A characterization of bipartite distance－regular graphs

翁志文

國立交通大學應用數學系

2013年5月11日

G

If both parts of G^{2} are isomorphic distance－regular graphs，can you conclude that the bipartite graph G is also distance－regular？

G

Maybe we need some regularity assumption on G ．

A bipartite graph G with bipartition $X \cup Y$ is 2－partially distance－regular if G is regular，and

$$
c_{2}:=\left|G_{1}(u) \cap G_{1}(v)\right|
$$

is a constant for any two vertices $u, v \in X \cup Y$ at distance 2 ．
Note that the total graph of a symmetric BIBD is a bipartite 2－partially distance－regular graph of diameter 3 ．

Abstract

It is well－known that the halved graphs of a bipartite distance－regular graph are distance－regular．Examples are given to show that the converse does not hold．Thus，a natural question is to find out when the converse is true．In this talk we show that if the graph is connected bipartite 2－partially distance－regular with even spectral diameter then the converse mentioned above holds．This is a joint work with Guang－Siang Lee．

Keywords：Distance－regular graph，Distance matrices，Predistance polynomials，Spectral diameter

2000 MSC：05E30，05C50

Distance－regular graphs

A graph G with diameter D is distance－regular if and only if for $i \leq D$ ，

$$
\begin{aligned}
c_{i} & :=\left|G_{1}(x) \cap G_{i-1}(y)\right|, \\
a_{i} & :=\left|G_{1}(x) \cap G_{i}(y)\right|, \\
b_{i} & :=\left|G_{1}(x) \cap G_{i+1}(y)\right|
\end{aligned}
$$

are constants subject to all vertices x, y with $\partial(x, y)=i$ ．
$\partial(x, y)=i$

Note that $a_{i}+b_{i}+c_{i}=b_{0}$ and $k:=b_{0}$ is the valency of G ．

Distance matrices

The matrices that we are concerned are square matrices with rows and columns indexed by the vertex set $V G$ ．For each i let A_{i} be a 01－matrix with entries

$$
\left(A_{i}\right)_{x y}= \begin{cases}1, & \text { if } \partial(x, y)=i \\ 0, & \text { else }\end{cases}
$$

A_{i} is called i－th distance matrix，and $A=A_{1}$ is also called the adjacency matrix of Γ ．Note $A_{0}=I$ and $A_{-1}=A_{D+1}=0$ ．

$$
A_{0}=I,
$$

$$
A_{1}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Three－term recurrence relation of distance matrices

G is distance－regular if and only if

$$
A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad 0 \leq i \leq D
$$

where $c_{D+1}:=1$ ．

Proof．

$$
\left(A A_{i}\right)_{x y}= \begin{cases}b_{i-1}, & \text { if } \partial(x, y)=i-1 \\ a_{i}, & \text { if } \partial(x, y)=i \\ c_{i+1}, & \text { if } \partial(x, y)=i+1\end{cases}
$$

利用方程式描述組合性質

Orthogonal polynomials

In last page we show

$$
A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad 0 \leq i \leq D
$$

Consider polynomials $f_{0}(x):=1, f_{1}(x):=x$ and $f_{i}(x)$ is defined recursively using

$$
x f_{i}(x)=b_{i-1} f_{i-1}(x)+a_{i} f_{i}(x)+c_{i+1} f_{i+1}(x) \quad 2 \leq i \leq D .
$$

Note that $A_{i}=f_{i}(A), f_{D+1}(A)=A_{D+1}=0$ ，and $f_{i}(x)$ has degree i ．
The polynomials $f_{0}(x)=1, f_{1}(x)=x, \ldots, f_{D}(x)$ are orthogonal with respect to the inner product defined by

$$
\left\langle f_{i}(x), f_{j}(x)\right\rangle_{\triangle}:=\frac{\operatorname{tr}\left(f_{i}(A) f_{j}(A)\right)}{n}=\frac{\operatorname{tr}\left(A_{i} A_{j}\right)}{n}
$$

Indeed the converse is also true，so we have the following

Theorem

（1）G is distance－regular
（2）there exist a sequence of polynomial $f_{0}(x)=1, f_{1}(x)=x, \ldots, f_{D}(x)$ such that $\operatorname{deg}\left(f_{i}\right)=i$ and $A_{i}=f_{i}(A)$ ．

The polynomial $f_{0}(x)=1, f_{1}(x)=x, \ldots, f_{D}(x)$ are called the distance－polynomials of distance－regular graph G ．

Preliminaries of spectral graph theory

Let G be a connected graph of order n and diameter D（not necessary to be distance－regular）．Assume that adjacency matrix $A=A_{1}$ has $d+1$ distinct eigenvalues $k=\lambda_{0}>\lambda_{1}>\ldots>\lambda_{d}$ with corresponding multiplicities $1=m_{0}, m_{1}, \cdots, m_{d}$ ．Note that $D \leq d$ and

$$
Z(x):=\prod_{i=0}^{d}\left(x-\lambda_{i}\right)
$$

is the minimal polynomial of A ，and d is called the spectral diameter of G ．

Consider the vector space $\mathbb{R}_{d}[x] \cong \mathbb{R}[x] /\langle Z(x)\rangle$ with the inner product

$$
\langle p(x), q(x)\rangle_{\triangle}:=\operatorname{tr}(p(A) q(A)) / n,
$$

for $p(x), q(x) \in \mathbb{R}_{d}[x]$ ．

Gram－Schmidt process

There exists a unique sequence of polynomials

$$
p_{0}(x), p_{1}(x), \ldots, p_{d}(x) \in \mathbb{R}_{d}[x]
$$

called predistance polynomials of G ，satisfying

$$
\operatorname{deg} p_{i}(x)=i \quad \text { and } \quad\left\langle p_{i}(x), p_{j}(x)\right\rangle_{\triangle}=\delta_{i j} p_{i}\left(\lambda_{0}\right)
$$

It turns out that

$$
p_{0}(x)+p_{1}(x)+\cdots+p_{d}(x)=n \prod_{i=1}^{d} \frac{x-\lambda_{i}}{\lambda_{0}-\lambda_{i}}
$$

which is called the Hoffman polynomial of G ．In particular if G is regular，

$$
p_{0}(A)+p_{1}(A)+\cdots+p_{d}(A)=J
$$

the all ones matrix．

Lemma

The predistance polynomials satisfy a three－term recurrence：

$$
x p_{i}(x)=c_{i+1}^{\prime} p_{i+1}(x)+a_{i}^{\prime} p_{i}(x)+b_{i-1}^{\prime} p_{i-1}(x) \quad 0 \leq i \leq d
$$

where $c_{i+1}^{\prime}, a_{i}^{\prime}, b_{i-1}^{\prime} \in \mathbb{R}$ with $b_{-1}^{\prime}=c_{d+1}^{\prime}:=0$ ．

Note that $p_{0}(x)=1$ ，and if G is regular then $p_{1}(x)=x$ ．

Lemma（Spectrum Lemma 1）

Let G, G^{\prime} be two distance－regular graphs．Then G and G^{\prime} have the same intersection numbers if and only if G and G^{\prime} have the same spectrum． Indeed $c_{i+1}=c_{i+1}^{\prime}, a_{i}=a_{i}^{\prime}, b_{i}=b_{i-1}^{\prime}, f_{i}(x)=p_{i}(x)$ ．

Theorem

Suppose G is a regular graph with diameter D and spectral diameter d ． Then the following（i）－（iii）are equivalent．
（i）G is distance－regular；（Equivalently $A_{i}=p_{i}(A)$ for $0 \leq i \leq D$ ．）
（ii）$A_{d}=p_{d}(A) . \quad$（This implies $d=D$ ．）

Proof．

This follows by backward induction and using $p_{d+1}(A)=0$ ，

$$
\begin{aligned}
A_{0}+A_{1}+\cdots+A_{D} & =J=p_{0}(A)+p_{1}(A)+\cdots+p_{d}(A) \\
A p_{i}(A) & =c_{i+1}^{\prime} p_{i+1}(A)+a_{i}^{\prime} p_{i}(A)+b_{i-1}^{\prime} p_{i-1}(A) .
\end{aligned}
$$

（1）M．A．Fiol，E．Garriga and J．L．A．Yebra，Locally pseudo－distance－regular graphs，J．Combin．Theory Ser．B 68 （1996），179－205．
（2）E．R．van Dam，The spectral excess theorem for distance－regular graphs：a global（over）view，Electron．J．Combin．15（1）（2008），R129．

A graph G is 2－partially distance－regular if and only if G is k－regular and

$$
A_{2}=p_{2}(A)=c_{2}^{\prime-1}\left(A\left(A-a_{1}^{\prime} I\right)-k I\right)
$$

which is equivalent to

$$
\left|\Gamma_{1}(x) \cap \Gamma_{1}(y)\right|= \begin{cases}a_{1}^{\prime}, & \text { if } \partial(x, y)=1 ; \\ c_{2}^{\prime}, & \text { if } \partial(x, y)=2 .\end{cases}
$$

If G is bipartite 2－partially distance－regular then

$$
A_{2}=p_{2}(A)=c_{2}^{\prime-1}\left(A^{2}-k I\right)
$$

A detour to freshmen linear linear algebra

Lemma

Let N be an $n \times m$ matrix．Then there exists a one－one correspondence between the nonzero eigenvalues of $N N^{T}$ and $N^{T} N$ ．

Proof．

Suppose μ is a nonzero eigenvalue of $N N^{T}$ with corresponding eigenvector u ．Then $N N^{T} u=\mu u \neq 0$ ．In particular $N^{T} u \neq 0$ ．Since $N^{T} N N^{T} u=\mu N^{T} u, N^{T} u$ is an eigenvector of $N^{T} N$ corresponding to the eigenvalue μ ．Suppose μ has multiplicity m as an eigenvalue of $N N^{T}$ ．Let $u_{1}, u_{2}, \ldots, u_{m}$ be the corresponding orthogonal eigenvectors．If $c_{1} N^{T} u_{1}+\cdots+c_{m} N^{T} u_{m}=0$ then

$$
0=N\left(c_{1} N^{T} u_{1}+\cdots+c_{m} N^{T} u_{m}\right)=\mu\left(c_{1} u_{1}+\cdots+c_{m} u_{m}\right)
$$

and hence $c_{1}=c_{2}=\cdots=c_{m}=0$ ．This proves that the multiplicity of μ in $N N^{T}$ is no larger than that in $N^{T} N$ ．Similarly for the other side，so the two multiplicities are the same．

Lemma（Spectrum Lemma 2）

If $G=(X, Y)$ is a connected regular bipartite graph with $A_{2}=p_{2}(A)$ ， then the halved graphs G^{X} and G^{Y} have the same spectrum．

Proof．

Let X_{1} and Y_{1} be adjacency matrices of G^{X} and G^{Y} respectively．First note that

$$
A=\left(\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right)
$$

for some square matrix B ．Then
$\left(\begin{array}{cc}X_{1} & 0 \\ 0 & Y_{1}\end{array}\right)=A_{2}=p_{2}(A)=a A^{2}+b I=\left(\begin{array}{cc}a B B^{T}+b I & 0 \\ 0 & a B^{T} B+b I\end{array}\right)$
for some real numbers a, b with $a \neq 0$ ．Since（from linear algebra）$B B^{T}$ and $B^{T} B$ have the same characteristic polynomial，G^{X} and G^{Y} have the same spectrum．

The spectrum of a bipartite graph is symmetric to the 0 ．

Lemma

Let M be bipartite．Then λ is an eigenvalue of M iff $-\lambda$ is an eigenvalue of M ．Moreover λ and $-\lambda$ has the same geometry multiplicity．

Proof．

Observe in block form product

$$
\left(\begin{array}{cc}
\mathbf{0} & M_{21} \\
M_{12} & \mathbf{0}
\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}
$$

iff

$$
\left(\begin{array}{cc}
\mathbf{0} & M_{21} \\
M_{12} & \mathbf{0}
\end{array}\right)\binom{-x}{y}=-\lambda\binom{-x}{y} .
$$

Lemma（Diameter Lemma）

Let $G=(X, Y)$ be a connected regular bipartite graph with diameter D ， even spectral diameter d and $A_{2}=f(A)$ for some polynomial $f(x) \in \mathbb{R}[x]$ of degree 2．Suppose one of G^{X} and G^{Y} has spectral diameter d^{\prime} equal to its diameter．Then $D=d=2 d^{\prime}$ ．

Proof．

Let $f(x)=a x^{2}+b x+c$ for some real numbers a, b, c with $a \neq 0$ ．Since G is bipartite，by comparing the $u v$－entry with $\partial(u, v)=1$ of both sides of $A_{2}=f(A)=a A^{2}+b A+c I$ ，we have $b=0$ ，and thus $A_{2}=a A^{2}+c I$ ．If λ is an eigenvalue of A with eigenvector u then $a \lambda^{2}+c$ is an eigenvalue of A_{2} with the same eigenvector u ．Since G is bipartite and d is even，A has $d+1$ distinct eigenvalues including one 0 eigenvalue by the symmetric spectrum property．Then A_{2} has $d / 2+1$ distinct eigenvalues，which implies that both G^{X} and G^{Y} have $d / 2+1$ distinct eigenvalues，and hence have diameter at most $d / 2$ ．Thus $d \geq D \geq 2(d / 2)=d$ ，and hence $D=d$ ．

Theorem

Let G be a connected regular bipartite graph with bipartition $X \cup Y$ and even spectral diameter d ．Assume G is 2－partially distance－regular and both of the halved graphs G^{X} and G^{Y} are distance－regular．Then G is distance－regular．

Proof．

Since G is 2－partially distance－regular，$A_{2}=c_{2}^{\prime-1}\left(A^{2}-\lambda_{0} I\right)=f(A)$ ，where $f(x)=c_{2}^{\prime-1}\left(x^{2}-\lambda_{0}\right)$ is a polynomial of degree 2．By Spectrum Lemma 2， G^{X} and G^{Y} have the same spectrum，and by Spectrum Lemma 1 both G^{X} and G^{Y} have the same intersection numbers and the same diameter d^{\prime} ；indeed we have $D=d=2 d^{\prime}$ by Diameter Lemma．Thus G^{X} and G^{Y} have the same（pre）distance－polynomials $f_{i}, 0 \leq i \leq d / 2$ ．Note that

$$
A_{2 i}=\left(\begin{array}{cc}
X_{i} & 0 \\
0 & Y_{i}
\end{array}\right)=\left(\begin{array}{cc}
f_{i}\left(X_{1}\right) & 0 \\
0 & f_{i}\left(Y_{1}\right)
\end{array}\right)=f_{i}\left(A_{2}\right)=g_{2 i}(A), \quad 0 \leq i \leq d / 2
$$

and X_{i} and Y_{i} are i－th distance matrices of G^{X} and G^{Y} respectively，
and $g_{2 i}$ is even of degree $2 i$ ．In particular $A_{d}=g_{d}(A)$ is a polynomial of A with degree d ．It remains to show that $g_{d}=p_{d}$ ．Since G is regular，

$$
A_{d} J=g_{d}(A) J=g_{d}\left(\lambda_{0}\right) J
$$

Then each row of A_{d} has exactly $g_{d}\left(\lambda_{0}\right)$ ones．Note that $\left\|g_{d}\right\|^{2}=\left\langle g_{d}(A), g_{d}(A)\right\rangle=\left\langle A_{d}, A_{d}\right\rangle=g_{d}\left(\lambda_{0}\right)$ ．For every polynomial $h \in \mathbb{R}_{d-1}[x]$ ，

$$
\left\langle g_{d}, h\right\rangle=\left\langle A_{d}, h(A)\right\rangle=0 .
$$

By the uniqueness of the predistance polynomials，it follows that $g_{d}=p_{d}$ ．

The assumption 2－partially distance－regular is necessary

The following example gives a regular bipartite graph G with $G^{X}=G^{Y}$ being a clique and even spectral diameter，but G is not 2－partially distance－regular．

Example

Let $G=K_{5,5}-C_{4}-C_{6}$ be a regular graph obtained by deleting a C_{4} and a C_{6} from $K_{5,5}$ ．We have sp $G=\left\{3^{1}, 2^{1}, 1^{2}, 0^{2},(-1)^{2},(-2)^{1},(-3)^{1}\right\}$ ， $D=3<6=d$ and $G^{2}=2 K_{5}$ ．

$C_{4}+C_{6}$

The assumption 2－partially distance－regular is necessary

Example

Let G be the Hoffman graph，which is a cospectral graph of 4－cube obtained from 4 －cune by applying GM－swithching of edges．Then sp $G=\left\{4^{1}, 2^{4}, 0^{6},(-2)^{4},(-4)^{1}\right\}, D=d=4$ ，and

$$
A_{i}=p_{i}(A) \quad \text { iff } \quad i \in\{0,1,3\} .
$$

Note that G^{2} is the disjoint union of K_{8} and $K_{2,2,2,2}\left(=K_{8}-4 K_{2}\right)$ ，which are both distance－regular（sp $K_{2,2,2,2}=\left\{6^{1}, 0^{4},(-2)^{3}\right\}$ ）．

The 4－cube．

The Hoffman graph．

Copy from http：／／en．wikipedia．org／wiki／Hoffman＿graph

Another drawing of 4 －cube and Hoffman graph

The 4－cube

The assumption even spectral diameter is necessary

The following example gives a bipartite 2－partially distance－regular graph G with $D=d=5$ such that G^{X}, G^{Y} are distance－regular graphs with spectrum $\left\{6^{1}, 1^{4},(-2)^{5}\right\}$（the complement of petersen graph），but G is not distance－regular．

Example

Consider the regular bipartite graphs G on 20 vertices obtained from the Desargues graph（the bipartite double of the Petersen graph）by the GM－switching．One can check（by Maple）that $D=d=5$ ， sp $G=\left\{3^{1}, 2^{4}, 1^{5},(-1)^{5},(-2)^{4},(-3)^{1}\right\}$ ，and

$$
A_{i}=p_{i}(A) \quad \text { iff } \quad i \in\{0,1,2,4\} .
$$

Then G is not distance－regular．

Desargues graph and its cospectral mate

For those who think that a combinatorial theorem should be stated and proved in a combinatorial way might want to solve the following problem which replace the spectral diameter d by the diameter D in the of main theorem．

Problem

Let G be a connected regular bipartite graph with bipartition $X \cup Y$ and even diameter D ．Assume G is 2－partially distance－regular and both of the halved graphs G^{X} and G^{Y} are distance－regular with the same set of intersection numbers．Then G is distance－regular．

Unfortunately，we have an countrexample for the previous problem．

Example

Consider the Möbius－Kantor graph G ．One can check（by Maple）that $D=4<5=d$ ，and

$$
A_{i}=p_{i}(A) \quad \text { iff } \quad i \in\{0,1,2,4\} .
$$

Note that $G^{2}=2 X$ ，where X is the 16 －cell graph，which is distance－regular with sp $X=\left\{6^{1}, 0^{4},(-2)^{3}\right\}$ ．

Möbius－Kantor graph

16－cell graph

Copy from https：／／en．wikipedia．org／wiki

Thanks for your attention．

