The flipping puzzle on a graph

Hau-wen Huang
Chih-wen Weng(Speaker)
Department of Applied Mathematics
National Chiao Tung University
Taiwan

Flipping puzzle

The configuration of the flipping puzzle is a fixed simple graph S, together with an assignment of state 0 (white) or state 1(black) on each vertex of S.

A move in the puzzle is to select a vertex s which has state 1, and then flip the states of all neighbors of s.

Example

Equivalent configurations

Two configurations are equivalent if one can be obtained from the other by a sequence of moves.

Question: Determine the above equivalent classes (orbits).

Vector representation of configurations

We use $F_{2}{ }^{n}$ to describe the configurations. Example:

Matrix representations of moves

Example:

Matrix representations of moves

Definition 0.1. For $s \in S$, we associate a matrix $\mathbf{s} \in \operatorname{Mat}_{n}\left(F_{2}\right)$, denoted by the bold type of s, as

$$
\mathbf{s}_{a b}= \begin{cases}1, & \text { if } a=b, \text { or } b=s \text { and } a b \in R \\ 0, & \text { else }\end{cases}
$$

where $a, b \in S$ and R is the edge set of S.

Group action

Flipping groups

Definition 0.2. Let \mathbf{W} denote the subgroup of $\mathrm{GL}_{n}\left(F_{2}\right)$ generated by the set $\{\mathbf{s} \mid s \in S\}$. \mathbf{W} is referring to the fipping group of S.

Theorem (2008, Huang \& Weng)

W is isomorphic to $\mathrm{W} / \mathrm{Z}(\mathrm{W})$,

where W is the Coxeter group of the Dynkin diagram and $\mathrm{Z}(\mathrm{W})$ is the center.

Moreover, $|\mathrm{Z}(\mathrm{W})|$ is 1 or 2.

Flipping group

Flipping group is
"the reflection group on a graph"

The graph with a long path

We will determine the orbits for the previous graph.

We need a nice basis to describe our result.

Standard basis

$$
\widetilde{s}=(0,0, \ldots, 0,1,0, \ldots, 0)^{t}
$$

where 1 is in the position corresponding to the vertex s

More setting

$$
\overline{1}=\widetilde{s}_{1}, \overline{i+1}=\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}-\mathbf{1}} \cdots \mathbf{s}_{\mathbf{1}} \overline{1} \quad \text { for } 1 \leq i \leq n-1
$$

$$
\begin{aligned}
\Pi & =\{\overline{1}, \overline{2}, \ldots, \bar{n}\} \\
\Pi_{0} & =\left\{\bar{i} \in \Pi \mid<\bar{i}, \widetilde{s}_{n}>=0\right\} \\
\Pi_{1} & =\Pi-\Pi_{0}
\end{aligned}
$$

Byproduct

Theorem 0.3. The flipping group \mathbf{W} is unique up to isomorphism among all the graphs satisfying Assumption with the given cardinality $\left|\Pi_{1}\right|$.

Surprising

Coxeter groups are very different according to different graphs,
but there are at most n-1 non-isomorphic flipping groups in the 2^{n} graphs that we are concerned.

The Submodule U

Corollary 0.4. The subspace U spanned by the vectors in Π is a \mathbf{W}-submodule of F_{2}^{n}.
Proposition 0.5. The subspace U in Corollary 0.4 has the basis set

$$
\begin{cases}\Pi, & \text { if }\left|\Pi_{1}\right| \text { is odd; } \\ \Pi-\{\bar{j}\}, & \text { if }\left|\Pi_{1}\right| \text { is even }\end{cases}
$$

for any $\bar{j} \in \Pi$. Moreover $\widetilde{s}_{n} \notin U$ if $\left|\Pi_{1}\right|$ is even.

Simple Basis

Set

$$
\Delta:= \begin{cases}\Pi, & \text { if }\left|\Pi_{1}\right| \text { is odd } \\ \Pi \cup\{\overline{n+1}\}-\{\bar{n}\}, & \text { if }\left|\Pi_{1}\right| \text { is even }\end{cases}
$$

where $\overline{n+1}=\widetilde{s}_{n}$.

Simple Weight and Weight

Let $\Delta(u)$ be the subset of Δ such that

$$
u=\sum_{\bar{i} \in \Delta(u)} \bar{i}
$$

set $s w(u):=|\Delta(u)|$, and we refer $s w(u)$ to be the simple weight of u.

$$
w(u):=\left|\left\{s_{i} \in S \mid u_{s_{i}}=1\right\}\right|
$$

More Setting

For $V \subseteq F_{2}^{n}$ and $T \subseteq\{0,1, \ldots, n\}$,

$$
V_{T}:=\{u \in V \mid s w(u) \in T\},
$$

and for shortness $V_{t_{1}, t_{2}, \ldots, t_{i}}:=V_{\left\{t_{1}, t_{2}, \ldots, t_{i}\right\}}$. Let odd be the subset of $\{1,2, \ldots, n\}$ consisting of odd integers.

Three classes of subsets of $\{1,2, \ldots, n\}$

$$
\begin{aligned}
& A_{i}:=\left\{j \in[n]\left|j \equiv i, n+\left|\Pi_{1}\right|-i \quad(\bmod 4)\right\},\right. \\
B_{i}= & \left\{j \in[n-1]\left|j \equiv i, i+\left|\Pi_{1}\right|-2, n-i, n-i+\left|\Pi_{1}\right|-2 \quad(\bmod 4)\right\},\right. \\
C_{i}= & \left\{j \in[n]\left|j \equiv i, i+\left|\Pi_{1}\right|, n+2-i, n+2-i+\left|\Pi_{1}\right| \quad(\bmod 4)\right\} .\right.
\end{aligned}
$$

The Orbits (Case 1)

$\left|\Pi_{1}\right| \quad n \quad$| nontrivial $O \in \mathcal{P}$ |
| :---: |
| (might be repeated) |$|\mathcal{P}|$

$$
\begin{gathered}
3 \leq\left|\Pi_{1}\right| \leq n-3 \\
\left|\Pi_{1}\right| \text { is odd }
\end{gathered}
$$

$$
3 \leq\left|\Pi_{1}\right| \leq n-3,
$$

odd
$U_{A_{j}}$
4
$\left|\Pi_{1}\right|$ is odd

The Orbits (Case 2)

$\left|\Pi_{1}\right| \quad n \quad$| nontrivial $O \in \mathcal{P}$ |
| :---: |
| (might be repeated) |$|\mathcal{P}|$

$$
4 \leq\left|\Pi_{1}\right| \leq n-3,
$$

even

$$
\begin{equation*}
U_{B_{j}}, \bar{U}_{C_{j}} \tag{6}
\end{equation*}
$$

$$
\begin{gathered}
4 \leq\left|\Pi_{1}\right| \leq n-3, \\
\quad \text { odd } \quad U_{B_{j}}, \bar{U}_{C_{j}} \\
\left|\Pi_{1}\right| \text { is even }
\end{gathered}
$$

The Orbits (Case 3)

$\left|\Pi_{1}\right| \quad n \quad$ nontrivial $O \in \mathcal{P}$ (might be repeated)

$$
\left|\Pi_{1}\right|=1 \quad U_{t, n+1-t} \quad\lceil n+2 / 2\rceil
$$

$$
\left|\Pi_{1}\right|=2 \quad \text { even } \quad U_{i, n-i}, \bar{U}_{C_{1}}, \bar{U}_{C_{2}} \quad(n+6) / 2
$$

$$
\left|\Pi_{1}\right|=2 \quad \text { odd } \quad U_{i, n-i}, \bar{U}_{C_{1}}, \bar{U}_{C_{2}} \quad(n+3) / 2
$$

The Orbits (Case 4)

| $\left\|\Pi_{1}\right\|$ | n | nontrivial $O \in \mathcal{P}$
 (might be repeated) |
| :--- | :--- | :---: |$|\mathcal{P}|$

$\left|\Pi_{1}\right|=n-2$,
odd
$U_{o d d}, U_{2 i}$
$(n+3) / 2$
$\left|\Pi_{1}\right|$ is odd
$\left|\Pi_{1}\right|=n-2$,
$\left|\Pi_{1}\right|$ is even
even
$U_{\text {odd }}, U_{2 h, n-2 h}$,

$$
(n+6) / 2
$$

The Orbits (Case 5)

$\left|\Pi_{1}\right| \quad n \quad$| nontrivial $O \in \mathcal{P}$ |
| :---: |
| (might be repeated) |$\quad|\mathcal{P}|$

$$
\begin{gathered}
\left|\Pi_{1}\right|=n-1, \\
\left|\Pi_{1}\right| \text { is odd }
\end{gathered} \quad \text { even } \quad U_{2 t-1,2 t} \quad(n+2) / 2
$$

The End!

Thank You for Your Attention!
http://arxiv.org/PS cache/arxiv/pdf/0808/0808.2 104v1.pdf to get the preprint

