The flipping puzzle on a graph

August 20, 2008

Hau-wen Huang Chih-wen Weng(Speaker) Department of Applied Mathematics National Chiao Tung University Taiwan

Flipping puzzle

The **configuration** of the flipping puzzle is a fixed simple graph *S*, together with an assignment of state 0(white) or state 1(black) on each vertex of *S*.

A **move** in the puzzle is to select a vertex *s* which has state 1, and then flip the states of all neighbors of *s*.

Example

Equivalent configurations

Two configurations are **equivalent** if one can be obtained from the other by a sequence of moves.

Question: Determine the above equivalent classes (orbits).

Vector representation of configurations

Matrix representations of moves

Matrix representations of moves

Definition 0.1. For $s \in S$, we associate a matrix $s \in Mat_n(F_2)$, denoted by the bold type of s, as

$$\mathbf{s}_{ab} = \begin{cases} 1, & \text{if } a = b, \text{ or } b = s \text{ and } ab \in R; \\ 0, & \text{else}, \end{cases}$$

where $a, b \in S$ and R is the edge set of S.

Group action

Flipping groups

Definition 0.2. Let W denote the subgroup of $GL_n(F_2)$ generated by the set $\{\mathbf{s} \mid s \in S\}$. W is referring to the *flipping group* of S.

Theorem (2008, Huang & Weng)

W is isomorphic to W/Z(W),

where W is the Coxeter group of the Dynkin diagram and Z(W) is the center.

Moreover, |Z(W)| is 1 or 2.

Flipping group

Flipping group is

"the reflection group on a graph"

The graph with a long path

We will determine the orbits for the previous graph.

We need a nice basis to describe our result.

Standard basis

$\widetilde{s} = (0, 0, \dots, 0, 1, 0, \dots, 0)^t$

where 1 is in the position corresponding to the vertex s

More setting

 $\overline{1} = \widetilde{s}_1, \ \overline{i+1} = \mathbf{s}_i \mathbf{s}_{i-1} \cdots \mathbf{s}_1 \overline{1} \quad \text{for } 1 \le i \le n-1.$

 $\Pi = \{\overline{1}, \overline{2}, \dots, \overline{n}\}, \\ \Pi_0 = \{\overline{i} \in \Pi \mid < \overline{i}, \widetilde{s}_n >= 0\}, \\ \Pi_1 = \Pi - \Pi_0, \end{cases}$

Byproduct

Theorem 0.3. The flipping group \mathbf{W} is unique up to isomorphism among all the graphs satisfying Assumption with the given cardinality $|\Pi_1|$.

Surprising

Coxeter groups are very different according to different graphs,

but there are at most n-1 non-isomorphic flipping groups in the 2ⁿ graphs that we are concerned.

The Submodule U

Corollary 0.4. The subspace U spanned by the vectors in Π is a W-submodule of F_2^n .

Proposition 0.5. The subspace U in Corollary 0.4 has the basis set

 $\begin{cases} \Pi, & \text{if } |\Pi_1| \text{ is odd;} \\ \Pi - \{\overline{j}\}, & \text{if } |\Pi_1| \text{ is even} \end{cases}$

for any $\overline{j} \in \Pi$. Moreover $\widetilde{s}_n \notin U$ if $|\Pi_1|$ is even.

Simple Basis

Set

$$\Delta := \begin{cases} \Pi, & \text{if } |\Pi_1| \text{ is odd}; \\ \Pi \cup \{\overline{n+1}\} - \{\overline{n}\}, & \text{if } |\Pi_1| \text{ is even}, \end{cases}$$

where $\overline{n+1} = \widetilde{s}_n$.

Simple Weight and Weight

Let $\Delta(u)$ be the subset of Δ such that

$$u = \sum_{\overline{i} \in \Delta(u)} \overline{i},$$

set $sw(u) := |\Delta(u)|$, and we refer sw(u) to be the simple weight of u.

$$w(u) := |\{s_i \in S \mid u_{s_i} = 1\}|$$

More Setting

For $V \subseteq F_2^n$ and $T \subseteq \{0, 1, \dots, n\},$ $V_T := \{u \in V \mid sw(u) \in T\},$

and for shortness $V_{t_1,t_2,\ldots,t_i} := V_{\{t_1,t_2,\ldots,t_i\}}$. Let *odd* be the subset of $\{1, 2, \ldots, n\}$ consisting of odd integers.

Three classes of subsets of {1, 2, ..., n}

$$\begin{split} A_i &:= \{j \in [n] \mid j \equiv i, n + |\Pi_1| - i \pmod{4}\}, \\ B_i &= \{j \in [n-1] \mid j \equiv i, i + |\Pi_1| - 2, n - i, n - i + |\Pi_1| - 2 \pmod{4}\}, \\ C_i &= \{j \in [n] \mid j \equiv i, i + |\Pi_1|, n + 2 - i, n + 2 - i + |\Pi_1| \pmod{4}\}. \end{split}$$

The Orbits (Case 1)

$ \Pi_1 $	n	nontrivial $O \in \mathcal{P}$ (might be repeated)	$ \mathcal{P} $
$3 \le \Pi_1 \le n - 3,$ $ \Pi_1 \text{ is odd}$	even	U_{A_j}	3
$3 \le \Pi_1 \le n - 3,$ $ \Pi_1 \text{ is odd}$	odd	U_{A_j}	4

The Orbits (Case 2)

$ \Pi_1 $	n	nontrivial $O \in \mathcal{P}$ (might be repeated)	$ \mathcal{P} $
$4 \le \Pi_1 \le n - 3,$ $ \Pi_1 \text{ is even}$	even	$U_{B_j}, \overline{U}_{C_j}$	6
$4 \le \Pi_1 \le n - 3,$ $ \Pi_1 \text{ is even}$	odd	$U_{B_j}, \overline{U}_{C_j}$	4

The Orbits (Case 3)

$ \Pi_1 $	n	nontrivial $O \in \mathcal{P}$ (might be repeated)	$ \mathcal{P} $
$ \Pi_1 = 1$		$U_{t,n+1-t}$	$\lceil n+2/2\rceil$
$ \Pi_1 = 2$	even	$U_{i,n-i}, \overline{U}_{C_1}, \overline{U}_{C_2}$	(n+6)/2
$ \Pi_1 = 2$	odd	$U_{i,n-i}, \overline{U}_{C_1}, \overline{U}_{C_2}$	(n+3)/2

The Orbits (Case 4)

$ \Pi_1 $	n	nontrivial $O \in \mathcal{P}$ (might be repeated)	$ \mathcal{P} $
$ \Pi_1 = n - 2,$ $ \Pi_1 \text{ is odd}$	odd	U_{odd}, U_{2i}	(n+3)/2
$ \Pi_1 = n - 2,$ \Pi_1 is even	even	$U_{odd}, U_{2h,n-2h},$ $\overline{U}_{odd}, \overline{U}_{2g,n+2-2g}$	(n+6)/2

The Orbits (Case 5)

$ \Pi_1 $	n	nontrivial $O \in \mathcal{P}$ (might be repeated)	$ \mathcal{P} $
$ \Pi_1 = n - 1,$ \Pi_1 is odd	even	$U_{2t-1,2t}$	(n+2)/2
$ \Pi_1 = n - 1,$ \Pi_1 is even	odd	$U_{2h-1,2h,n-2h,n+1-2h}, \\ \overline{U}_{2g-1,2gn+2-2g,n+3-2g}$	(n+3)/2

The End! Thank You for Your Attention!

http://arxiv.org/PS_cache/arxiv/pdf/0808/0808.2 104v1.pdf to get the preprint