Spectral characterization of graphs

Chih-wen Weng

Joint work with Yu-pei Huang, Guang-Siang Lee and Chia-an Liu

Department of Applied Mathematics National Chiao Tung University

July 12, 2013

Notations

Let G be a simple connected graph of order n.

The adjacency matrix $A=(a_{ij})$ of G is a binary square matrix of order n with rows and columns indexed by the vertex set VG of G such that for any $i,j\in VG$, $a_{ij}=1$ if i,j are adjacent in G.

$$\begin{array}{cccc}
\bigcirc & \bigcirc & \bigcirc \\
1 & 2 & 3
\end{array}$$

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

Let $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A)$ denote the eigenvalues of A, and $\lambda_i(G) := \lambda_i(A)$.

Eigenvalues help us to realize the structure of a graph

Theorem

For a graph G of order n, G is bipartite if and only if $\lambda_1(G) = -\lambda_n(G).$

Dongbo Bu, et al., Topological structure analysis of the protein-protein interaction network in budding yeast, Nucleic Acids Research, 2003, Vol. 31. No. 9. 2443-2450.

Eigenvalues help us to solve problems in Combinatorics

Let $\chi(G)$ denote the chromatic number of G.

Theorem (Wilf Theorem(1967) and Hoffman(1970))

For a graph G,

$$(\lambda_n(G) - \lambda_1(G))/\lambda_n(G) \le \chi(G) \le \lambda_1(G) + 1.$$

To estimate the integer value $\chi(G)$, only approximations of $\lambda_1(G)$ and $\lambda_n(G)$ are necessary.

Estimate the eigenvalues of a matrix by matrices of smaller sizes

It is well-known that

$$\lambda_1 = \max_{\substack{x \in \mathbb{R}^n \\ x^{\top}x = 1}} x^{\top} A x, \qquad \lambda_n = \min_{\substack{x \in \mathbb{R}^n \\ x^{\top}x = 1}} x^{\top} A x.$$

The following theorem generalizes this property.

Theorem (Cauchy interlacing theorem)

For m < n, and an $m \times n$ matrix S with $SS^{\top} = I$,

$$\lambda_i(A) \ge \lambda_i(SAS^\top),$$

 $\lambda_{n+1-i}(A) \le \lambda_{m+1-i}(SAS^\top)$

for 1 < i < m.

Example

Choose $S=[I\ 0]$ in block form and then SAS^{\top} becomes the adjacency matrix of an induced subgraph of G.

List the eigenvalues of paths P_n and P_{n-1} of orders n and n-1 respectively:

$$2\cos\frac{\pi}{n+1} > 2\cos\frac{2\pi}{n+1} > 2\cos\frac{3\pi}{n+1} > \dots > 2\cos\frac{(n-1)\pi}{n+1} > 2\cos\frac{n\pi}{n+1}$$

$$\searrow 2\cos\frac{\pi}{n} > 2\cos\frac{2\pi}{n} > \dots > 2\cos\frac{(n-1)\pi}{n} \nearrow$$

The above method does not give us an upper bound of $\lambda_1(A)$.

Can we find a matrix M whose largest eigenvalue $\lambda_1(M)$ gives an upper bound of $\lambda_1(G)$?

Perron-Frobenius Theorem

Let $d_1 \geq d_2 \geq \cdots \geq d_n$ denote the degree sequence of G.

Theorem

$$\lambda_1(G) \leq d_1$$

with equality iff G is regular.

Let $[d_1]$ be a 1×1 matrix. The above theorem says

$$\lambda_1(G) \leq \lambda_1([d_1]).$$

Another upper bound of $\lambda_1(G)$ is

Theorem (Stanley, 1987)

$$\lambda_1(G) \le \frac{-1 + \sqrt{1 + 8|EG|}}{2}$$

with equality if and only if G is the complete graph K_n .

Equivalently, $\lambda_1(G)$ is bounded above by

$$\lambda_{1} \left(\begin{bmatrix} 0 & 1 & \cdots & 1 & d_{1} - (n-1) \\ 1 & 0 & 1 & \cdots & 1 & d_{2} - (n-1) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ & & 1 & 0 & d_{n} - (n-1) \\ 1 & \cdots & & 1 & d_{n+1} - n \end{bmatrix}_{(n+1) \times (n+1)} \right),$$

where $d_{n+1} := 0$, thinking of an isolated vertex being added.

An improvement of Stanley Theorem is

Theorem (Yuan Hong, Jin-Long Shu and Kunfu Fang, 2001)

$$\lambda_1(G) \le \frac{d_n - 1 + \sqrt{(d_n + 1)^2 + 4(2|EG| - nd_n)}}{2},$$

with equality if and only if G is regular or there exists $2 \le t \le n$ such that $d_1 = d_{t-1} = n-1$ and $d_t = d_n$.

Equivalently, $\lambda_1(G)$ is bounded above by

$$\lambda_{1} \begin{pmatrix} \begin{bmatrix} 0 & 1 & \cdots & & 1 & d_{1} - n + 2 \\ 1 & 0 & 1 & \cdots & 1 & d_{2} - n + 2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ & & & 1 & 0 & d_{n-1} - n + 2 \\ 1 & \cdots & & & 1 & d_{n} - n + 1 \end{bmatrix}_{n \times n} \right).$$

Another version is

Theorem (Kinkar Ch. Das, 2011)

$$\lambda_1(G) \le \frac{d_2 - 1 + \sqrt{(d_2 + 1)^2 + 4(d_1 - d_2)}}{2},$$

with equality if and only if either G is regular, or $d_1 = n - 1$ and $d_2 = d_n$.

Equivalently,

$$\lambda_1(G) \le \lambda_1 \left(\begin{bmatrix} 0 & d_1 \\ 1 & d_2 - 1 \end{bmatrix}_{2 \times 2} \right).$$

The parameter ϕ_ℓ

For $1 \le \ell \le n$, let

$$\phi_{\ell}(G) := \lambda_{1} \begin{pmatrix} \begin{bmatrix} 0 & 1 & \cdots & 1 & d_{1} - \ell + 2 \\ 1 & 0 & 1 & \cdots & 1 & d_{2} - \ell + 2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ & & 1 & 0 & d_{\ell-1} - \ell + 2 \\ 1 & \cdots & & 1 & d_{\ell} - \ell + 1 \end{bmatrix}_{\ell \times \ell}$$

$$= \frac{d_{\ell} - 1 + \sqrt{(d_{\ell} + 1)^{2} + 4 \sum_{i=1}^{\ell-1} (d_{i} - d_{\ell})}}{2}.$$

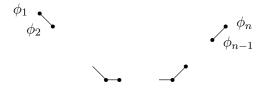
Theorem (Chia-an Liu, —, 2013)

For each $1 \le \ell \le n$,

$$\lambda_1(G) \leq \phi_\ell(G),$$

with equality iff G is regular or there exists $2 \le t \le \ell$ such that $d_1 = d_{t-1} = n-1$ and $d_t = d_n$.

Moreover, we show that the function $\phi_{\ell}(G)$ in variable ℓ is convex.



Small technical difficulty in the proof

The matrix

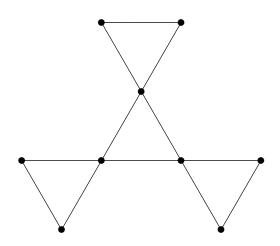
$$\begin{bmatrix} 0 & 1 & \cdots & 1 & d_1 - \ell + 2 \\ 1 & 0 & 1 & \cdots & 1 & d_2 - \ell + 2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ & & 1 & 0 & d_{\ell-1} - \ell + 2 \\ 1 & \cdots & & 1 & d_{\ell} - \ell + 1 \end{bmatrix}_{\ell \times \ell}$$

needs not to be nonnegative.

Our formal proof follows the idea of Jinlong Shu and Yarong Wu 2004, which applies Perron-Frobenius Theorem to $U^{-1}AU$ with some carefully selected diagonal matrix U.

The number $m_i:=\frac{1}{d_i}\sum_{j\sim i}d_j$ is called the average 2-degree of i. List m_i in the decreasing ordering as

$$M_1 \ge M_2 \ge \cdots \ge M_n$$
.



A non-regular graph with $M_1=M_2=\cdots=M_9=3$

Applying Perron-Frobenius Theorem to

$$\begin{pmatrix} d_1 & & & & 0 \\ & d_2 & & & \\ & & \ddots & & \\ 0 & & & d_n \end{pmatrix}^{-1} A \begin{pmatrix} d_1 & & & 0 \\ & d_2 & & & \\ & & \ddots & & \\ 0 & & & d_n \end{pmatrix}$$

we have

Theorem

$$\lambda_1(G) \leq M_1$$

with equality iff $M_1 = M_n$.

An improvement of the upper bound M_1 ,

Theorem (Ya-hong Chen and Rong-yin Pan and Xiao-dong Zhang, 2011)

$$\lambda_1(G) \le \frac{M_2 - a + \sqrt{(M_2 + a)^2 + 4a(M_1 - M_2)}}{2},$$

with equality iff $M_1 = M_n$, where $a = \max\{d_i/d_j \mid 1 \le i, j \le n\}$.

Equivalently,

$$\lambda_1(G) \le \lambda_1 \left(\begin{bmatrix} 0 & M_1 \\ a & M_2 - a \end{bmatrix} \right).$$

Let $b \ge \max\{d_i/d_j \mid 1 \le i, j \le n, i \sim j\}$, and for $1 \le \ell \le n$, let

$$\begin{split} \psi_{\ell}(G) := & \lambda_1 \begin{pmatrix} \begin{bmatrix} 0 & b & \cdots & b & M_1 - (\ell - 2)b \\ b & 0 & b & \cdots & b & M_2 - (\ell - 2)b \\ \vdots & \ddots & \ddots & \vdots & & \vdots \\ & & b & 0 & M_{\ell-1} - (\ell - 2)b \\ b & \cdots & & b & M_{\ell} - (\ell - 1)b \end{pmatrix} \\ = & \frac{M_{\ell} - b + \sqrt{(M_{\ell} + b)^2 + 4b \sum_{i=1}^{\ell-1} (M_i - M_{\ell})}}{2}. \end{split}$$

Theorem (Yu-pei Huang, —, 2013)

For each $1 \le \ell \le n$,

$$\lambda_1(G) \leq \psi_\ell(G),$$

with equality iff $M_1 = M_n$.

Problem: In the spirit of Cauchy interlacing theorem, give a uniform way to find a matrix M with $\lambda_1(A) \leq \lambda_1(M)$ that generalizes the above matrices.

Sometimes, the eigenvector $\alpha > 0$ (Perron vector) of A corresponding to $\lambda_1(A)$ also involves in the study.

For instance the Perron vector of the web graph plays a key role in ranking the web pages by Google.

Our second spectral characterization of graphs is related to distance-regular graphs.

Distance-regular graphs

We recall definition of DRGs and their basic properties.

A graph G with diameter D is distance-regular if and only if for $i \leq D$,

$$c_i := |G_1(x) \cap G_{i-1}(y)|,$$

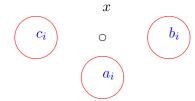
 $a_i := |G_1(x) \cap G_i(y)|,$
 $b_i := |G_1(x) \cap G_{i+1}(y)|$

are constants subject to all vertices x, y with $\partial(x, y) = i$.

$$\partial(x,y) = i$$

y

(



Note that $a_i + b_i + c_i = b_0$ and $k := b_0$ is the valency of G.

Distance-Regular graphs, also called P-polynomial schemes, form an important subclass of association schemes.

"Association schemes are the frameworks on which coding theory, design theory and other theories developed in a unified and satisfactory way.

There are many mathematical objects whose essence is that of association schemes and many different names are given to the essentially the same mathematical concept: Adjacency algebra, Bose-Mesner algebra, centralizer ring, Hecke ring, Schur ring, character algebra, hypergroup, probabilistic group, etc" ——Eiichi Bannai and Tatsuro Ito

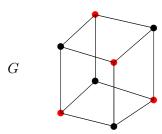
Distance matrices

The matrices that we are concerned are square matrices with rows and columns indexed by the vertex set VG. Let α be an eigenvector of A corresponding to $\lambda_1(G)$ normalized to $\alpha^\top \alpha = n$. For each i let A_i be the matrix with entries

$$(A_i)_{xy} = \begin{cases} \alpha_x \alpha_y, & \text{if } \partial(x, y) = i; \\ 0, & \text{else.} \end{cases}$$

 A_i is called *i*-th distance matrix of Γ . Note $A_0 = I$ and $A_{-1} = A_{D+1} = 0$.

If G is regular then $\alpha = (1, 1, \dots, 1)^{\top}$, so A_i is binary and $A_1 = A$.



$$A_0 = I$$
,

$$A_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Three-term recurrence relation of DRGs

Theorem

Let G be a regular graph. Then the following are equivalent.

- G is distance-regular;
- $AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \qquad 0 \le i \le D;$
- ① there exist a unique sequence of polynomials $p_0(x)=1$, $p_1(x)=x$, ..., $p_D(x)$ such that $\deg(p_i)=i$ and $A_i=p_i(A)$.

The polynomials $p_0(x) = 1$, $p_1(x) = x$, ..., $p_D(x)$ are called distance polynomials of a DRG, but they can be reconstructed in a general graph.

Let G a general graph G with adjacency matrix A and minimal polynomial of degree d+1. Since A is symmetric, A has d+1 distinct eigenvalues. The number d is called the spectral diameter of G. It is well-known that $d \geq D$.

Define an inner product on the space of real polynomials of degrees at most \boldsymbol{d} by

$$\langle f(\lambda), g(\lambda) \rangle = \frac{1}{n} \operatorname{trace} \left(f(A)g(A)^{\top} \right).$$

Then there exists a unique sequence of orthogonal polynomials $p_0(x)=1$, $p_1(x)$, . . . , $p_d(x)$ such that

$$\deg(p_i) = i,$$
 and $\langle p_i(x), p_i(x) \rangle = p_i(\lambda_1).$

G is t-partially distance-regular if $A_i = p_i(A)$ for $0 \le i \le t$.

The number

$$p_d(\lambda_1)$$

is called the spectral excess of G; while the number

$$\delta_D := \frac{1}{n} \operatorname{trace}(A_D A_D^{\top})$$

is called the excess of G.

When G is regular

$$\delta_D = \frac{1}{n} \sum_{x \in V(G)} |G_D(x)|$$

is the average number of vertices which have distance the diameter to a vertex.

Spectral Excess Theorem

Theorem (M.A. Fiol, E. Garriga and J.L.A. Yebra, 1996)

If G is regular then

$$\delta_D \leq p_d(\lambda_1),$$

with equality iff G is distance-regular.

Short proofs are given by [E.R. van Dam, 2008] and [M.A. Fiol, S. Gago and E. Garriga, 2010].

Base on the short proofs, the regularity assumption of G is dropped in the Spectral Excess Theorem by [Guang-Siang Lee, ____, 2012].

Application

The odd girth of a graph is the smallest length of an odd cycle in the the graph.

Corollary (E.R. van Dam and W.H. Haemers, 2011)

A regular graph with odd girth 2d+1 is a generalized odd graph.

The above corollary generalizes the spectral characterization of generalized odd graphs [Tayuan Huang, 1994], [Tayuan Huang and Chao Rong Liu, 1999]. Tayuan Huang is an Emeritus of NCTU.

The regularity assumption is dropped in the above corollary by [Guang-Siang Lee, ——, 2012].

Applying Spectral Excess Theorem to bipartite graphs, we have

Theorem (Guang-Siang Lee, —, 2013)

Assume G is bipartite with bipartition $X \cup Y$ and even spectral diameter d. Then the following are equivalent.

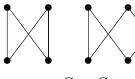
- (i) $\delta_D = p_d(\lambda_1);$
- (ii) G is distance-regular;
- (iii) G is 2-partially distance-regular and both of the halved graphs G^X and G^Y are distance-regular.

The assumption 2-partially distance-regular is necessary

The following example gives a regular bipartite graph G with $G^X=G^Y$ being a clique and even spectral diameter, but G is not 2-partially distance-regular.

Example

Let $G=K_{5,5}-C_4-C_6$ be a regular graph obtained by deleting a C_4 and a C_6 from $K_{5,5}$. We have sp $G=\{3^1,2^1,1^2,0^2,(-1)^2,(-2)^1,(-3)^1\}$, D=3<6=d and $G^2=2K_5$.



Example

Let G be the Hoffman graph, which is a cospectral graph of 4-cube obtained from 4-cune by applying GM-swithching of edges. Then sp $G=\{4^1,2^4,0^6,(-2)^4,(-4)^1\},$ D=d=4, and

$$A_i = p_i(A)$$
 iff $i \in \{0, 1, 3\}.$

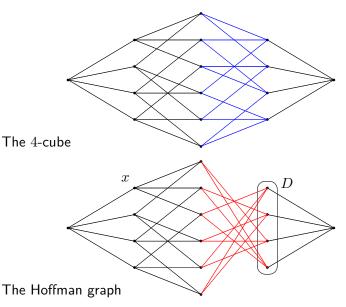
Note that G^2 is the disjoint union of K_8 and $K_{2,2,2,2} (= K_8 - 4K_2)$, which are both distance-regular (sp $K_{2,2,2,2} = \{6^1, 0^4, (-2)^3\}$).

The 4-cube.

The Hoffman graph.

Copy from http://en.wikipedia.org/wiki/Hoffman_graph

Another drawing of 4-cube and Hoffman graph



The assumption even spectral diameter is necessary

The following example gives a bipartite 2-partially distance-regular graph G with D=d=5 such that G^X , G^Y are distance-regular graphs with spectrum $\{6^1,1^4,(-2)^5\}$ (the complement of petersen graph), but G is not distance-regular.

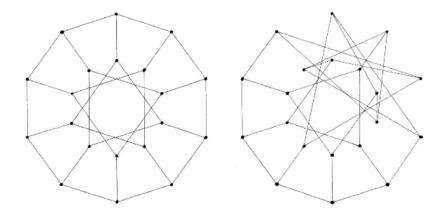
Example

Consider the regular bipartite graphs G on 20 vertices obtained from the Desargues graph (the bipartite double of the Petersen graph) by the GM-switching. One can check (by Maple) that D=d=5, sp $G=\{3^1,2^4,1^5,(-1)^5,(-2)^4,(-3)^1\}$, and

$$A_i = p_i(A)$$
 iff $i \in \{0, 1, 2, 4\}.$

Then G is not distance-regular.

Desargues graph and its cospectral mate



Near DRGs

Similar to the definition of excess, one can define

$$\delta_i := \frac{1}{n} \operatorname{trace}(A_i A_i^{\top}),$$

and want to characterize the graphs satisfying $\delta_i = p_i(\lambda_1)$ for some i.

Note that

$$A_i = p_i(A) \quad \Rightarrow \quad \delta_i = p_i(\lambda_1).$$

A bipartite graph with bipartitin $V(G) = X \cup Y$ is biregular if there exist distinct integers $k \neq k'$ such that every $x \in X$ has degree k, and every $y \in Y$ has degree k'.

Proposition

Let G be a connected graph. Then $\delta_1 \geq p_1(\lambda_1)$, and the following statements are equivalent.

- (i) $\delta_1 = p_1(\lambda_1)$,
- (ii) $A_1 = p_1(A)$,
- (iii) G is regular or G is bipartite biregular.

Theorem (Guang-Siang Lee, ——, 2013)

Let G be a connected bipartite graph with bipartition $X \cup Y$ and assume that the spectral diameter d is odd. Then the following are equivalent.

- (i) $\delta_i = p_i(\lambda_1)$ for even i;
- (ii) $\delta_{d-1} = p_{d-1}(\lambda_1);$
- (iii) G is 2-partially distance-regular and both of the halved graphs G^X and G^Y are distance-regular $\lfloor d/2 \rfloor$.

We shall provide two graphs that satisfy the above equivalent conditions, but are not distance-regular graphs.

We saw the first one before.

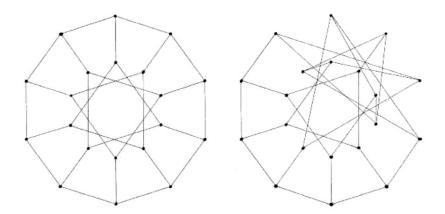
Example (W.H. Haemers and E. Spence, 1995)

Consider the regular bipartite graphs G on 20 vertices obtained from the Desargues graph (the bipartite double of the Petersen graph) by the GM-switching. One can check (by Maple) that D=d=5, sp $G=\{3^1,2^4,1^5,(-1)^5,(-2)^4,(-3)^1\}$, and

$$A_i = p_i(A)$$
 iff $i \in \{0, 1, 2, 4\}.$

Then G is not distance-regular.

Desargues graph and its cospectral mate



Example (D. Marušič and T. Pisanski, 2000)

Consider the Möbius-Kantor graph G. One can check (by Maple) that D=4<5=d, and

$$A_i = p_i(A)$$
 iff $i \in \{0, 1, 2, 4\}.$

Möbius-Kantor graph

Copy from https://en.wikipedia.org/wiki

References I

- Ya-hong Chen and Rong-yin Pan and Xiao-dong Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2 (2011), 185-191.
- Winkar Ch. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, Linear Algebra and its Applications, 435 (2011), 2420-2424.
- Yuan Hong, Jin-Long Shu and Kunfu Fang, A sharp upper bound of the spectral radius of graphs, Journal of Combinatorial Theory, Series B 81 (2001), 177-183.
- Jinlong Shu and Yarong Wu, Sharp upper bounds on the spectral radius of graphs, Linear Algebra and its Applications, 377 (2004), 241-248.
- Richard. P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra and its Applications, 87 (1987), 267-269.

References II

- E.R. van Dam, The spectral excess theorem for distance-regular graphs: a global (over)view, Electron. J. Combin. 15 (1) (2008), #R129.
- E.R. van Dam and W.H. Haemers, An odd characterization of the generalized odd graphs, J. Combin. Theory Ser. B 101 (2011), 486-489.
- M.A. Fiol, E. Garriga and J.L.A. Yebra, On a class of polynomials and its relation with the spectra and diameters of graphs, J. Combin. Theory Ser. B 67 (1996), 48-61.
- M.A. Fiol, S. Gago and E. Garriga, A simple proof of the spectral excess theorem for distance-regular graphs, Linear Algebra and its Applications, 432(2010), 2418-2422.
- W.H. Haemers and E. Spence, Graphs cospectral with distance-regular graphs, Linear Multili. Alg. 39 (1995), 91-107.
- **10** D. Marušič and T. Pisanski, The remarkable generalized Petersen graph G(8,3), Math. Slovaca 50 (2000), 117-121.

References III

- Yu-pei Huang and Chih-wen Weng, Spectral Radius and Average 2-Degree Sequence of a Graph, preprint.
- Guang-Siang Lee and Chih-wen Weng, A spectral excess theorem for nonregular graphs, Journal of Combinatorial Theory, Series A, 119(2012), 1427-1431.
- Guang-Siang Lee and Chih-wen Weng, A characterization of bipartite distance-regular graphs, preprint.
- Chia-an Liu and Chih-wen Weng, Spectral radius and degree sequence of a graph, Linear Algebra and its Applications, (2013), http:// dx.doi.org/10.1016/j.laa.2012.12.016

Thanks for your attention.