite and d is even, A has
d + 1 distinct eigenvalues including one 0 eigenvalue by the symmetric
spectrum property. Then Ay has d/2+ 1 distinct eigenvalues, which implies
that both G and GY have d/2 + 1 distinct eigenvalues, and hence have
diameter at most d/2. Thus d > D > 2(d/2) = d, and hence D =d. [
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Theorem

Let G be a connected regular bipartite graph with bipartition X UY and
even spectral diameter d. Assume G is 2-partially distance-regular and
both of the halved graphs GX and GY are distance-regular. Then G is
distance-regular.

Proof.

Since G is 2-partially distance-regular, Ay = ¢ *(A% — \oI) = f(A), where
flz) = 0'2*1(932 — Ao) is a polynomial of degree 2. By Spectrum Lemma 2,
GX and GY have the same spectrum, and by Spectrum Lemma 1 both
GX and GY have the same intersection numbers and the same diameter
d’; indeed we have D = d = 2d’ by Diameter Lemma. Thus GX and GY
have the same (pre)distance-polynomials f;, 0 < i < d/2. Note that

aa= (5 )= (G0 L8 =t —gmta), o<i<ar,

and X; and Y; are i-th distance matrices of GX and GY respectively,
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and go; is even of degree 2i. In particular Ay = gq(A) is a polynomial of A
with degree d. It remains to show that g4 = pg. Since G is regular,

Agd = ga(A)J = ga(Mo)J.

Then each row of Ay has exactly g4(\g) ones. Note that
lgall* = (9a(A), ga(A)) = (Aa, Aa) = ga(Xo). For every polynomial
h € Ryq1[z],
(9a: h) = (Aa, h(A)) = 0.
By the uniqueness of the predistance polynomials, it follows that g; = pg.
O
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The assumption 2-partially distance-regular is necessary

The following example gives a regular bipartite graph G with GX = G
being a clique and even spectral diameter, but G is not 2-partially
distance-regular.

Example

Let G = K55 — Cy — Cp be a regular graph obtained by deleting a Cy and
a Cg from K55. We have sp G = {31,21,12,0%,(—1)2, (-2)1, (=3)'},
D=3<6=dand G? = 2K5.

Cy+ Cs
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The assumption 2-partially distance-regular is necessary
Example
Let G be the Hoffman graph, which is a cospectral graph of 4-cube

obtained from 4-cune by applying GM-swithching of edges. Then
sp G = {4},2%0%, (-2)4, (-4)!}, D=d =4, and

A =pi(A) iff  ie{0,1,3).

Note that G2 is the disjoint union of Kg and K3 992(= Kg — 4K>), which
are both distance-regular (sp K220 = {6',0% (—2)3}).

\/

The 4-cube. The Hoffman graph.

Copy from http://en.wikipedia.org/wiki/Hoffman_graph
BEX (AEE)
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Another drawing of 4-cube and Hoffman graph

The 4-cube \/
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The assumption even spectral diameter is necessary

The following example gives a bipartite 2-partially distance-regular graph G
with D = d = 5 such that GX, GY are distance-regular graphs with
spectrum {61, 1%, (—2)} (the complement of petersen graph), but G is
not distance-regular.

Example

Consider the regular bipartite graphs G on 20 vertices obtained from the
Desargues graph (the bipartite double of the Petersen graph) by the
GM-switching. One can check (by Maple) that D = d = 5,

sp G = {31,24,15 (—1)5,(-2)%,(-3)'}, and

Ai=pi(A) iff ie{0,1,2,4).

Then G is not distance-regular.
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Desargues graph and its cospectral mate
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For those who think that a combinatorial theorem should be stated and
proved in a combinatorial way might want to solve the following problem
which replace the spectral diameter d by the diameter D in the of main
theorem.

Problem

Let G be a connected regular bipartite graph with bipartition X UY and
even diameter D. Assume G is 2-partially distance-regular and both of the
halved graphs GX and GY are distance-regular with the same set of
intersection numbers. Then G is distance-regular.
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Unfortunately, we have an counterexample for the previous problem.

Example
Consider the Mébius-Kantor graph G. One can check (by Maple) that
D=4<5=d, and

A; = pi(A) iff 1€ {0, 1, 2,4}

Note that G = 2X, where X is the 16-cell graph, which is
distance-regular with sp X = {6,0%, (-2)3}.

-

Méobius-Kantor graph 16-cell graph

Copy from https://en.wikipedia.org/wiki

HFEX (RAFEEH) bipartite distance-regular graphs 2013 £ 5 A 11 H 32/33




2013 mMlRHTS 20 E

Thanks for your attention.
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